
Executable Universal
Composability with
Effect Handlers
Markulf Kohlweiss¹, Sam Lindley¹, Sabine Oechsner², Jesse Sigal¹

¹University of Edinburgh, ²Vrije Universiteit Amsterdam

Outline

Universal Composability (UC)

Expressing UC protocols

UC in more detail

Secure from authenticated channel example

Conclusion and further work

25/05/2024 Executable UC with Effects and Handlers 2

Universal
Composability
What? Why? How?

Universal Composability

25/05/2024 Executable UC with Effects and Handlers 4

Provable security

Composable security
proofs

Low-level, e.g. Turing
machines or transition
functions

Specifications are integral
to implementations and
proofs

A formal system

(De)composition

What? Why?

Model of computation

Four kinds of entities

Prescribed interaction

Security as
indistinguishability

How?

Our aim: expressive and executable UC framework

Expressing UC
protocols
Mind the gap!

Level of abstraction

On the downside, we note that the ITM model, or “programming
language” provides only a relatively low level abstraction of computer
programs and protocols. In contrast, current literature describes
protocols in a much higher-level (and often informal) language

- Canetti

25/05/2024 Executable UC with Effects and Handlers

“Universally Composable Security: A New Paradigm for

Cryptographic Protocol”, Canetti (2020)

6

Example informal description

25/05/2024 Executable UC with Effects and Handlers

“Universally Composable Security: A New Paradigm for

Cryptographic Protocol”, Canetti (2020)

7

Extract from larger example

25/05/2024 Executable UC with Effects and Handlers

“TARDIS: A Foundation of Time-Lock Puzzles in UC”, Baum,

David, Dowsley, Nielsen, Oechsner (2021)

8

Goal: a useful middle ground

25/05/2024 Executable UC with Effects and Handlers

Solution

Use a high-level formal language
expressive enough for UC

Even better, a programming language

Don’t aim for proofs, just execution

Benefits

Precision Experimentation

Testing Reuse existing entities

Debugging Program verification?

9

English

ITMs
PL

F
o

rm
a

li
ty

Expressiveness

On paper Code Testing

Verification

Plan in progress

Relevance to proofs

Precision is necessary for proofs

Experimentation, debugging, and testing are fundamental in
the creation of entities as well as the process of proving

Reusing the work of others lowers the burden

Variants of UC are easy to explore; different meta-theories

By phrasing UC as programs, potential for UC as program
verification

25/05/2024 Executable UC with Effects and Handlers 10

Why effect handlers?

UC needs randomness, state, and messaging

UC prescribes a form of cooperative concurrency

Effect handlers are powerful enough to express all of these in
a unified way

But the end user need not use them directly!

25/05/2024 Executable UC with Effects and Handlers 11

Benefits of effect handlers

Different random sampling distributions
or even complete enumeration

Replace randomness with deterministic
pseudo-randomness for testing

Replace randomness with a list of
samples for low probability events

Configurable levels of behaviour
observation

All with one implementation

25/05/2024 Executable UC with Effects and Handlers 12

UC variations are simple

One entity in many UC variations

Composition of UC entities from
composition of effect handlers

Dynamic Compositional

Universal
Composability
In more detail

Model of computation

Interactive Turing machines (Canetti): Turing machines with multiple tapes, some
readable and writeable from other machines, some read only. Original definition.

Interactive agents (CDN): Based on probabilistic transition functions. Take an input
state and activation point, return an output state and command. Variation.

25/05/2024 Executable UC with Effects and Handlers

“Universally Composable Security: A New Paradigm for

Cryptographic Protocol”, Canetti (2001, 2020)

“Secure Multiparty Computation and Secret Sharing”, Cramer,

Damgård, Nielsen (2015)

14

Four kinds of entities

Resources (ideal functionalities): ideal description of a (communication) protocol

Parties (form a protocol): agents using a resources to make a new resource

Simulators: technical feature to phrase security

Environments: adversary which can interact with and observe the system

25/05/2024 Executable UC with Effects and Handlers

“Secure Multiparty Computation and Secret Sharing”, Cramer,

Damgård, Nielsen (2015)

15

Prescribed interaction

Composition

Concurrency

Message passing

25/05/2024 Executable UC with Effects and Handlers 16

Fixed

“Secure Multiparty Computation and Secret Sharing”, Cramer,

Damgård, Nielsen (2015)

Security as indistinguishability

25/05/2024 Executable UC with Effects and Handlers

“Secure Multiparty Computation and Secret Sharing”, Cramer,

Damgård, Nielsen (2015)

17

Secure from
authenticated
channel
A simple example

Framework: the entities

resource<f,b,e>

party<f0,f1,e>

protocol<f0,f1,e>

simulator<b0,b1,e>

environment<f,b,e>

25/05/2024 Executable UC with Effects and Handlers 19

Framework: combining entities

fun create-protocol(
pars : list<party<f0,f1,e>>

) : protocol<f0,f1,e>

fun using-resource(
pro : protocol<f0,f1,e>, res : resource<f0,b,e>

) : <error> resource<f1,b,e>

fun applying-simulator(
res : resource<f,b0,e>, sim : simulator<b0,b1,e>

) : <error> resource<f,b1,e>

fun in-environment(
res : resource<f,b,e>, env : environment<f,b,e>

) : <distinguish,error,div|e> void

25/05/2024 Executable UC with Effects and Handlers 20

User: Secure from authenticated
val resource-st : resource<st-func,st-back,<console>>

val resource-at : resource<at-func,at-back,<console>>

val party-one : party<at-func,st-func,<console>>

val party-two : party<at-func,st-func,<console>>

val protocol : protocol<at-func,st-func,<console>> =

create-protocol([party-one, party-two])

val simulator : simulator<st-back,at-back,<console>>

val environment : environment<st-func,at-back,<console>>

protocol

.using-resource(resource-at)

.in-environment(environment)

resource-st

.applying-simulator(simulator)

.in-environment(environment)

25/05/2024 Executable UC with Effects and Handlers 21

Note we wrote a concrete environment!

