Effect handlers for WebAssembly

Sam Lindley

The University of Edinburgh

MFPS 2022

Part |

Effect handlers

Effects

Programs as black boxes (Church-Turing model)?

—l-

Effects

Programs must interact with their environment

[
\ /

7

2 W*

4

Effects

Programs must interact with their environment

Effects

Programs must interact with their environment

Effects are pervasive
> input/output
user interaction

» concurrency
web applications

» distribution
cloud computing

» exceptions
fault tolerance

» choice
backtracking search

Typically ad hoc and hard-wired

Effect handlers

g ’ Gordon Plotkin i Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Effect handlers

.
S' Gordon Plotkin ‘ Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Composable and customisable user-defined interpretation of effects in general

Effect handlers

o
sw Gordon Plotkin ‘ Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers

@
s Gordon Plotkin ‘ Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context

Growing industrial interest

GitHub

(c.f. resumable exceptions, monads, delimited control)

semantic Code analysis library (> 25 million repositories)

JavaScript Ul lib > 2 milli bsit
React avaScrip ibrary (million websites)

Pl

Statistical inference (10% ad spend saving)
Pyro

Effect handlers as composable user-defined operating systems

\

Effect handlers as composable user-defined operating systems

=

ﬂb‘ébﬂo«jo

NS
ﬁ*

a7

Operational semantics (deep handlers)

Reduction rules
let x=Vin N ~ N[V/x]

handle V with H ~ N[V/x]
handle E[op V] with H ~» Ngp[V/p, (Ax.handle £[x] with H)/r],

where
H = return x — N

(op1p = r) — Nop,
(opkp = 1) +— Nop,

Evaluation contexts
Ex=[]|letx=~Ein N | handle £ with H

op#E&

Typing rules (deep handlers)

Effects

Computations

Operations

Handlers

MNx:AFN:D

E:=0|EW{op: A— B}

C,D:=AE

r-Vv:A

N~opV:BYEW{op:

r=mM:C MN-H:

A — B})

C=D

I - handle M with

[op; : Ai - Bj € EJ;

H:D

[I‘,p:A,-,r:B,-—)DI—N,-:D],-

return x — N

M-

((opip = r) = N;);

AlE=D

Deep effect handlers

MNx:AFRN:D [op; : Ai — B; € E]; [F,p:Ai,r:Bi— DFN;:Dj;

return x — N
(s cAIE=D
({op; p = r) = Ni);

handle E[op V] with H ~» Ny, [V/p, (Ax.handle £[x] with H)/r], op# £

Deep effect handlers

MNx:AFRN:D [op; : Ai — B; € E]; [F,p:Ai,r:Bi— DFN;:Dj;

return x — N
(s cAIE=D
({op; p = r) = Ni);

handle E[op V] with H ~» Ny, [V/p, (Ax.handle £[x] with H)/r], op# £

The body of the resumption r reinvokes the handler

Deep effect handlers

MNx:AFRN:D [op; : Ai — B; € E]; [F,p:Ai,r:Bi— DFN;:Dj;

return x — N
(s cAIE=D
({op; p = r) = Ni);

handle E[op V] with H ~» Ny, [V /p, (Ax.handle E[x] with H)/r], op#¢&

The body of the resumption r reinvokes the handler

A deep handler performs a fold (catamorphism) on a computation tree

Shallow effect handlers

Nx:AEN:D [op; : Ai — Bj € E]; [M,p:Ai,r:B — AEE N, : D]

return x — N
M+ AlE = D
(<0p,~p — r) — N,'),'

handle Eop V] with H ~ Noo[V/p, (Ax.E[x])/r], op# E

Shallow effect handlers

Nx:AEN:D [op; : Ai — Bj € E]; [M,p:Ai,r:B — AEE N, : D]

return x — N
AlE = D
(<0p,~p — r) — N,'),'

