
Continuing Stack Switching in Wasmtime

Frank Emrich, Daniel Hillerström
The University of Edinburgh

WebAssembly Workshop 2025

Stack Switching in WebAssembly
Stack Switching subgroup working on non-local control flow for Wasm

• Enable various source language features:
• async/await, coroutines, lightweight threads, generators, first-class

continuations, ...

Proposal
• Based on Plotkin and Pretnar’s handlers for algebraic effects: Asymmetric stack

switching
• OOPSLA 2023: “Continuing WebAssembly with Effect Handlers”
• Additional switch instruction to optimise performance of symmetric stack

switching
• Advanced to stage 2 in August 2024

Implementations
• Reference interpreter
• Wasmtime (industrial strength, standalone Wasm engine), currently being

upstreamed 2

Instruction Set

Module-level definitions
• Tags denote delimeters/effects

(tag $yield (param i32) (result i32))
• New heap type/structural type for continuation

(type $ct (cont $ft)))

Core instructions
• Create continuation from function reference

(cont.new $ct)
• Perform effect/suspend to handler for given tag

(suspend $yield)
• Resume a continuation, install handlers for tags/effects

(resume $ct (on $yield $handler_block))
• Switch directly to a target continuation instead of suspending to parent

(switch $ct $yield)
3

Asymmetric Switching: Example

Simple use case for asymmetric switching: Two functions $consumer and
$generator.

$consumer

$generator

(suspend $gen_value) (resume $ct (on $gen_value $handle_gen_value))parent

4

Symmetric Switching: Motivation

Use case: Switching between different tasks/coroutines/lightweight threads. Here:
$task1 and $task2.

Asymmetric implementation

$scheduler

$task1 $task2

1 (suspend $yield) 2 (resume $ct (on $yield $handle_yield))
parent

Observation: Going from $task1 to $task2 requires two stack switches

5

Symmetric Switching: Example

Symmetric implementation of previous example

$scheduler

$task1 $task2

parent

1 (switch $ct $yield)

6

The Challenge
How to implement a complex feature in an industrial-strength Wasm engine
with limited resources?

Luna Phipps-Costin Daniel Hillerström Frank Emrich

1. Create inefficient, but easy to implement prototype
2. Sketch design of optimised implementation
3. Incremental changes towards optimised implementation: No big bang
4. Arrive at optimised implementation!

7

The Challenge
How to implement a complex feature in an industrial-strength Wasm engine
with limited resources?

Luna Phipps-Costin Daniel Hillerström Frank Emrich

1. Create inefficient, but easy to implement prototype
2. Sketch design of optimised implementation
3. Incremental changes towards optimised implementation: No big bang
4. Arrive at optimised implementation!

7

The Challenge
How to implement a complex feature in an industrial-strength Wasm engine
with limited resources?

Luna Phipps-Costin Daniel Hillerström Frank Emrich

1. Create inefficient, but easy to implement prototype
2. Sketch design of optimised implementation
3. Incremental changes towards optimised implementation: No big bang
4. Arrive at optimised implementation!

7

The Challenge
How to implement a complex feature in an industrial-strength Wasm engine
with limited resources?

Luna Phipps-Costin Daniel Hillerström Frank Emrich

1. Create inefficient, but easy to implement prototype
2. Sketch design of optimised implementation
3. Incremental changes towards optimised implementation: No big bang
4. Arrive at optimised implementation!

7

Design of Prototype Implementation

→ Prototype implemented at level of
Wasm→ Cranelift intermediate
format (CLIF) translation

→ Cranelift remains unchanged

→ Escape hatch: Libcalls allow
executing arbitrary Rust code

→ Relied on new libcalls to ...
• perform actual stack switching

using wasmtime-fiber
• perform allocation
• simplify implementation work

Wasm

CLIF

assembly

libcalls
(cont.new, resume,
suspend, alloc, ...)

