
Effect handlers for WebAssembly

Sam Lindley

The University of Edinburgh

MFPS 2022

Part I

Effect handlers

Effects

Programs as black boxes (Church-Turing model)?

Effects are pervasive

▶ input/output

user interaction

▶ concurrency

web applications

▶ distribution

cloud computing

▶ exceptions

fault tolerance

▶ choice

backtracking search

Typically ad hoc and hard-wired

Effects

Programs must interact with their environment

Effects are pervasive

▶ input/output

user interaction

▶ concurrency

web applications

▶ distribution

cloud computing

▶ exceptions

fault tolerance

▶ choice

backtracking search

Typically ad hoc and hard-wired

Effects

Programs must interact with their environment

Effects are pervasive

▶ input/output
user interaction

▶ concurrency
web applications

▶ distribution
cloud computing

▶ exceptions
fault tolerance

▶ choice
backtracking search

Typically ad hoc and hard-wired

Effects

Programs must interact with their environment Effects are pervasive

▶ input/output
user interaction

▶ concurrency
web applications

▶ distribution
cloud computing

▶ exceptions
fault tolerance

▶ choice
backtracking search

Typically ad hoc and hard-wired

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Growing industrial interest

semantic Code analysis library (> 25 million repositories)

React
JavaScript UI library (> 2 million websites)

Pyro
Statistical inference (10% ad spend saving)

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Growing industrial interest

semantic Code analysis library (> 25 million repositories)

React
JavaScript UI library (> 2 million websites)

Pyro
Statistical inference (10% ad spend saving)

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Growing industrial interest

semantic Code analysis library (> 25 million repositories)

React
JavaScript UI library (> 2 million websites)

Pyro
Statistical inference (10% ad spend saving)

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Growing industrial interest

semantic Code analysis library (> 25 million repositories)

React
JavaScript UI library (> 2 million websites)

Pyro
Statistical inference (10% ad spend saving)

Effect handlers as composable user-defined operating systems

Effect handlers as composable user-defined operating systems

Operational semantics (deep handlers)

Reduction rules

let x = V in N ⇝ N[V /x]
handle V with H ⇝ N[V /x]

handle E [op V] with H ⇝ Nop[V /p, (λx .handle E [x] with H)/r], op # E

where
H = return x 7→ N

⟨op1 p → r⟩ 7→ Nop1

· · ·
⟨opk p → r⟩ 7→ Nopk

Evaluation contexts

E ::= [] | let x = E in N | handle E with H

Typing rules (deep handlers)

Effects
E ::= ∅ | E ⊎ {op : A↠ B}

Computations
C ,D ::= A!E

Operations
Γ ⊢ V : A

Γ ⊢ opV : B!(E ⊎ {op : A↠ B})

Handlers Γ ⊢ M : C Γ ⊢ H : C ⇒ D

Γ ⊢ handle M with H : D

Γ, x : A ⊢ N : D [opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → D ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒ D

Deep effect handlers

Γ, x : A ⊢ N : D [opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → D ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒ D

handle E [op V] with H ⇝ Nop[V /p, (λx .handle E [x] with H)/r], op # E

The body of the resumption r reinvokes the handler

A deep handler performs a fold (catamorphism) on a computation tree

Deep effect handlers

Γ, x : A ⊢ N : D [opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → D ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒ D

handle E [op V] with H ⇝ Nop[V /p, (λx .handle E [x] with H)/r], op # E

The body of the resumption r reinvokes the handler

A deep handler performs a fold (catamorphism) on a computation tree

Deep effect handlers

Γ, x : A ⊢ N : D [opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → D ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒ D

handle E [op V] with H ⇝ Nop[V /p, (λx .handle E [x] with H)/r], op # E

The body of the resumption r reinvokes the handler

A deep handler performs a fold (catamorphism) on a computation tree

Shallow effect handlers

Γ, x : A ⊢ N : D [opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → A!E ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒ D