handle Eop V] with H ~ Noo[V/p, (Ax.E[x])/r], op# E

The body of the resumption r does not reinvoke the handler

Shallow effect handlers

Nx:AEN:D [op; : Ai — Bj € E]; [M,p:Ai,r:B — AEE N, : D]

return x — N
AlE = D
(<0p,~p — r) — N,'),'

handle Eop V] with H ~ Noo[V/p, (Ax.E[x])/r], op# E

The body of the resumption r does not reinvoke the handler

A shallow handler performs a case-split on a computation tree

Sheep effect handlers — a hybrid of shallow and deep handlers

Nx:AFN:D
[Op,'ZA,'—»B,'EE],' [F,p:A,-,r:B,-—>(A!E=>D)—>DI—N,-:D],-

return x — N
(s cAIE= D
({op; p = r) = N;);

handle E[op V] with H ~» Ny, [V/p, (Ax h.handle E[x] with h)/r], op#¢E

Sheep effect handlers — a hybrid of shallow and deep handlers

Nx:AFN:D
[Op,'ZA,'—»B,'EE],' [F,p:A,-,r:B,-—>(A!E=>D)—>DI—N,-:D],-
return x — N

re - AIE = D
({op; p = r) = Ni);

handle E[op V] with H ~» Ny, [V/p, (Ax h.handle E[x] with h)/r], op#¢E

Like a shallow handler, the body of the resumption need not reinvoke the same handler

Sheep effect handlers — a hybrid of shallow and deep handlers

Nx:AFN:D
[Op,'ZA,'—»B,'EE],' [F,p:A,-,r:B,-—>(A!E=>D)—>DI—N,-:D],-
return x — N

re - AIE = D
({op; p = r) = Ni);

handle E[op V] with H ~» Ny, [V/p, (Ax h.handle E[x] with h)/r], op#¢E

Like a shallow handler, the body of the resumption need not reinvoke the same handler

Like a deep handler, the body of the resumption must invoke some handler

Example: lightweight threads

Effect signature
{yield : 1 — 1}

Example: lightweight threads

Effect signature
{yield : 1 — 1}

Two cooperative lightweight threads

tA () = print (“Al "); yield (); print ("A2 ")
t8() = print ("B1 ");yield (); print ("B2 ")

Example: lightweight threads (deep handlers)

Types
Thread E =1 — 1!(E W {yield : 1 — 1}) Res E =1 — List (Res E) — 11E
Handler
coop : 1!(Thread E) = (List (Res E) — 1!E)
coop = return () — Ars.case rs of || — ()
(rers)y—r()rs
(yield () — s) — Ars.case rs of] — s ()]
(rers) = r () (rs++[s])
lift : Thread E — Res E cooperate : List (Thread E) — 11E

lift t = A().handle t() with coop cooperate ts = lift id () (map lift ts)

Example: lightweight threads (deep handlers)

Types
Thread E =1 — 1!(E W {yield : 1 — 1}) Res E =1 — List (Res E) — 11E
Handler
coop : 1!(Thread E) = (List (Res E) — 1!E)
coop = return () — Ars.case rs of || — ()
(rers)y—r()rs
(yield () — s) — Ars.case rs of] — s ()]
(rers) = r () (rs++[s])
lift : Thread E — Res E cooperate : List (Thread E) — 11E
lift t = A().handle t() with coop cooperate ts = lift id () (map lift ts)

cooperate [tA, tB] = ()
Al B1 A2 B2

Example: lightweight threads (shallow handler)

Types
Thread E =1 — 1/(E W {yield : 1 — 1}) Res E = Thread E
Handler

cooperate : List (Thread E) — 11E

cooperate [= () cooperate (r :: rs) = handle r() with
return () +— cooperate (rs)
(yield () — s) +— cooperate (rs +- [s])

Example: lightweight threads (shallow handler)

