
1/44

Automatic Differentiation via Effects and Handlers in OCaml

Jesse Sigal (University of Edinburgh)

ML 2024, September 6, 2024

2/44

Overview

Automatic differentiation

Effects and handlers

The Smooth effect

Evaluate handler

Reverse mode handler

Benchmarks

Conclusion

3/44

Overview

Automatic differentiation

Effects and handlers

The Smooth effect

Evaluate handler

Reverse mode handler

Benchmarks

Conclusion

4/44

Automatic differentiation: what and why

▶ Derivative based optimization.

▶ Automatic differentiation (AD) is a family of algorithms which automatically
computes derivatives.

▶ AD is only a small constant multiple slower than the original program.

▶ Wide variety of implementations and methods.

▶ Available methods depend on the language’s features.

▶ Idea: effects and handlers provide a practical basis for AD.

5/44

Automatic differentiation: chain rule two different ways

g(f (x)) at x = a

let x = a in

let y = f x in

g y

d

dx
g(f (x)) = g ′ (f (x)) · (f ′(x) · 1) let (x, dx) = (a, 1) in

let (y, dy) = (f x, (f' x) * dx) in

(g y, (g' y) * dy)

d

dx
g(f (x)) =

(
1 · g ′ (f (x))) · f ′(x)

let x = a in

let bz = 1 in

let (z, bx) =

let y = f x in

let (z, by) =

let z = g y in

(z, bz * (g' y))

in (z, by * (f' x))

in (z, bx)

5/44

Automatic differentiation: chain rule two different ways

g(f (x)) at x = a
let x = a in

let y = f x in

g y

d

dx
g(f (x)) = g ′ (f (x)) · (f ′(x) · 1) let (x, dx) = (a, 1) in

let (y, dy) = (f x, (f' x) * dx) in

(g y, (g' y) * dy)

d

dx
g(f (x)) =

(
1 · g ′ (f (x))) · f ′(x)

let x = a in

let bz = 1 in

let (z, bx) =

let y = f x in

let (z, by) =

let z = g y in

(z, bz * (g' y))

in (z, by * (f' x))

in (z, bx)

5/44

Automatic differentiation: chain rule two different ways

g(f (x)) at x = a
let x = a in

let y = f x in

g y

d

dx
g(f (x)) = g ′ (f (x)) · (f ′(x) · 1) let (x, dx) = (a, 1) in

let (y, dy) = (f x, (f' x) * dx) in

(g y, (g' y) * dy)

d

dx
g(f (x)) =

(
1 · g ′ (f (x))) · f ′(x)

let x = a in

let bz = 1 in

let (z, bx) =

let y = f x in

let (z, by) =

let z = g y in

(z, bz * (g' y))

in (z, by * (f' x))

in (z, bx)

Chain rule, two functions

d

dx
g
(
f (x)

)
= g ′ (f (x)) · f ′(x)

5/44

Automatic differentiation: chain rule two different ways

g(f (x)) at x = a
let x = a in

let y = f x in

g y

d

dx
g(f (x)) = g ′ (f (x)) · (f ′(x) · 1) let (x, dx) = (a, 1) in

let (y, dy) = (f x, (f' x) * dx) in

(g y, (g' y) * dy)

d

dx
g(f (x)) =

(
1 · g ′ (f (x))) · f ′(x)

let x = a in

let bz = 1 in

let (z, bx) =

let y = f x in

let (z, by) =

let z = g y in

(z, bz * (g' y))

in (z, by * (f' x))

in (z, bx)

Chain rule, two functions

d

dx
g
(
f (x)

)
= g ′ (f (x)) · f ′(x)

Chain rule, three functions

d

dx
h
(
g
(
f (x)

))
= h′

(
g
(
f (x)

))
· g ′ (f (x)) · f ′(x)