handle E [opV] with H ⇝ Nop[V /p, (λx .E [x])/r], op # E

The body of the resumption r does not reinvoke the handler

A shallow handler performs a case-split on a computation tree

Shallow effect handlers

Γ, x : A ⊢ N : D [opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → A!E ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒ D

handle E [opV] with H ⇝ Nop[V /p, (λx .E [x])/r], op # E

The body of the resumption r does not reinvoke the handler

A shallow handler performs a case-split on a computation tree

Shallow effect handlers

Γ, x : A ⊢ N : D [opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → A!E ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒ D

handle E [opV] with H ⇝ Nop[V /p, (λx .E [x])/r], op # E

The body of the resumption r does not reinvoke the handler

A shallow handler performs a case-split on a computation tree

Sheep effect handlers — a hybrid of shallow and deep handlers

Γ, x : A ⊢ N : D
[opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → (A!E ⇒ D) → D ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒ D

handle E [op V] with H ⇝ Nop[V /p, (λx h.handle E [x] with h)/r], op # E

Like a shallow handler, the body of the resumption need not reinvoke the same handler

Like a deep handler, the body of the resumption must invoke some handler

Sheep effect handlers — a hybrid of shallow and deep handlers

Γ, x : A ⊢ N : D
[opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → (A!E ⇒ D) → D ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒ D

handle E [op V] with H ⇝ Nop[V /p, (λx h.handle E [x] with h)/r], op # E

Like a shallow handler, the body of the resumption need not reinvoke the same handler

Like a deep handler, the body of the resumption must invoke some handler

Sheep effect handlers — a hybrid of shallow and deep handlers

Γ, x : A ⊢ N : D
[opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → (A!E ⇒ D) → D ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒ D

handle E [op V] with H ⇝ Nop[V /p, (λx h.handle E [x] with h)/r], op # E

Like a shallow handler, the body of the resumption need not reinvoke the same handler

Like a deep handler, the body of the resumption must invoke some handler

Example: lightweight threads

Effect signature
{yield : 1↠ 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Example: lightweight threads

Effect signature
{yield : 1↠ 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Example: lightweight threads (deep handlers)
Types

Thread E = 1 → 1!(E ⊎ {yield : 1↠ 1}) Res E = 1 → List (Res E) → 1!E

Handler

coop : 1!(Thread E) ⇒ (List (Res E) → 1!E)

coop = return () 7→ λrs.case rs of [] 7→ ()
(r :: rs) 7→ r () rs

⟨yield () → s⟩ 7→ λrs.case rs of [] 7→ s () []
(r :: rs) 7→ r () (rs ++ [s])

lift : Thread E → Res E
lift t = λ().handle t() with coop

cooperate : List (Thread E) → 1!E
cooperate ts = lift id () (map lift ts)

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Example: lightweight threads (deep handlers)
Types

Thread E = 1 → 1!(E ⊎ {yield : 1↠ 1}) Res E = 1 → List (Res E) → 1!E

Handler

coop : 1!(Thread E) ⇒ (List (Res E) → 1!E)

coop = return () 7→ λrs.case rs of [] 7→ ()
(r :: rs) 7→ r () rs

⟨yield () → s⟩ 7→ λrs.case rs of [] 7→ s () []
(r :: rs) 7→ r () (rs ++ [s])

lift : Thread E → Res E
lift t = λ().handle t() with coop

cooperate : List (Thread E) → 1!E
cooperate ts = lift id () (map lift ts)

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Example: lightweight threads (shallow handler)

Types

Thread E = 1 → 1!(E ⊎ {yield : 1↠ 1}) Res E = Thread E

Handler

cooperate : List (Thread E) → 1!E

cooperate [] = () cooperate (r :: rs) = handle r()with
return () 7→ cooperate (rs)
⟨yield () → s⟩ 7→ cooperate (rs ++ [s])

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Example: lightweight threads (shallow handler)

