
WasmFX Stack Switching:
Status and Future Plans

Frank Emrich
University of Edinburgh

Wasm CG Meeting
6 June 2024

Collaborators

Sam Lindley Andreas Rossberg Daan Leijen KC Sivaramakrishnan

Matija Pretnar Daniel Hillerström Luna Phipps-Costin Arjun Guha
2

Collaborators

Sam Lindley Andreas Rossberg Daan Leijen KC Sivaramakrishnan

Matija Pretnar Daniel Hillerström Luna Phipps-Costin Arjun Guha
2

Overview
Stack Switching subgroup working on non-local control flow for Wasm

• Enable various source language features:
• async/await, coroutines, lightweight threads, generators, first-class

continuations, ...

Two approaches explored in parallel
• WasmFX (aka Typed Continuations):

Parent-child relationships between continuations (= stacks)
• Bag-o-Stacks (BoS):

No hierarchy between stacks

WasmFX
• OOPSLA 2023: “Continuing WebAssembly with Effect Handlers”
• Implemented in (up-to-date) fork of Wasmtime

3

WasmFX in a Nutshell: Hello Generator
(module

(type $ft (func))
(type $ct (cont $ft))
(tag $yield (param i32))

(func $generator
...

)

(func $consumer
...

)

)
4

WasmFX in a Nutshell: Hello Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1000))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i (i32.sub (local.get $i) (i32.const 1)))
(br_if $l)

)
)

(func $consumer
...

)

)
4

WasmFX in a Nutshell: Hello Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator ... (suspend $yield (local.get $i)) ...)

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)
4

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1000))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1000))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Unleashing the Generator
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))

(func $generator
(local $i i32)
(local.set $i (i32.const 1))
(loop $l

(suspend $yield (local.get $i))
(local.tee $i

(i32.sub
(local.get $i)
(i32.const 1)))

(br_if $l)
)

)

...

...

(func $consumer
(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships during (call $consumer)

$consumer
...

$generator$generator

active

activeactive

parent ofparent of

5

Implementation Status @ October 2023

WasmFX implemented in fork of Wasmtime

Reliable, but somewhat naive implementation

Previous limitations (as of last update, October 23)
Safety
• Inefficient checks that continuations only used once
• Unsafe stacks: Continuation stacks can overflow unnoticed
• No proper treatment of tags crossing module boundaries

Usability/Features
• No stack growing, need to allocate large stacks upfront
• No stack traces when using continuation stacks
• Cancellation of continuations not implemented

6

Implementation Status @ October 2023

WasmFX implemented in fork of Wasmtime

Reliable, but somewhat naive implementation

Previous limitations (as of last update, October 23)
Performance
• Actual stack switching implemented by calling into runtime
• All payloads passed by using dedicated buffers
• No pooling/reuse of continuation stacks

Benchmarking
• Micro benchmarks only, using handwritten .wat files
• No macro benchmarks

7

Safety

Linearity Checks (1)
Continuations are one-shot, can only be resume-d once

(local $c1 (ref $ct1)
(local $c2 (ref $ct2)

...

(block $handler (result (ref $ct2))
(resume $ct1 (tag $some_tag $handler) (local.get $c1))
;; $c1 invalid now

)
;; $c1 invalid now, new continuation on stack
(local.set $c2)

...

8

Linearity Checks (2)

Previously Extra memory indirection⇒ extra allocations need to be managed

•$c1

•

$c2

•

•

actual data (stack, ...)
VMContRef

Now
• Continuations are fat pointers: Pointer to a VMContRef + sequence counter
• VMContRef also stores a sequence counter
• On resume: Compare counters, increment the one inside VMContRef

seq: 0, •$c1

seq: 1, •

$c2

actual data (stack, ...), seq: 0

VMContRef

9

Linearity Checks (2)

Previously Extra memory indirection⇒ extra allocations need to be managed

•$c1

•$c2

•

• actual data (stack, ...)
VMContRef

Now
• Continuations are fat pointers: Pointer to a VMContRef + sequence counter
• VMContRef also stores a sequence counter
• On resume: Compare counters, increment the one inside VMContRef

seq: 0, •$c1

seq: 1, •

$c2

actual data (stack, ...), seq: 0

VMContRef

9

Linearity Checks (2)

Previously Extra memory indirection⇒ extra allocations need to be managed

•$c1

•$c2

•

• actual data (stack, ...)
VMContRef

Now
• Continuations are fat pointers: Pointer to a VMContRef + sequence counter
• VMContRef also stores a sequence counter
• On resume: Compare counters, increment the one inside VMContRef

seq: 0, •$c1

seq: 1, •

$c2

actual data (stack, ...), seq: 0

VMContRef

9

Linearity Checks (2)

Previously Extra memory indirection⇒ extra allocations need to be managed

•$c1

•$c2

•

• actual data (stack, ...)
VMContRef

Now
• Continuations are fat pointers: Pointer to a VMContRef + sequence counter
• VMContRef also stores a sequence counter
• On resume: Compare counters, increment the one inside VMContRef

seq: 0, •$c1

seq: 1, •$c2 actual data (stack, ...), seq: 1

VMContRef

9

Stack Pooling & Stack Safety

Previously
• mmap-ing stack on each cont.new is slow
• malloc very small stacks instead
• No guard pages, stacks can overflow unnoticed �

Now
• Stack pooling available as option
• Entire pool mmap-ed on startup, with guard pages

10

Usability/Features

Backtrace Support (1)
Example at beginning: $consumer runs $generator inside continuation
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))
(func $generator ... (suspend $yield (local.get $i)) ...)
(func $consumer

(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships

$consumer
...
...