Cranelift

call libcall_resume(...)

8

wasmtime-fiber

• General purpose library for
(asymmetric) stack switching,
developed as part of
Wasmtime

• Used to implement
Wasmtime’s async feature

• At its heart: Hand-written
assembly function
wasmtime_fiber_switch that
stores registers, updates stack
pointer, etc

saved SP

stack frames

caller-save registers
IP, FP,

callee-save registers

unused

Stack Layout (suspended)

Managed by
wasmtime_fiber_switch

9

Design of Final Implementation

→ Goal: Perform actual stack switching using
Cranelift-generated code

→ Only single new libcall left
(cont.new needs support from runtime)

→ Solution: New CLIF instruction stack_switch
• Minimal addition to Cranelift: Only does
what cannot be expressed already

• Platform-independent

Wasm

CLIF

assembly

Cranelift

stack_switch(...)

10

stack_switch Instruction

→ Instruction acts on pointers to
control contexts
stack_switch(

source_control_ctx ,
dest_control_ctx ,
payload

)

→ Layout and contents platform
dependent

→ Provides symmetric switching!

→ Similar to Dolan et al.’s SWAPSTACK
(TACO 2013: “Compiler Support for
Lightweight Context Switching”)

control context
(SP, FP, IP, ...)

stack frames

saved registers

unused

Stack Layout (suspended)

Managed by
stack_switch

Managed by
register allocator

11

Stack Layout Comparison
Layout similar to one used by wasmtime-fiber turned out to be natural fit

saved SP

stack frames

caller-save registers
IP, FP,

callee-save registers

unused

wasmtime-fiber layout

control context
(SP, FP, IP, ...)

stack frames

saved registers

unused

stack_switch layout

To ease transition: Introduced third, intermediate version of stack layout 12

Benchmark Results

Measuring performance change of single commit enabling native stack switching

• Platform: x64 Linux
• CPU: AMD Ryzen 3900X

Benchmark Relative improvement
c10m 1.49
sieve 2.61
skynet 1.72
state 4.48

suspend_resume 5.97

surprisingly good?

13

Benchmark Results

Measuring performance change of single commit enabling native stack switching

• Platform: x64 Linux
• CPU: AMD Ryzen 3900X

Benchmark Relative improvement
c10m 1.49
sieve 2.61
skynet 1.72
state 4.48

suspend_resume 5.97

surprisingly good?

13

Benchmark Analysis
Prototype implementation executing following situation

• At some point: $f resumed continuation now running $g
• Now: Continuation running $g suspends itself back to stack running $f

...
$f

libcalls::raw::resume
catch_unwind_and_longjmp0<...>

libcalls::resume
wasmtime_fiber_switch

stack running $f
...
$g

libcalls::raw::suspend
catch_unwind_and_longjmp0<...>

libcalls::suspend

stack running $g

PC

• Stack switching confuses CPU’s Return Address Prediction unit:
4 guaranteed mispredictions per Wasm stack switching operation

14

Benchmark Analysis
Prototype implementation executing following situation

• At some point: $f resumed continuation now running $g
• Now: Continuation running $g suspends itself back to stack running $f

...
$f

libcalls::raw::resume
catch_unwind_and_longjmp0<...>

libcalls::resume
wasmtime_fiber_switch

stack running $f
...
$g

libcalls::raw::suspend

catch_unwind_and_longjmp0<...>
libcalls::suspend

stack running $g

PC

• Stack switching confuses CPU’s Return Address Prediction unit:
4 guaranteed mispredictions per Wasm stack switching operation

14

Benchmark Analysis
Prototype implementation executing following situation

• At some point: $f resumed continuation now running $g
• Now: Continuation running $g suspends itself back to stack running $f