Types
Thread E =1 — 1/(E W {yield : 1 — 1}) Res E = Thread E
Handler

cooperate : List (Thread E) — 11E

cooperate [= () cooperate (r :: rs) = handle r() with
return () +— cooperate (rs)
(yield () — s) +— cooperate (rs +- [s])

cooperate [tA, tB] = ()
Al B1 A2 B2

Example: lightweight threads (sheep handler)

Types

Thread E =1 — 1I(E W {yield : 1 — 1}) Res E =1 — List (Res E) — 11E
Handler

coop : List (Res E) — 1!(Thread E) = 1lE

coop[] = coop (r::rs) =

return () — () return () — r () (coop rs)

(vield () = r) = r () (coop [1) (vield () = s) = r () (coop (rs ++ [s]))

lift : Thread E — Res E cooperate : List (Thread E) — 11E

lift t = A() rs.handle t() with coop rs cooperate ts = lift id () (map lift ts)

Example: lightweight threads (sheep handler)

Types
Thread E =1 — 1I(E W {yield : 1 — 1}) Res E =1 — List (Res E) — 11E
Handler
coop : List (Res E) — 1!(Thread E) = 1lE
coop[] = coop (r::rs) =
return () — () return () — r () (coop rs)
(vield () = r) = r () (coop [1) (vield () = s) = r () (coop (rs ++ [s]))
lift : Thread E — Res E cooperate : List (Thread E) — 11E
lift t = A() rs.handle t() with coop rs cooperate ts = lift id () (map lift ts)

cooperate [tA, tB] = ()
Al B1 A2 B2

Part Il

WebAssembly with effect handlers

WebAssembly

Low-level language and execution environment with a formal semantics

Conceived as a target language for the web supported by all of the main web browsers

Also used e.g. for content delivery networks, library sandboxing, smart contracts

Effect handlers for WebAssembly

(Daniel Hillerstrém, Daan Leijen, Sam Lindley, Matija Pretnar, Andreas Rossberg, KC Sivamarakrishnan)

WasmFX (also known as “typed continuations”; implementation of “stack switching™)

https://wasmfx.dev

Features: explicit continuation type, linear continuations, handling built into resuming,
supports reference counting

https://wasmfx.dev

Key ingredients

Continuation types
cont (typeidx) define a new continuation type

Control tags
tag (tagidx) define a new tag

Core instructions

cont.new (typeidx) create a new continuation
suspend (tagidx) suspend the current continuation
resume (tag (tagidx) (labelidx))+ resume a continuation

Key ingredients

Continuation types
cont (typeidx) define a new continuation type

Control tags
tag (tagidx) define a new tag

Core instructions

cont.new (typeidx) create a new continuation
suspend (tagidx) suspend the current continuation
resume (tag (tagidx) (labelidx))+ resume a continuation

Additional instructions

cont.bind (typeidx) bind a continuation to (partial) arguments
resume_throw (tagidx) abort a continuation
barrier (blocktype) (instr)x block suspension

Control tags

Synonyms: operation, command, resumable exception, event

tag $e (param sx) (result tx) declare tag of type [sx] — [tx]
suspend $e : [sx] — [t%] invoke tag
where e is a tag of type [sx] — [tx]

Continuations
Synonyms: stacklet, resumption

cont.new $ct : [(ref $ft)] — [(ref $ct)]
where $ft denotes a function type [sx| — [t%]
$ct = cont $ft
resume (tag $e $/)x : [tIx (ref $ct)] — [t24]
where $ct = cont ([t1x] — [t2%])
each $e is a control tag and
each $/ is a label pointing to its handler clause
if $e : [sI%] — [s2%] then
$/: [sIx (ref $ct')] — [t24]
$ct’ : [s2%] — [t24]