Types

Thread E = 1 → 1!(E ⊎ {yield : 1↠ 1}) Res E = Thread E

Handler

cooperate : List (Thread E) → 1!E

cooperate [] = () cooperate (r :: rs) = handle r()with
return () 7→ cooperate (rs)
⟨yield () → s⟩ 7→ cooperate (rs ++ [s])

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Example: lightweight threads (sheep handler)
Types

Thread E = 1 → 1!(E ⊎ {yield : 1↠ 1}) Res E = 1 → List (Res E) → 1!E

Handler

coop : List (Res E) → 1!(Thread E) ⇒ 1!E

coop [] =
return () 7→ ()
⟨yield () → r⟩ 7→ r () (coop [])

coop (r :: rs) =
return () 7→ r () (coop rs)
⟨yield () → s⟩ 7→ r () (coop (rs ++ [s]))

lift : Thread E → Res E
lift t = λ() rs.handle t() with coop rs

cooperate : List (Thread E) → 1!E
cooperate ts = lift id () (map lift ts)

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Example: lightweight threads (sheep handler)
Types

Thread E = 1 → 1!(E ⊎ {yield : 1↠ 1}) Res E = 1 → List (Res E) → 1!E

Handler

coop : List (Res E) → 1!(Thread E) ⇒ 1!E

coop [] =
return () 7→ ()
⟨yield () → r⟩ 7→ r () (coop [])

coop (r :: rs) =
return () 7→ r () (coop rs)
⟨yield () → s⟩ 7→ r () (coop (rs ++ [s]))

lift : Thread E → Res E
lift t = λ() rs.handle t() with coop rs

cooperate : List (Thread E) → 1!E
cooperate ts = lift id () (map lift ts)

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Part II

WebAssembly with effect handlers

WebAssembly

Low-level language and execution environment with a formal semantics

Conceived as a target language for the web supported by all of the main web browsers

Also used e.g. for content delivery networks, library sandboxing, smart contracts

Effect handlers for WebAssembly

· · ·
(Daniel Hillerström, Daan Leijen, Sam Lindley, Matija Pretnar, Andreas Rossberg, KC Sivamarakrishnan)

WasmFX (also known as “typed continuations”; implementation of “stack switching”)

https://wasmfx.dev

Features: explicit continuation type, linear continuations, handling built into resuming,
supports reference counting

https://wasmfx.dev

Key ingredients
Continuation types

cont ⟨typeidx⟩ define a new continuation type

Control tags
tag ⟨tagidx⟩ define a new tag

Core instructions

cont.new ⟨typeidx⟩ create a new continuation
suspend ⟨tagidx⟩ suspend the current continuation
resume (tag ⟨tagidx⟩ ⟨labelidx⟩)∗ resume a continuation

Additional instructions

cont.bind ⟨typeidx⟩ bind a continuation to (partial) arguments
resume throw ⟨tagidx⟩ abort a continuation
barrier ⟨blocktype⟩ ⟨instr⟩∗ block suspension

Key ingredients
Continuation types

cont ⟨typeidx⟩ define a new continuation type

Control tags
tag ⟨tagidx⟩ define a new tag

Core instructions

cont.new ⟨typeidx⟩ create a new continuation
suspend ⟨tagidx⟩ suspend the current continuation
resume (tag ⟨tagidx⟩ ⟨labelidx⟩)∗ resume a continuation

Additional instructions

cont.bind ⟨typeidx⟩ bind a continuation to (partial) arguments
resume throw ⟨tagidx⟩ abort a continuation
barrier ⟨blocktype⟩ ⟨instr⟩∗ block suspension

Control tags

Synonyms: operation, command, resumable exception, event

tag $e (param s∗) (result t∗) declare tag of type [s∗] → [t∗]
suspend $e : [s∗] → [t∗] invoke tag

where e is a tag of type [s∗] → [t∗]