$generator

Parent-child relationships

$consumer
...
...

$generator
parent of

What if $generator traps?
11

Backtrace Support (1)
Example at beginning: $consumer runs $generator inside continuation
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))
(func $generator ... (suspend $yield (local.get $i)) ...)
(func $consumer

(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships

$consumer
...
...

$generator

Parent-child relationships

$consumer
...
...

$generator
parent of

What if $generator traps?
11

Backtrace Support (1)
Example at beginning: $consumer runs $generator inside continuation
(module

(type $ft (func))
(type $ct (cont $ct))
(tag $yield (param i32))
(func $generator ... (suspend $yield (local.get $i)) ...)
(func $consumer

(local $c (ref $ct))
(local.set $c (cont.new $ct (ref.func $generator)))
(loop $loop

(block $on_yield (result i32 (ref $ct))
(resume $ct (tag $yield $on_yield) (local.get $c))
(return) ;; generator returned: no more data

) ;; stack: [i32 (ref $ct)]
(local.set $c)
(drop) ;; would do something with generated value
(br $loop)

)
)

)

Parent-child relationships

$consumer
...
...

$generator

Parent-child relationships

$consumer
...
...

$generator
parent of

What if $generator traps?
11

Backtrace Support (2)

Reminder: All currently running stacks/continuations form a chain

Previously Backtraces disabled in Wasmtime when running continuations

Now If $generator traps while resume-d from $consumer:
Error: failed to run main module `generator.wat`
Caused by:

0: failed to invoke command default
1: error while executing at wasm backtrace:

0: 0x3d - m!generator
1: 0x50 - m!consumer
2: 0x60 - m!start

2: wasm trap: wasm `unreachable ` instruction executed

Backtraces contain entire chain of arbitrarily many continuations
12

Backtrace Support (3)

Previous slide: Backtraces generated by engine itself (full access to runtime
metadata about stacks)

What about external tools inspecting backtraces? (debuggers, profilers, ...)

Previously Custom DWARF info, does not work nicely with perf when switching
stacks

Now
• Can also use standard frame pointer walking
• All active continuations form a single frame pointer chain
• ... at no additional runtime cost, just clever layout of data we store anyway

13

Performance

Architecture of Current Implementation

Stack switching
• Implemented using customized version of wasmtime-fiber
• On each WasmFX instruction: Call from generated code into runtime

Payload passing
• Write to dedicated buffer on sending side, read on receiving side
• Arguments for function running inside continuation:
Accessed by using trampoline reading from buffer

• No payloads passed in registers

Work in progress
• Prototype implementation of generating stack switching code in Cranelift
• Once stabilized, tackle payload handling

14

Benchmarking & Toolchain Support

Binaryen Support

Working now
• Basic support for WasmFX instructions in Binaryen
• Our use case: wasm-merge for building benchmarks

Next steps
• Running wasm-opt on programs using WasmFX instruction
• Translations between WasmFX↔ BoS?

15

Fiber Library

Implemented simple library for general purpose stack switching in C: fiber.h

Two implementations of same interface: Using Asyncify and WasmFX

typedef struct fiber* fiber_t;
typedef void* (*fiber_entry_point_t)(void*);
typedef enum {

FIBER_OK = 0,
FIBER_YIELD = 1,
FIBER_ERROR = 2

} fiber_result_t;

fiber_t fiber_alloc(fiber_entry_point_t entry);
void fiber_free(fiber_t fiber);

void* fiber_yield(void* arg);
void* fiber_resume(fiber_t fiber, void* arg, fiber_result_t* status);

16

Shadow Stacks vs Stack Switching

Shadow Stack
• Area of linear memory managed by Clang/LLVM
• $__stack_pointer global updated on function entry/exit
• Example: C locals whose address taken stored on shadow stack

Challenge for WasmFX implementation
• Must switch shadow stacks, too!
• Shadow stacks of fibers must be independent from parent/caller

Solution
• Allocate dedicated shadow stack per fiber
• On fiber_yield & fiber_resume: Save and update shadow stack pointer