Executions

En: started

P1: activated on func port: STInOne

AT: activated on func port: ATInOne

En: activated on back port: ATLeak

AT: activated on back port: ATInfl

P2: activated on func port: ATOutTwo

AT: activated on func port: ATInTwo

En: activated on back port: ATLeak

AT: activated on back port: ATInfl

P1: activated on func port: ATOutOne

AT: activated on func port: ATInOne

En: activated on back port: ATLeak

AT: activated on back port: ATInfl

P2: activated on func port: ATOutTwo

En: activated on func port: STOutTwo

25/05/2024 Executable UC with Effects and Handlers 22

AT and protocol

Executions

En: started

ST: activated on func port: STInOne

Sm: activated on back port: STLeak

En: activated on back port: ATLeak

Sm: activated on back port: ATInfl

En: activated on back port: ATLeak

Sm: activated on back port: ATInfl

En: activated on back port: ATLeak

Sm: activated on back port: ATInfl

ST: activated on back port: STInfl

En: activated on func port: STOutTwo

25/05/2024 Executable UC with Effects and Handlers 23

ST and simulator

Environment view

En: started
En: sending message:

STIn(MID(1), PID(2), Msg(test))
En: activated on back port: ATLeak
En: got leak:

ATLeak(MID(1), PID(1), PID(2), Msg(HELLO))
En: instructing delivery with:

ATInfl(MID(1), PID(1), PID(2))
En: activated on back port: ATLeak
En: got leak:

ATLeak(MID(1), PID(2), PID(1), Msg(REAL-KEY))
En: instructing delivery with:

ATInfl(MID(1), PID(2), PID(1))
En: activated on back port: ATLeak
En: got leak:

ATLeak(MID(1), PID(1), PID(2), Msg(REAL-KEYtest))
En: instructing delivery with:

ATInfl(MID(1), PID(1), PID(2))
En: activated on func port: STOutTwo
En: got message id:

STOut(MID(1), PID(1), Msg(test))

25/05/2024 Executable UC with Effects and Handlers 24

En: started
En: sending message:

STIn(MID(1), PID(2), Msg(test))
En: activated on back port: ATLeak
En: got leak:

ATLeak(MID(1), PID(1), PID(2), Msg(HELLO))
En: instructing delivery with:

ATInfl(MID(1), PID(1), PID(2))
En: activated on back port: ATLeak
En: got leak:

ATLeak(MID(1), PID(2), PID(1), Msg(SIM-KEY))
En: instructing delivery with:

ATInfl(MID(1), PID(2), PID(1))
En: activated on back port: ATLeak
En: got leak:

ATLeak(MID(1), PID(1), PID(2), Msg(SIM-KEY0000))
En: instructing delivery with:

ATInfl(MID(1), PID(1), PID(2))
En: activated on func port: STOutTwo
En: got message id:

STOut(MID(1), PID(1), Msg(test))

AT and protocol ST and simulator

Conclusion and
further work
Into the future!

Finishing up

UC is a formal framework for
composable security proofs

UC is too low-level, so protocols are still
too informal

PL and effect handlers provide an
executable & expressive formal system

25/05/2024 Executable UC with Effects and Handlers 26

Better user support

Full library

Bigger case studies

Testing tools

Reasoning

Conclusion Further work

Thank you!

Related work

EasyUC (EasyCrypt) [Canetti, Stoughton,
Varia, 2019]

Constructive Cryptography
(Isabelle/CryptHOL) [Lochbihler et al.,
2019]

25/05/2024 Executable UC with Effects and Handlers

ILC [Liao, Hammer, Miller, 2019]

Verification, low-level

On paper, low-level

EasyUC (EasyCrypt) [Canetti, Stoughton,
Varia, 2019]

Cost logic (EasyCrypt) [Barbosa et al.,
2021]

Encode UC in existing system

27

CodeOn paper Testing

Verification

IPDL [Gancher et al., 2023]

This work

High-level PL

	Slide 1: Executable Universal Composability with Effect Handlers
	Slide 2: Outline
	Slide 3: Universal Composability
	Slide 4: Universal Composability
	Slide 5: Expressing UC protocols
	Slide 6: Level of abstraction
	Slide 7: Example informal description
	Slide 8: Extract from larger example
	Slide 9: Goal: a useful middle ground
	Slide 10: Relevance to proofs
	Slide 11: Why effect handlers?
	Slide 12: Benefits of effect handlers
	Slide 13: Universal Composability
	Slide 14: Model of computation
	Slide 15: Four kinds of entities
	Slide 16: Prescribed interaction
	Slide 17: Security as indistinguishability
	Slide 18: Secure from authenticated channel
	Slide 19: Framework: the entities
	Slide 20: Framework: combining entities
	Slide 21: User: Secure from authenticated
	Slide 22: Executions
	Slide 23: Executions
	Slide 24: Environment view
	Slide 25: Conclusion and further work
	Slide 26: Finishing up
	Slide 27: Related work