new continuation from function

invoke continuation with handler

Continuations
Synonyms: stacklet, resumption

cont.new $ct : [(ref $ft)] — [(ref $ct)]
where $ft denotes a function type [sx| — [t%]
$ct = cont $ft
resume (tag $e $/)x : [tIx (ref $ct)] — [t24]
where $ct = cont ([t1x] — [t2%])
each $e is a control tag and
each $/ is a label pointing to its handler clause
if $e : [sI%] — [s2%] then
$/: [sIx (ref $ct')] — [t24]
$ct’ : [s2%] — [t24]
resume_throw $exn : [sx (ref $ct)] — [t2%]
where $ct = cont ([tIx] — [t2x])
$exn : [sx] =[]

new continuation from function

invoke continuation with handler

discard cont. and throw exception

Encoding handlers with blocks and labels

If $ei : [six] — [tix] and $cti : [tix] — [tr*] then a typical handler looks something like:

(loop $/
(block $on_el (result s1x (ref $ctl))
» Structured as a
(block $on_en (result snx (ref $ctn)) scheduler loop
(resume
(tag $el $on_el) ... (tag $en $on_en)
(local.get $nextk)) »
... (br$) > Result specifies types

) $on_en (result snx (ref $ctn)) of pa.lrame.ters and
.. (br $/) continuation

» Handler body comes
after block

) i; $on_el (result sIx (ref $ct1))
.. (br$1)

Example: lightweight threads

(loop $/ (if (ref.is_null (local.get $nextk)) (then (return)))
(block $on_yield (result (ref $cont))
(block $on_fork (result (ref $cont) (ref $cont))
(resume (tag $yield $on_yield) (tag $fork $on_fork)
(local.get $nextk))
(local.set $nextk (call $dequeue))

(br $/)
) $on_fork (result (ref $cont) (ref $cont))
(local.set $nextk) ;; current thread
(call $enqueue) ;; new thread
(br $/)

) $on_yield (result (ref $cont))

(call $enqueue) ;; current thread

(local.set $nextk (call $dequeue)) ;; next thread
(br $7))

Examples

Lightweight threads
Actors

Async/await

https://github.com/effect-handlers/wasm-spec/tree/examples/proposals/
continuations/examples

https://github.com/effect-handlers/wasm-spec/tree/examples/proposals/continuations/examples
https://github.com/effect-handlers/wasm-spec/tree/examples/proposals/continuations/examples

Partial continuation application

No need to do any allocation as continuations are one-shot

cont.bind $ct : [sIx (ref $ct’)] — [(ref $ct)]
where $ct = cont ([s2%] — [t1x])
$ct’ = cont ([s1* s2x] — [t1x])

Partial continuation application

No need to do any allocation as continuations are one-shot

cont.bind $ct : [sIx (ref $ct’)] — [(ref $ct)]
where $ct = cont ([s2%] — [t1x])
$ct’ = cont ([s1* s2x] — [t1x])

Avoids code duplication

Barriers

Behaves like a catch-all handler that traps on suspension

barrier $/ $bt instrx : [sx] — [t*]
where $bt = [sx] — [tx]
instrs : [sx] — [t%]

Status

Reference interpreter extension
https://github.com/effect-handlers/wasm-spec/tree/master/interpreter

Formal spec
https://github.com/WebAssembly/stack-switching/tree/main/proposals/
continuations/Overview.md

Examples
https://github.com/WebAssembly/stack-switching/tree/main/proposals/
continuations/examples

https://github.com/effect-handlers/wasm-spec/tree/master/interpreter
https://github.com/WebAssembly/stack-switching/tree/main/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/tree/main/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/tree/main/proposals/continuations/examples
https://github.com/WebAssembly/stack-switching/tree/main/proposals/continuations/examples

What next?

Mechanise the spec

Wasmtime implementation

WasmFX backends: Links, Koka, JavaScript, Lumen, ...

