
WasmFX: Stack Switching via Effect Handlers in WebAssembly

Daniel Hillerström

Laboratory for Foundations of Computer Science
The University of Edinburgh
Scotland, United Kingdom

January 13, 2023

I am but one of many

Sam Lindley Andreas Rossberg Daan Leijen KC Sivaramakrishnan

Matija Pretnar Luna Phipps-Costin Arjun Guha

https://wasmfx.dev

https://wasmfx.dev

WebAssembly: neither web nor assembly (Haas et al. 2017)

What is Wasm?
A universal compilation target
A virtual stack machine (source language agnostic)
A predictable performance model

Code format
A Wasm “program” is a structured module
Designed for streaming compilation
The term language is statically typed and block-structured
Control flow is structured (i.e. all CFGs are reducible)

Wasm MVP 1.0 is tailored for C/C++

https://webassembly.org

https://webassembly.org

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution

Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)
Add each abstraction as a primitive to Wasm
Use effect handlers as a unified modular basis for control in Wasm

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution

Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)
Add each abstraction as a primitive to Wasm
Use effect handlers as a unified modular basis for control in Wasm

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution
Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)

Add each abstraction as a primitive to Wasm
Use effect handlers as a unified modular basis for control in Wasm

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution
Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)
Add each abstraction as a primitive to Wasm

Use effect handlers as a unified modular basis for control in Wasm

The need for stack switching in Wasm

Non-local control is pervasive in programming languages
Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)
Coroutines (e.g. C++, Kotlin, Python, Swift)
Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)
Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)
First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The problem

How do I compile non-local control flow abstractions to Wasm?

Solution
Ceremoniously transform my entire source programs (e.g. Asyncify, CPS)
Add each abstraction as a primitive to Wasm
Use effect handlers as a unified modular basis for control in Wasm

Perspectives on effect handlers

Operational interpretation
First-class resumable exceptions

Software engineering interpretation
Composable monads builders (monads as a design pattern)

Functional programming interpretation
Folds over computation trees

Mathematical interpretation
Homomorphisms between free algebraic models

Effect handlers are a proven technology

A modular and extensible basis
Structured form of delimited control
Easy encoding of your favourite abstraction via effect handlers
Trivially compatible with typed representations

Practical evidence
100+ peer reviewed papers
Available in many programming languages (e.g. C++, Haskell, Pyro, OCaml, Unison)
Deployed in industrial technologies (e.g. GitHub’s semantic, Meta’s React, Uber’s Pyro)

Running example: coroutines (1)

;; interface for running two coroutines
;; non-interleaving implementation
(module $co2
;; type alias task = [] -> []
(type $task (func))

;; yield : [] -> []
(func $yield (export "yield")
(nop))

;; run : [(ref $task) (ref $task)] -> []
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
;; run the tasks sequentially
(call_ref (local.get $task1))
(call_ref (local.get $task2))

)
)

Running example: coroutines (2)
(module $example ;; main example: streams of odd and even naturals
...
;; imports yield : [] -> []
(func $yield (import "co2" "yield"))

...
)

Running example: coroutines (3)
(module $example
...
;; odd : [i32] -> []
;; prints the first $niter odd natural numbers
(func $odd (param $niter i32)
(local $n i32) ;; next odd number
(local $i i32) ;; iterator
(local.set $n (i32.const 1)) ;; initialise locals
(local.set $i (i32.const 1)) ;; ...
(block $b
(loop $l
(br_if $b (i32.gt_u (local.get $i) (local.get $niter))) ;; termination condition
(call $print (local.get $n)) ;; print the current odd number
(local.set $n (i32.add (local.get $n) (i32.const 2))) ;; compute next odd number
(local.set $i (i32.add (local.get $i) (i32.const 1))) ;; increment the iterator
(call $yield) ;; yield control
(br $l)))) ;; repeat

;; even : [i32] -> []
;; prints the first $niter even natural numbers
(func $even (param $niter i32) ...)
...