Continuations

Synonyms: stacklet, resumption

cont.new $ct : [(ref $ft)] → [(ref $ct)] new continuation from function
where $ft denotes a function type [s∗] → [t∗]

$ct = cont $ft
resume (tag $e $l)∗ : [t1∗ (ref $ct)] → [t2∗] invoke continuation with handler
where $ct = cont ([t1∗] → [t2∗])
each $e is a control tag and
each $l is a label pointing to its handler clause

if $e : [s1∗] → [s2∗] then
$l : [s1∗ (ref $ct ′)] → [t2∗]
$ct ′ : [s2∗] → [t2∗]

resume throw $exn : [s∗ (ref $ct)] → [t2∗] discard cont. and throw exception
where $ct = cont ([t1∗] → [t2∗])

$exn : [s∗] → []

Continuations

Synonyms: stacklet, resumption

cont.new $ct : [(ref $ft)] → [(ref $ct)] new continuation from function
where $ft denotes a function type [s∗] → [t∗]

$ct = cont $ft
resume (tag $e $l)∗ : [t1∗ (ref $ct)] → [t2∗] invoke continuation with handler
where $ct = cont ([t1∗] → [t2∗])
each $e is a control tag and
each $l is a label pointing to its handler clause

if $e : [s1∗] → [s2∗] then
$l : [s1∗ (ref $ct ′)] → [t2∗]
$ct ′ : [s2∗] → [t2∗]

resume throw $exn : [s∗ (ref $ct)] → [t2∗] discard cont. and throw exception
where $ct = cont ([t1∗] → [t2∗])

$exn : [s∗] → []

Encoding handlers with blocks and labels

If $ei : [si∗] → [ti∗] and $cti : [ti∗] → [tr∗] then a typical handler looks something like:

(loop $l
(block $on e1 (result s1∗ (ref $ct1))

· · ·
(block $on en (result sn∗ (ref $ctn))
(resume
(tag $e1 $on e1) . . . (tag $en $on en)
(local.get $nextk))

. . . (br $l)
) ; ; $on en (result sn∗ (ref $ctn))
. . . (br $l)

· · ·
) ; ; $on e1 (result s1∗ (ref $ct1))
. . . (br $l))

▶ Structured as a
scheduler loop

▶ Handler body comes
after block

▶ Result specifies types
of parameters and
continuation

Example: lightweight threads

(loop $l (if (ref.is null (local.get $nextk)) (then (return)))
(block $on yield (result (ref $cont))

(block $on fork (result (ref $cont) (ref $cont))
(resume (tag $yield $on yield) (tag $fork $on fork)

(local.get $nextk))
(local.set $nextk (call $dequeue))
(br $l)

) ; ; $on fork (result (ref $cont) (ref $cont))
(local.set $nextk) ; ; current thread
(call $enqueue) ; ; new thread
(br $l)

) ; ; $on yield (result (ref $cont))
(call $enqueue) ; ; current thread
(local.set $nextk (call $dequeue)) ; ; next thread
(br $l))

Examples

Lightweight threads

Actors

Async/await

...

https://github.com/effect-handlers/wasm-spec/tree/examples/proposals/

continuations/examples

https://github.com/effect-handlers/wasm-spec/tree/examples/proposals/continuations/examples
https://github.com/effect-handlers/wasm-spec/tree/examples/proposals/continuations/examples

Partial continuation application

No need to do any allocation as continuations are one-shot

cont.bind $ct : [s1∗ (ref $ct ′)] → [(ref $ct)]
where $ct = cont ([s2∗] → [t1∗])

$ct ′ = cont ([s1∗ s2∗] → [t1∗])

Avoids code duplication

Partial continuation application

No need to do any allocation as continuations are one-shot

cont.bind $ct : [s1∗ (ref $ct ′)] → [(ref $ct)]
where $ct = cont ([s2∗] → [t1∗])

$ct ′ = cont ([s1∗ s2∗] → [t1∗])