...
$f

libcalls::raw::resume
catch_unwind_and_longjmp0<...>

libcalls::resume
wasmtime_fiber_switch

stack running $f
...
$g

libcalls::raw::suspend
catch_unwind_and_longjmp0<...>

libcalls::suspend

stack running $g

PC

• Stack switching confuses CPU’s Return Address Prediction unit:
4 guaranteed mispredictions per Wasm stack switching operation

14

Benchmark Analysis
Prototype implementation executing following situation

• At some point: $f resumed continuation now running $g
• Now: Continuation running $g suspends itself back to stack running $f

...
$f

libcalls::raw::resume
catch_unwind_and_longjmp0<...>

libcalls::resume
wasmtime_fiber_switch

stack running $f
...
$g

libcalls::raw::suspend
catch_unwind_and_longjmp0<...>

libcalls::suspend

stack running $g

PC

• Stack switching confuses CPU’s Return Address Prediction unit:
4 guaranteed mispredictions per Wasm stack switching operation

14

Benchmark Analysis
Prototype implementation executing following situation

• At some point: $f resumed continuation now running $g
• Now: Continuation running $g suspends itself back to stack running $f

...
$f

libcalls::raw::resume
catch_unwind_and_longjmp0<...>

libcalls::resume
wasmtime_fiber_switch

stack running $f
...
$g

libcalls::raw::suspend
catch_unwind_and_longjmp0<...>

libcalls::suspend
wasmtime_fiber_switch

stack running $g

PC

• Stack switching confuses CPU’s Return Address Prediction unit:
4 guaranteed mispredictions per Wasm stack switching operation

14

Benchmark Analysis
Prototype implementation executing following situation

• At some point: $f resumed continuation now running $g
• Now: Continuation running $g suspends itself back to stack running $f

...
$f

libcalls::raw::resume
catch_unwind_and_longjmp0<...>

libcalls::resume
wasmtime_fiber_switch

stack running $f
...
$g

libcalls::raw::suspend
catch_unwind_and_longjmp0<...>

libcalls::suspend
wasmtime_fiber_switch

stack running $g

PC

• Stack switching confuses CPU’s Return Address Prediction unit:
4 guaranteed mispredictions per Wasm stack switching operation

14

Benchmark Analysis
Prototype implementation executing following situation

• At some point: $f resumed continuation now running $g
• Now: Continuation running $g suspends itself back to stack running $f

...
$f

libcalls::raw::resume
catch_unwind_and_longjmp0<...>

libcalls::resume
wasmtime_fiber_switch

stack running $f
...
$g

libcalls::raw::suspend
catch_unwind_and_longjmp0<...>

libcalls::suspend
wasmtime_fiber_switch

stack running $g

mispredict!

• Stack switching confuses CPU’s Return Address Prediction unit:
4 guaranteed mispredictions per Wasm stack switching operation

14

Benchmark Analysis
Prototype implementation executing following situation

• At some point: $f resumed continuation now running $g
• Now: Continuation running $g suspends itself back to stack running $f

...
$f

libcalls::raw::resume
catch_unwind_and_longjmp0<...>

libcalls::resume

stack running $f
...
$g

libcalls::raw::suspend
catch_unwind_and_longjmp0<...>

libcalls::suspend
wasmtime_fiber_switch

stack running $g

mispredict!

PC

• Stack switching confuses CPU’s Return Address Prediction unit:
4 guaranteed mispredictions per Wasm stack switching operation

14

Benchmark Analysis
Prototype implementation executing following situation

• At some point: $f resumed continuation now running $g
• Now: Continuation running $g suspends itself back to stack running $f

...
$f

libcalls::raw::resume
catch_unwind_and_longjmp0<...>

libcalls::resume

stack running $f
...
$g

libcalls::raw::suspend
catch_unwind_and_longjmp0<...>

libcalls::suspend
wasmtime_fiber_switch

stack running $g

mispredict!

mispredict!