5/44

Automatic differentiation: chain rule two different ways

g(f (x)) at x = a
let x = a in

let y = f x in

g y

d

dx
g(f (x)) = g ′ (f (x)) · (f ′(x) · 1)

let (x, dx) = (a, 1) in

let (y, dy) = (f x, (f' x) * dx) in

(g y, (g' y) * dy)

d

dx
g(f (x)) =

(
1 · g ′ (f (x))) · f ′(x)

let x = a in

let bz = 1 in

let (z, bx) =

let y = f x in

let (z, by) =

let z = g y in

(z, bz * (g' y))

in (z, by * (f' x))

in (z, bx)

5/44

Automatic differentiation: chain rule two different ways

g(f (x)) at x = a
let x = a in

let y = f x in

g y

d

dx
g(f (x)) = g ′ (f (x)) · (f ′(x) · 1) let (x, dx) = (a, 1) in

let (y, dy) = (f x, (f' x) * dx) in

(g y, (g' y) * dy)

d

dx
g(f (x)) =

(
1 · g ′ (f (x))) · f ′(x)

let x = a in

let bz = 1 in

let (z, bx) =

let y = f x in

let (z, by) =

let z = g y in

(z, bz * (g' y))

in (z, by * (f' x))

in (z, bx)

5/44

Automatic differentiation: chain rule two different ways

g(f (x)) at x = a
let x = a in

let y = f x in

g y

d

dx
g(f (x)) = g ′ (f (x)) · (f ′(x) · 1) let (x, dx) = (a, 1) in

let (y, dy) = (f x, (f' x) * dx) in

(g y, (g' y) * dy)

d

dx
g(f (x)) =

(
1 · g ′ (f (x))) · f ′(x)

let x = a in

let bz = 1 in

let (z, bx) =

let y = f x in

let (z, by) =

let z = g y in

(z, bz * (g' y))

in (z, by * (f' x))

in (z, bx)

5/44

Automatic differentiation: chain rule two different ways

g(f (x)) at x = a
let x = a in

let y = f x in

g y

d

dx
g(f (x)) = g ′ (f (x)) · (f ′(x) · 1) let (x, dx) = (a, 1) in

let (y, dy) = (f x, (f' x) * dx) in

(g y, (g' y) * dy)

d

dx
g(f (x)) =

(
1 · g ′ (f (x))) · f ′(x)

let x = a in

let bz = 1 in

let (z, bx) =

let y = f x in

let (z, by) =

let z = g y in

(z, bz * (g' y))

in (z, by * (f' x))

in (z, bx)

6/44

Automatic differentiation: stateful reverse mode AD

let x = a in

let bz = 1 in

let (z, bx) =

let y = f x in

let (z, by) =

let z = g y in

(z, bz * (g' y))

in (z, by * (f' x))

in (z, bx)

7→

let (x, bx) = (a, ref 0) in

let (y, by) = (f x, ref 0) in

let (z, bz) = (g y, ref 1) in

by := !by + (!bz * (g' y));

bx := !bx + (!by * (f' x));

(z, !bx)

How do we move beyond straight-line programs?

Effects and handlers!

6/44

Automatic differentiation: stateful reverse mode AD

let x = a in

let bz = 1 in

let (z, bx) =

let y = f x in

let (z, by) =

let z = g y in

(z, bz * (g' y))

in (z, by * (f' x))

in (z, bx)

7→

let (x, bx) = (a, ref 0) in

let (y, by) = (f x, ref 0) in

let (z, bz) = (g y, ref 1) in

by := !by + (!bz * (g' y));

bx := !bx + (!by * (f' x));

(z, !bx)

How do we move beyond straight-line programs?

Effects and handlers!

6/44

Automatic differentiation: stateful reverse mode AD

let x = a in

let bz = 1 in

let (z, bx) =

let y = f x in

let (z, by) =

let z = g y in

(z, bz * (g' y))

in (z, by * (f' x))

in (z, bx)

7→

let (x, bx) = (a, ref 0) in

let (y, by) = (f x, ref 0) in

let (z, bz) = (g y, ref 1) in

by := !by + (!bz * (g' y));

bx := !bx + (!by * (f' x));

(z, !bx)

How do we move beyond straight-line programs?

Effects and handlers!