Benchmarking

Potential extensions: named handlers, multishot continuations, handler return clauses,
tail-resumptive handlers, first-class tags, preemption

Part Il

Extensions

Named handlers
Motivation: support capability-passing style; avoid dynamic binding / dynamic scope

Named handlers
Motivation: support capability-passing style; avoid dynamic binding / dynamic scope

New reference type for handlers (unique prompt as in multi-prompt delimited control)

handler tx

Named handlers
Motivation: support capability-passing style; avoid dynamic binding / dynamic scope

New reference type for handlers (unique prompt as in multi-prompt delimited control)
handler tx
Suspending to a named handler by passing a prompt

suspend_to $e : [sx (ref $ht)] — [tx]
where $ht = handler trx
$e = [sx] — [t¥]

Named handlers
Motivation: support capability-passing style; avoid dynamic binding / dynamic scope

New reference type for handlers (unique prompt as in multi-prompt delimited control)
handler tx
Suspending to a named handler by passing a prompt

suspend_to $e : [sx (ref $ht)] — [tx]
where $ht = handler trx
$e = [sx] — [t¥]

Resuming with a unique prompt for the handler

resume_with (tag $e $/)x : [t1x (ref $ct)] — [t2%]
where $ht = handler t2x
$ct = cont ([(ref $ht) t1x] — [t2x])

Direct switching

Motivation: avoid a double stack-switch to implement a context switch

Direct switching
Motivation: avoid a double stack-switch to implement a context switch

Switch directly to another continuation

switch_to : [t1x (ref $ct1) (ref $ht)] — [t2%]
where $ht = handler t3x
$ctl = cont ([(ref $ht) (ref $ct2) t1x] — [t3%])
$ct2 = cont ([t2%] — [t3%])

Direct switching
Motivation: avoid a double stack-switch to implement a context switch

Switch directly to another continuation

switch_to : [t1x (ref $ct1) (ref $ht)] — [t2%]
where $ht = handler t3x
$ctl = cont ([(ref $ht) (ref $ct2) t1x] — [t3%])
$ct2 = cont ([t2%] — [t3%])

Behaves as if we had a built-in tag
tag $switch (param t1x (ref $ct1)) (result t3x)

and the handler implicitly handles $switch by resuming to the continuation argument.

Direct switching
Motivation: avoid a double stack-switch to implement a context switch

Switch directly to another continuation

switch_to : [t1x (ref $ct1) (ref $ht)] — [t2%]
where $ht = handler t3x
$ctl = cont ([(ref $ht) (ref $ct2) t1x] — [t3%])
$ct2 = cont ([t2%] — [t3%])

Behaves as if we had a built-in tag
tag $switch (param t1x (ref $ct1)) (result t3x)
and the handler implicitly handles $switch by resuming to the continuation argument.

In practice requires recursive types (typically $ctl and $ct2 will be the same type)

Multishot continuations

Motivation: backtracking search, ProbProg, AD, etc.

Multishot continuations

Motivation: backtracking search, ProbProg, AD, etc.

Easy to adapt the formal semantics to not trap when a continuation is used twice...
...but would seem to preclude expected implementation techniques!

Multishot continuations

Motivation: backtracking search, ProbProg, AD, etc.

Easy to adapt the formal semantics to not trap when a continuation is used twice...
...but would seem to preclude expected implementation techniques!

Clone a continuation

cont.clone $ct : [(ref $ct)] — [(ref $ct)]
where $ct = cont ([sx] — [tx])

Multishot continuations

Motivation: backtracking search, ProbProg, AD, etc.

Easy to adapt the formal semantics to not trap when a continuation is used twice...
...but would seem to preclude expected implementation techniques!

Clone a continuation

cont.clone $ct : [(ref $ct)] — [(ref $ct)]
where $ct = cont ([sx] — [tx])

Alternative design: build cont.clone into a special variant of resume

Some other extensions

handler return clauses (functional programming)

tail-resumptive handlers (dynamic binding)

>

>

> first-class tags (modularity)

» parametric tags (existential types)
>

preemption (interrupts)

	Effect handlers
	WebAssembly with effect handlers
	Extensions