)

Running example: coroutines (4)
(module $example
...
;; odd5, even5 : [] -> []
(func $odd5 (export "odd5")

(call $odd (i32.const 5)))
(func $even5 (export "even5")

(call $even (i32.const 5)))
)

;; calling $run with $odd5 and $even5...
(call $run (ref.func $odd5) (ref.func $even5))
;; ... prints 1 3 5 7 9 2 4 6 8 10

Instructions: declaring control tags

Control tag declaration
(tag $tag (param σ∗) (result τ∗))

it’s a mild extension of Wasm’s exception tags

(known in the literature as an ‘operation symbol’ (Plotkin and Pretnar 2013))

Refactoring the co2 module (1)

(module $co2
;; type alias task = [] -> []
(type $task (func))

;; yield : [] -> []
(tag $yield)

;; yield : [] -> []
(func $yield (export "yield")
(nop))

;; run : [(ref $task) (ref $task)] -> []
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
...)

)

Instructions: creating continuations

Continuation type
(cont $ft)

cont is a new reference type constructor parameterised by a function type, $ft : [σ∗]→ [τ∗]

Continuation allocation
cont.new : [(ref null $ft)]→ [(ref $ct)]

where $ft : [σ∗]→ [τ∗]
and $ct : cont $ft

Refactoring the co2 module (2)

(module $co2
;; type alias $task = [] -> []
(type $task (func))

;; type alias $ct = $task
(type $ct (cont $task))

...

;; run : [(ref $task) (ref $task)] -> []
;; implements a ’seesaw’ (c.f. Ganz et al. (ICFP@99))
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
;; locals to manage continuations
(local $up (ref null $ct))
(local $down (ref null $ct))
(local $isOtherDone i32)
;; initialise locals
(local.set $up (cont.new (type $ct) (local.get $task1)))
(local.set $down (cont.new (type $ct) (local.get $task2)))
...)

)

Thinking of cont.new in terms of stacks

PP (null)
SP
up
down
· · ·
red zone

PP (null)
SP
$task1
red zone

PP (null)
SP
$task2
red zone

cont.new allocates a new stack segment

New segments are initially suspended

Thinking of cont.new in terms of stacks

PP (null)
SP
up
down
· · ·
red zone

PP (null)
SP
$task1
red zone

PP (null)
SP
$task2
red zone

cont.new allocates a new stack segment

New segments are initially suspended

Thinking of cont.new in terms of stacks

PP (null)
SP
up
down
· · ·
red zone

PP (null)
SP
$task1
red zone

PP (null)
SP
$task2
red zone

cont.new allocates a new stack segment

New segments are initially suspended

Instructions: invoking continuations

Continuation resumption

resume (tag $tag $h)∗ : [σ∗ (ref null $ct)]→ [τ∗]

where {$tagi : [σ∗i]→ [τ∗i] and $hi : [σ∗i (ref null $cti)] and
$cti : cont $fti and $fti : [τ

∗
i]→ [τ∗]}i

and $ct : cont $ft
and $ft : [σ∗]→ [τ∗]

The instruction fully consume the continuation argument

Refactoring the co2 module (3)
(module $co2
... ;; declarations of $task, $yield, etc
;; run : [(ref $task) (ref $task)] -> []
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
... ;; initialisation of $up and $down
;; run $up
(loop $h ;; handling loop
(block $on_yield (result (ref $ct))
(resume (tag $yield $on_yield) (local.get $up)) ;; resume $up; handle $yield using $on_yield
(if (i32.eq (local.get $isOtherDone) (i32.const 1)) ;; $up finished; $down is already done?
(then (return))) ;; ... then exit

(local.get $down) ;; ... otherwise prepare to run $down
(local.set $up) ;; $up := $down
(local.set $isOtherDone (i32.const 1)) ;; mark other as done
(br $h) ;; repeat

) ;; yield-case definition; stack: [(cont $ct)]
(local.set $up) ;; set $up to the current continuation
(if (i32.eqz (local.get $isOtherDone)) ;; is $down already done?
(then (local.get $down) ;; ... then swap $up and $down

(local.set $down (local.get $up))
(local.set $up)))

(br $h))) ;; repeat
)

Thinking of resume in terms of stacks

PP (null)
SP
up
down
· · ·
red zone

PP
SP
$task1
red zone

PP (null)
SP
$task2
red zone

resume transfers control from the parent to the
child stack

The pointer between parent and child is inverted

Thinking of resume in terms of stacks

PP (null)
SP
up
down
· · ·
red zone

PP
SP
$task1
red zone

PP (null)
SP
$task2
red zone

resume transfers control from the parent to the
child stack

The pointer between parent and child is inverted

Instructions: suspending continuations

Continuation suspension
suspend $tag : [σ∗]→ [τ∗]

where $tag : [σ∗]→ [τ∗]

Refactoring the co2 module (4)

(module $co2
;; type alias task = [] -> []
(type $task (func))
;; type alias ct = $task
(type $ct (cont $task))

;; yield : [] -> []
(tag $yield (param) (result))

;; yield : [] -> []
(func $yield (export "yield")
(suspend $yield))

;; run : [(ref $task) (ref $task)] -> []
;; implements a ’seesaw’ (c.f. Ganz et al. (ICFP@99))
(func $run (export "run") (param $task1 (ref $task)) (param $task2 (ref $task))
...)