• Stack switching confuses CPU’s Return Address Prediction unit:
4 guaranteed mispredictions per Wasm stack switching operation

14

Benchmark Analysis
Prototype implementation executing following situation

• At some point: $f resumed continuation now running $g
• Now: Continuation running $g suspends itself back to stack running $f

...
$f

libcalls::raw::resume
catch_unwind_and_longjmp0<...>

libcalls::resume

stack running $f
...
$g

libcalls::raw::suspend
catch_unwind_and_longjmp0<...>

libcalls::suspend
wasmtime_fiber_switch

stack running $g

mispredict!

mispredict!

PC

• Stack switching confuses CPU’s Return Address Prediction unit:
4 guaranteed mispredictions per Wasm stack switching operation

14

Benchmark Analysis
Prototype implementation executing following situation

• At some point: $f resumed continuation now running $g
• Now: Continuation running $g suspends itself back to stack running $f

...
$f

libcalls::raw::resume
catch_unwind_and_longjmp0<...>

libcalls::resume

stack running $f
...
$g

libcalls::raw::suspend
catch_unwind_and_longjmp0<...>

libcalls::suspend
wasmtime_fiber_switch

stack running $g

mispredict!

mispredict!

mispredict!

• Stack switching confuses CPU’s Return Address Prediction unit:
4 guaranteed mispredictions per Wasm stack switching operation

14

Benchmark Analysis
Prototype implementation executing following situation

• At some point: $f resumed continuation now running $g
• Now: Continuation running $g suspends itself back to stack running $f

...
$f

libcalls::raw::resume

catch_unwind_and_longjmp0<...>
libcalls::resume

stack running $f
...
$g

libcalls::raw::suspend
catch_unwind_and_longjmp0<...>

libcalls::suspend
wasmtime_fiber_switch

stack running $g

mispredict!

mispredict!

mispredict!

PC

• Stack switching confuses CPU’s Return Address Prediction unit:
4 guaranteed mispredictions per Wasm stack switching operation

14

Benchmark Analysis
Prototype implementation executing following situation

• At some point: $f resumed continuation now running $g
• Now: Continuation running $g suspends itself back to stack running $f

...
$f

libcalls::raw::resume

catch_unwind_and_longjmp0<...>
libcalls::resume

stack running $f
...
$g

libcalls::raw::suspend
catch_unwind_and_longjmp0<...>

libcalls::suspend
wasmtime_fiber_switch

stack running $g

mispredict!

mispredict!

mispredict!

mispredict!

• Stack switching confuses CPU’s Return Address Prediction unit:
4 guaranteed mispredictions per Wasm stack switching operation

14

Benchmark Analysis
Prototype implementation executing following situation

• At some point: $f resumed continuation now running $g
• Now: Continuation running $g suspends itself back to stack running $f

...
$f

libcalls::raw::resume
catch_unwind_and_longjmp0<...>

libcalls::resume

stack running $f
...
$g

libcalls::raw::suspend
catch_unwind_and_longjmp0<...>

libcalls::suspend
wasmtime_fiber_switch

stack running $g

mispredict!

mispredict!

mispredict!

mispredict!

PC

• Stack switching confuses CPU’s Return Address Prediction unit:
4 guaranteed mispredictions per Wasm stack switching operation

14

Benchmark Analysis
Prototype implementation executing following situation

• At some point: $f resumed continuation now running $g
• Now: Continuation running $g suspends itself back to stack running $f

...
$f

libcalls::raw::resume
catch_unwind_and_longjmp0<...>

libcalls::resume

stack running $f
...
$g

libcalls::raw::suspend
catch_unwind_and_longjmp0<...>

libcalls::suspend
wasmtime_fiber_switch

stack running $g

mispredict!

mispredict!

mispredict!

mispredict!