17

Fiber Library: Compilation & Benchmarking

myprogram.c

fiber.h, fiber_asyncify.c

myprogram_pre.wasm myprogram.wasm
clang

wasm-opt --asyncify -O2

Asyncify

myprogram.c

fiber.h, fiber_wasmfx.c

myprogram_pre.wasm

fiber_wasmfx.wat

myprogram.wasm
clang wasm-merge

WasmFX

Previously Handwritten benchmarks using WasmFX instructions
Now

• Benchmarks written in C against fiber.h
• Automatically get Asyncify and WasmFX version of each benchmark
• Library enables writing arbitrary programs using fibers in C and compile to
Wasm(FX)

18

Fiber Library: Compilation & Benchmarking

myprogram.c

fiber.h, fiber_asyncify.c

myprogram_pre.wasm myprogram.wasm
clang

wasm-opt --asyncify -O2

Asyncify

myprogram.c

fiber.h, fiber_wasmfx.c

myprogram_pre.wasm

fiber_wasmfx.wat

myprogram.wasm
clang wasm-merge

WasmFX

Previously Handwritten benchmarks using WasmFX instructions
Now

• Benchmarks written in C against fiber.h
• Automatically get Asyncify and WasmFX version of each benchmark
• Library enables writing arbitrary programs using fibers in C and compile to
Wasm(FX)

18

Fiber Library: Compilation & Benchmarking

myprogram.c

fiber.h, fiber_asyncify.c

myprogram_pre.wasm myprogram.wasm
clang

wasm-opt --asyncify -O2

Asyncify

myprogram.c

fiber.h, fiber_wasmfx.c

myprogram_pre.wasm

fiber_wasmfx.wat

myprogram.wasm
clang wasm-merge

WasmFX

Previously Handwritten benchmarks using WasmFX instructions
Now

• Benchmarks written in C against fiber.h
• Automatically get Asyncify and WasmFX version of each benchmark
• Library enables writing arbitrary programs using fibers in C and compile to
Wasm(FX) 18

HTTP Server

Benchmarking previously
• Only micro benchmarks
• Either focusing on rapid stack switching or stack creation
• Performance generally lagging behind Asyncify

New macro benchmarkMinimal HTTP server benchmark
• Implemented in C against fiber.h
• Requests served asynchronously
• Benchmarked using standard load generator
• Performance matches Asyncify

19

Summary & Future Plans

Implementation Status Now

Safety
• Inefficient checks that continuations only used once
• Unsafe stacks: Continuation stacks can overflow unnoticed
• No proper treatment of tags crossing module boundaries

Usability/Features
• No stack growing, need to allocate large stacks upfront
• No stack traces when using continuation stacks
• Cancellation of continuations not implemented

20

Implementation Status Now

Safety
• Inefficient checks that continuations only used once✓
• Unsafe stacks: Continuation stacks can overflow unnoticed✓
• No proper treatment of tags crossing module boundaries (WIP)

Usability/Features
• No stack growing, need to allocate large stacks upfront (TODO)
• No stack traces when using continuation stacks✓
• Cancellation of continuations not implemented (Waiting for EH)

20

Implementation Status Now

Performance
• Actual stack switching implemented by calling into runtime
• All payloads passed by using dedicated buffers
• No pooling/reuse of continuation stacks

Benchmarking
• Micro benchmarks only, using handwritten .wat files
• No macro benchmarks

21

Implementation Status Now

Performance
• Actual stack switching implemented by calling into runtime (WIP)
• All payloads passed by using dedicated buffers (TODO)
• No pooling/reuse of continuation stacks✓

Benchmarking
• Micro benchmarks only, using handwritten .wat files✓
• No macro benchmarks✓

21

Future Plans

• Implement tags safely crossing module boundaries
• Experimentwith different stack allocation&growing techniques
• More benchmarks, measuring use cases people care about
• Get wasm-opt to work on WasmFX
• Stabilize codegen for stack switching
• Implement payload passing on top of it
• Target WasmFX from other source language

time

22

WasmFX Resource List
→ Formal specification

(https://github.com/WebAssembly/stack-switching/blob/main/proposals/
continuations/Overview.md)

→ Informal explainer document
(https://github.com/WebAssembly/stack-switching/blob/main/proposals/
continuations/Explainer.md)

→ Reference implementation
(https://github.com/WebAssembly/stack-switching/tree/wasmfx)

→ Wasmtime implementation (https://github.com/wasmfx/wasmfxtime)
→ Fiber library (https://github.com/wasmfx/fiber-c)
→ Benchmark suite (https://github.com/wasmfx/benchfx)
→ OOPSLA’23 research paper (https://doi.org/10.48550/arXiv.2308.08347)

https://github.com/WebAssembly/stack-switching

https://wasmfx.dev 23

https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Overview.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Explainer.md
https://github.com/WebAssembly/stack-switching/blob/main/proposals/continuations/Explainer.md
https://github.com/WebAssembly/stack-switching/tree/wasmfx
https://github.com/wasmfx/wasmfxtime
https://github.com/wasmfx/fiber-c
https://github.com/wasmfx/benchfx
https://doi.org/10.48550/arXiv.2308.08347
https://github.com/WebAssembly/stack-switching
https://wasmfx.dev

