
Stack switching for Wasm

Sam Lindley

The University of Edinburgh

12th February 2025

Motivation

Non-local control flow features are pervasive

▶ Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)

▶ Coroutines (e.g. C++, Kotlin, Python, Swift)

▶ Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)

▶ Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)

▶ First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The stack switching instructions are sufficiently general to support all of these features

Motivation

Non-local control flow features are pervasive

▶ Async/await (e.g. C++, C#, Dart, JavaScript, Rust, Swift)

▶ Coroutines (e.g. C++, Kotlin, Python, Swift)

▶ Lightweight threads (e.g. Erlang, Go, Haskell, Java, Swift)

▶ Generators and iterators (e.g. C#, Dart, Haskell, JavaScript, Kotlin, Python)

▶ First-class continuations (e.g. Haskell, Java, OCaml, Scheme)

The stack switching instructions are sufficiently general to support all of these features

Current status
Moved to Phase 2 in August 2024 ✓

Reference interpreter implementation ✓

Wizard implementation ✓

Wasmtime implemention ✓
▶ PR submitted for upstreaming
▶ x64 & ARM64 backends

Binaryen support ✓

Wasm-tools support ✓

Formal specification ✓
▶ SpecTec
▶ WasmCert — fully mechanised soundness proof

Unified design

Founded on effect handlers — asymmetric switching
parent-child relationship between stacks

OOPSLA 2023 paper “Continuing WebAssembly with Effect Handlers”
(WasmFX / typed continuations)
https://arxiv.org/abs/2308.08347

Additional switch instruction to optimise performance of symmetric switching
(Bag of stacks)

https://arxiv.org/abs/2308.08347

Instruction set

Module-level definitions

▶ Control tags generalise exception tags
(tag $yield (param i32) (result i32))

▶ Heap type for continuations
(type $ct (cont $ft))

Core instructions

▶ Create new suspended continuation (from function reference)
(cont.new $ct)

▶ Resume continuation under a handler
(resume $ct (on $yield $handler_block))

▶ Suspend with tag up to nearest handler
(suspend $yield)

▶ Switch directly to target continuation
(switch $ct $yield)

Instruction set

Module-level definitions

▶ Control tags generalise exception tags
(tag $yield (param i32) (result i32))

▶ Heap type for continuations
(type $ct (cont $ft))

Core instructions

▶ Create new suspended continuation (from function reference)
(cont.new $ct)

▶ Resume continuation under a handler
(resume $ct (on $yield $handler_block))

▶ Suspend with tag up to nearest handler
(suspend $yield)

▶ Switch directly to target continuation
(switch $ct $yield)

Instruction set

Additional instructions

▶ Cancel a continuation by raising an exception
(resume_throw $ct $exn)

▶ Partially apply a continuation
(cont.bind $ct1 $ct2)

Example: asymmetric switching

Generator and consumer

$consumer

$generator

(suspend $gen_value) (resume $ct (on $gen_value $handle_gen_value))parent

Motivation for symmetric switching — scheduling lightweight threads

Asymmetric scheduler

$scheduler

$task1 $task2

1 (suspend $yield) 2 (resume $ct (on $yield $handle_yield))
parent

Task switching takes two stack switches

Example: symmetric switching

Symmetric scheduler

$scheduler

$task1 $task2

parent

1 (switch $ct $yield)

Task switching takes a single stack switch

Current status
Moved to Phase 2 in August 2024 ✓

Reference interpreter implementation ✓

Wizard implementation ✓

Wasmtime implemention ✓
▶ PR submitted for upstreaming
▶ x64 & ARM64 backends

Binaryen support ✓

Wasm-tools support ✓

Formal specification ✓
▶ SpecTec
▶ WasmCert — fully mechanised soundness proof

Next steps

Phase 3 vote after PR is upstreamed to Wasmtime

Work with producers to target stack switching instructions

Browser implementations (can adapt existing JSPI infrastructure)

Post MVP: experiment with named handlers variation

Resources
Stack switching proposal (explainer, examples, spec, reference interpreter)

(https://github.com/WebAssembly/stack-switching)

Wizard implementation
(https://github.com/titzer/wizard-engine)

Wasmtime implementation
(https://github.com/bytecodealliance/wasmtime/pull/10177)

Binaryen implementation
(https://github.com/WebAssembly/binaryen)

Wasm-tools implementation
(https://github.com/bytecodealliance/wasm-tools)

OOPSLA 2023 paper “Continuing WebAssembly with Effect Handlers”
(https://arxiv.org/abs/2308.08347)

https://github.com/WebAssembly/stack-switching
https://github.com/titzer/wizard-engine
https://github.com/bytecodealliance/wasmtime/pull/10177
https://github.com/WebAssembly/binaryen
https://github.com/bytecodealliance/wasm-tools
https://arxiv.org/abs/2308.08347