Avoids code duplication

Barriers

Behaves like a catch-all handler that traps on suspension

barrier $l $bt instr∗ : [s∗] → [t∗]
where $bt = [s∗] → [t∗]

instr∗ : [s∗] → [t∗]

Status

Reference interpreter extension
https://github.com/effect-handlers/wasm-spec/tree/master/interpreter

Formal spec
https://github.com/WebAssembly/stack-switching/tree/main/proposals/

continuations/Overview.md

Examples
https://github.com/WebAssembly/stack-switching/tree/main/proposals/

continuations/examples

https://github.com/effect-handlers/wasm-spec/tree/master/interpreter
https://github.com/WebAssembly/stack-switching/tree/main/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/tree/main/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/tree/main/proposals/continuations/examples
https://github.com/WebAssembly/stack-switching/tree/main/proposals/continuations/examples

What next?

Mechanise the spec

Wasmtime implementation

WasmFX backends: Links, Koka, JavaScript, Lumen, ...

Benchmarking

Potential extensions: named handlers, multishot continuations, handler return clauses,
tail-resumptive handlers, first-class tags, preemption

Part III

Extensions

Named handlers
Motivation: support capability-passing style; avoid dynamic binding / dynamic scope

New reference type for handlers (unique prompt as in multi-prompt delimited control)

handler t∗

Suspending to a named handler by passing a prompt

suspend to $e : [s∗ (ref $ht)] → [t∗]
where $ht = handler tr∗

$e = [s∗] → [t∗]

Resuming with a unique prompt for the handler

resume with (tag $e $l)∗ : [t1∗ (ref $ct)] → [t2∗]
where $ht = handler t2∗

$ct = cont ([(ref $ht) t1∗] → [t2∗])

Named handlers
Motivation: support capability-passing style; avoid dynamic binding / dynamic scope

New reference type for handlers (unique prompt as in multi-prompt delimited control)

handler t∗

Suspending to a named handler by passing a prompt

suspend to $e : [s∗ (ref $ht)] → [t∗]
where $ht = handler tr∗

$e = [s∗] → [t∗]

Resuming with a unique prompt for the handler

resume with (tag $e $l)∗ : [t1∗ (ref $ct)] → [t2∗]
where $ht = handler t2∗

$ct = cont ([(ref $ht) t1∗] → [t2∗])

Named handlers
Motivation: support capability-passing style; avoid dynamic binding / dynamic scope

New reference type for handlers (unique prompt as in multi-prompt delimited control)

handler t∗

Suspending to a named handler by passing a prompt

suspend to $e : [s∗ (ref $ht)] → [t∗]
where $ht = handler tr∗

$e = [s∗] → [t∗]

Resuming with a unique prompt for the handler

resume with (tag $e $l)∗ : [t1∗ (ref $ct)] → [t2∗]
where $ht = handler t2∗

$ct = cont ([(ref $ht) t1∗] → [t2∗])

Named handlers
Motivation: support capability-passing style; avoid dynamic binding / dynamic scope

New reference type for handlers (unique prompt as in multi-prompt delimited control)

handler t∗

Suspending to a named handler by passing a prompt

suspend to $e : [s∗ (ref $ht)] → [t∗]
where $ht = handler tr∗

$e = [s∗] → [t∗]

Resuming with a unique prompt for the handler

resume with (tag $e $l)∗ : [t1∗ (ref $ct)] → [t2∗]
where $ht = handler t2∗

$ct = cont ([(ref $ht) t1∗] → [t2∗])

Direct switching

Motivation: avoid a double stack-switch to implement a context switch

Switch directly to another continuation

switch to : [t1∗ (ref $ct1) (ref $ht)] → [t2∗]
where $ht = handler t3∗

$ct1 = cont ([(ref $ht) (ref $ct2) t1∗] → [t3∗])
$ct2 = cont ([t2∗] → [t3∗])

Behaves as if we had a built-in tag

tag $switch (param t1∗ (ref $ct1)) (result t3∗)

and the handler implicitly handles $switch by resuming to the continuation argument.