)

Now (call $run (ref.func $odd5) (ref.func $even5)) prints 1 2 3 4 5 6 7 8 9 10

Thinking of suspend in terms of stacks

PP (null)
SP
up
down
· · ·
contup
· · ·
red zone

PP
SP
· · ·
suspend

red zone

PP (null)
SP
$task2
red zone

suspend transfers control a child to a (grand)parent

The pointer between child and parent is inverted

Thinking of suspend in terms of stacks

PP (null)
SP
up
down
· · ·
contup
· · ·
red zone

PP
SP
· · ·
suspend

red zone

PP (null)
SP
$task2
red zone

suspend transfers control a child to a (grand)parent

The pointer between child and parent is inverted

Current status of the proposal

What has already been done
Formal specification
Informal explainer documentation
Reference implementation

What is happening now
An implementation in Wasmtime, a production-grade engine

What is going to happen next
Fine-tune the implementation
Gathering performance evidence

Summary

Summary
Effect handlers provide a modular and extensible basis for stack switching in Wasm
Effect handlers are a proven technology
The extension to Wasm is minimal and compatible
Working on a production-grade implementation in Wasmtime

The work is actively being turned into a proposal; for more details see

https://wasmfx.dev

Comments and feedback are welcome!

https://wasmfx.dev

References

Sitaram, Dorai (1993). “Handling Control”. In: PLDI. ACM, pp. 147–155.
Ganz, Steven E., Daniel P. Friedman, and Mitchell Wand (1999). “Trampolined Style”. In: ICFP. ACM,

pp. 18–27.
Plotkin, Gordon D. and Matija Pretnar (2013). “Handling Algebraic Effects”. In: Logical Methods in

Computer Science 9.4.
Haas, Andreas et al. (2017). “Bringing the web up to speed with WebAssembly”. In: PLDI. ACM,

pp. 185–200.
Forster, Yannick et al. (2019). “On the expressive power of user-defined effects: Effect handlers,

monadic reflection, delimited control”. In: J. Funct. Program. 29, e15.
Hillerström, Daniel (2021). “Foundations for Programming and Implementing Effect Handlers”.

PhD thesis. The University of Edinburgh, Scotland, UK.
Sivaramakrishnan, K. C. et al. (2021). “Retrofitting effect handlers onto OCaml”. In: PLDI. ACM,

pp. 206–221.
Ghica, Dan et al. (2022). “High-Level Type-Safe Effect Handlers in C++”. In: Proc. ACM Program.

Lang. 6.OOPSLA, pp. 1–30.
Thomson, Patrick et al. (2022). “Fusing industry and academia at GitHub (experience report)”. In:

Proc. ACM Program. Lang. 6.ICFP, pp. 496–511.

Continuation binding, cancellation, and trapping

Partial continuation application

cont.bind (type $ct) : [σ∗0 (ref null $ct)]→ [(ref $ct ′)]

where $ct : cont $ft and $ft : [σ∗0 σ
∗
1]→ [τ∗]

and $ct ′ : cont $ft ′ and $ft ′ : [σ∗1]→ [τ∗]

Continuation cancellation

resume_throw (tag $exn) (tag $tag $h)∗ : [σ∗0 (ref null $ct)]→ [τ∗]

where $exn : [σ∗0]→ [], {$tagi : [σ∗i]→ [τ∗i] and $hi : [σ∗i (ref null $cti)] and
$cti : cont $fti and $fti : [τ

∗
i]→ [τ∗]}i

and $ct : cont ([σ∗]→ [τ∗]

Control barriers
barrier $lbl (type $bt) instr∗ : [σ∗]→ [τ∗]

where $bt = [σ∗]→ [τ∗] and instr∗ : [σ∗]→ [τ∗]

	References