PC

• Stack switching confuses CPU’s Return Address Prediction unit:
4 guaranteed mispredictions per Wasm stack switching operation 14

Summary

1. Create inefficient, but easy to implement prototype

• Built on wasmtime-fiber, libcall mechanism
• No changes to Cranelift at this stage
• For any complicated logic: Use libcall written in Rust

2. Sketch design of optimised implementation

• Early experimentation work with emitting stack switching in Cranelift

3. Incremental changes towards optimised implementation: No big bang

• Custom copy of wasmtime-fiber, adapted over time
• Step-wise transition of stack layout used by (our) wasmtime-fiber vs

stack_switch instruction
• Not mentioned today: Many other small optimisations

4. Arrive at optimised implementation!

• Currently being upstreamed

15

Summary

1. Create inefficient, but easy to implement prototype
• Built on wasmtime-fiber, libcall mechanism
• No changes to Cranelift at this stage
• For any complicated logic: Use libcall written in Rust

2. Sketch design of optimised implementation

• Early experimentation work with emitting stack switching in Cranelift

3. Incremental changes towards optimised implementation: No big bang

• Custom copy of wasmtime-fiber, adapted over time
• Step-wise transition of stack layout used by (our) wasmtime-fiber vs

stack_switch instruction
• Not mentioned today: Many other small optimisations

4. Arrive at optimised implementation!

• Currently being upstreamed

15

Summary

1. Create inefficient, but easy to implement prototype
• Built on wasmtime-fiber, libcall mechanism
• No changes to Cranelift at this stage
• For any complicated logic: Use libcall written in Rust

2. Sketch design of optimised implementation
• Early experimentation work with emitting stack switching in Cranelift

3. Incremental changes towards optimised implementation: No big bang

• Custom copy of wasmtime-fiber, adapted over time
• Step-wise transition of stack layout used by (our) wasmtime-fiber vs

stack_switch instruction
• Not mentioned today: Many other small optimisations

4. Arrive at optimised implementation!

• Currently being upstreamed

15

Summary

1. Create inefficient, but easy to implement prototype
• Built on wasmtime-fiber, libcall mechanism
• No changes to Cranelift at this stage
• For any complicated logic: Use libcall written in Rust

2. Sketch design of optimised implementation
• Early experimentation work with emitting stack switching in Cranelift

3. Incremental changes towards optimised implementation: No big bang
• Custom copy of wasmtime-fiber, adapted over time
• Step-wise transition of stack layout used by (our) wasmtime-fiber vs

stack_switch instruction
• Not mentioned today: Many other small optimisations

4. Arrive at optimised implementation!

• Currently being upstreamed

15

Summary

1. Create inefficient, but easy to implement prototype
• Built on wasmtime-fiber, libcall mechanism
• No changes to Cranelift at this stage
• For any complicated logic: Use libcall written in Rust

2. Sketch design of optimised implementation
• Early experimentation work with emitting stack switching in Cranelift

3. Incremental changes towards optimised implementation: No big bang
• Custom copy of wasmtime-fiber, adapted over time
• Step-wise transition of stack layout used by (our) wasmtime-fiber vs

stack_switch instruction
• Not mentioned today: Many other small optimisations

4. Arrive at optimised implementation!
• Currently being upstreamed

15

WasmFX Resource List

→ Proposal repository: Informal overview, Reference interpreter
(https://github.com/WebAssembly/stack-switching)

→ Wasmtime implementation (https://github.com/wasmfx/wasmfxtime)

→ Fiber library (https://github.com/wasmfx/fiber-c)

→ Benchmark suite (https://github.com/wasmfx/benchfx)

→ OOPSLA’23 research paper (https://doi.org/10.48550/arXiv.2308.08347)

https://github.com/WebAssembly/stack-switching

16

https://github.com/WebAssembly/stack-switching
https://github.com/wasmfx/wasmfxtime
https://github.com/wasmfx/fiber-c
https://github.com/wasmfx/benchfx
https://doi.org/10.48550/arXiv.2308.08347
https://github.com/WebAssembly/stack-switching

Bonus slides

	Appendix