In practice requires recursive types (typically $ct1 and $ct2 will be the same type)

Direct switching

Motivation: avoid a double stack-switch to implement a context switch

Switch directly to another continuation

switch to : [t1∗ (ref $ct1) (ref $ht)] → [t2∗]
where $ht = handler t3∗

$ct1 = cont ([(ref $ht) (ref $ct2) t1∗] → [t3∗])
$ct2 = cont ([t2∗] → [t3∗])

Behaves as if we had a built-in tag

tag $switch (param t1∗ (ref $ct1)) (result t3∗)

and the handler implicitly handles $switch by resuming to the continuation argument.

In practice requires recursive types (typically $ct1 and $ct2 will be the same type)

Direct switching

Motivation: avoid a double stack-switch to implement a context switch

Switch directly to another continuation

switch to : [t1∗ (ref $ct1) (ref $ht)] → [t2∗]
where $ht = handler t3∗

$ct1 = cont ([(ref $ht) (ref $ct2) t1∗] → [t3∗])
$ct2 = cont ([t2∗] → [t3∗])

Behaves as if we had a built-in tag

tag $switch (param t1∗ (ref $ct1)) (result t3∗)

and the handler implicitly handles $switch by resuming to the continuation argument.

In practice requires recursive types (typically $ct1 and $ct2 will be the same type)

Direct switching

Motivation: avoid a double stack-switch to implement a context switch

Switch directly to another continuation

switch to : [t1∗ (ref $ct1) (ref $ht)] → [t2∗]
where $ht = handler t3∗

$ct1 = cont ([(ref $ht) (ref $ct2) t1∗] → [t3∗])
$ct2 = cont ([t2∗] → [t3∗])

Behaves as if we had a built-in tag

tag $switch (param t1∗ (ref $ct1)) (result t3∗)

and the handler implicitly handles $switch by resuming to the continuation argument.

In practice requires recursive types (typically $ct1 and $ct2 will be the same type)

Multishot continuations

Motivation: backtracking search, ProbProg, AD, etc.

Easy to adapt the formal semantics to not trap when a continuation is used twice...
...but would seem to preclude expected implementation techniques!

Clone a continuation

cont.clone $ct : [(ref $ct)] → [(ref $ct)]
where $ct = cont ([s∗] → [t∗])

Alternative design: build cont.clone into a special variant of resume

Multishot continuations

Motivation: backtracking search, ProbProg, AD, etc.

Easy to adapt the formal semantics to not trap when a continuation is used twice...
...but would seem to preclude expected implementation techniques!

Clone a continuation

cont.clone $ct : [(ref $ct)] → [(ref $ct)]
where $ct = cont ([s∗] → [t∗])

Alternative design: build cont.clone into a special variant of resume

Multishot continuations

Motivation: backtracking search, ProbProg, AD, etc.

Easy to adapt the formal semantics to not trap when a continuation is used twice...
...but would seem to preclude expected implementation techniques!

Clone a continuation

cont.clone $ct : [(ref $ct)] → [(ref $ct)]
where $ct = cont ([s∗] → [t∗])

Alternative design: build cont.clone into a special variant of resume

Multishot continuations

Motivation: backtracking search, ProbProg, AD, etc.

Easy to adapt the formal semantics to not trap when a continuation is used twice...
...but would seem to preclude expected implementation techniques!

Clone a continuation

cont.clone $ct : [(ref $ct)] → [(ref $ct)]
where $ct = cont ([s∗] → [t∗])

Alternative design: build cont.clone into a special variant of resume

Some other extensions

▶ handler return clauses (functional programming)

▶ tail-resumptive handlers (dynamic binding)

▶ first-class tags (modularity)

▶ parametric tags (existential types)

▶ preemption (interrupts)

	Effect handlers
	WebAssembly with effect handlers
	Extensions