7/44

Overview

Automatic differentiation

Effects and handlers

The Smooth effect

Evaluate handler

Reverse mode handler

Benchmarks

Conclusion

8/44

Effects and handlers: what and why

▶ Structured user-defined side-effects.

▶ Like catchable exceptions, but allows continuing from thrown location.

▶ Provide abstraction, composition, and reuse.

▶ Allows for complicated control flow.

▶ In OCaml as of 5.0!

▶ Gives a straight-line view of operations.

9/44

Effects and handlers: bubbling up

▶ We want to “bubble up” the arithmetic operations to get a straight-line program.

▶ Say we have:

let x = C[sin 0.5] in D[x]

▶ Bubbling up, we get:

let y = sin 0.5 in

let x = C[y] in D[x]

▶ We can also make the second line a first-class function

let y = sin 0.5 in

let k = (fun v -> let x = C[v] in D[x]) in

k y

▶ Effects and handlers do exactly this!

9/44

Effects and handlers: bubbling up

▶ We want to “bubble up” the arithmetic operations to get a straight-line program.

▶ Say we have:

let x = C[sin 0.5] in D[x]

▶ Bubbling up, we get:

let y = sin 0.5 in

let x = C[y] in D[x]

▶ We can also make the second line a first-class function

let y = sin 0.5 in

let k = (fun v -> let x = C[v] in D[x]) in

k y

▶ Effects and handlers do exactly this!

9/44

Effects and handlers: bubbling up

▶ We want to “bubble up” the arithmetic operations to get a straight-line program.

▶ Say we have:

let x = C[sin 0.5] in D[x]

▶ Bubbling up, we get:

let y = sin 0.5 in

let x = C[y] in D[x]

▶ We can also make the second line a first-class function

let y = sin 0.5 in

let k = (fun v -> let x = C[v] in D[x]) in

k y

▶ Effects and handlers do exactly this!

9/44

Effects and handlers: bubbling up

▶ We want to “bubble up” the arithmetic operations to get a straight-line program.

▶ Say we have:

let x = C[sin 0.5] in D[x]

▶ Bubbling up, we get:

let y = sin 0.5 in

let x = C[y] in D[x]

▶ We can also make the second line a first-class function

let y = sin 0.5 in

let k = (fun v -> let x = C[v] in D[x]) in

k y

▶ Effects and handlers do exactly this!

9/44

Effects and handlers: bubbling up

▶ We want to “bubble up” the arithmetic operations to get a straight-line program.

▶ Say we have:

let x = C[sin 0.5] in D[x]

▶ Bubbling up, we get:

let y = sin 0.5 in

let x = C[y] in D[x]

▶ We can also make the second line a first-class function

let y = sin 0.5 in

let k = (fun v -> let x = C[v] in D[x]) in

k y

▶ Effects and handlers do exactly this!

10/44

Overview

Automatic differentiation

Effects and handlers

The Smooth effect

Evaluate handler

Reverse mode handler

Benchmarks

Conclusion

11/44

Smooth effect: data types

1 type nullary = Const of float

2 type unary = Negate | Sin | Cos | Exp

3 type binary = Plus | Subtract | Times | Divide

4 type arg = L | R

12/44

Smooth effect: signature

6 open Effect

7

8 module type SMOOTH = sig

9 type t

10 type _ Effect.t += Ap0 : nullary -> t Effect.t

11 | Ap1 : unary * t -> t Effect.t

12 | Ap2 : binary * t * t -> t Effect.t

13 val c : float -> t

14 val (~.) : t -> t

15 · · ·
16 val ap0 : nullary -> t

17 val ap1 : unary -> t -> t

18 val ap2 : binary -> t -> t -> t

19 val der1 : unary -> t -> t

20 val der2 : binary -> arg -> t -> t -> t

21 end

13/44

Smooth effect: base module

23 module Smooth (T : sig type t end) : SMOOTH with type t = T.t = struct

24 type t = T.t

25 type _ Effect.t += Ap0 : nullary -> t Effect.t

26 | Ap1 : unary * t -> t Effect.t

27 | Ap2 : binary * t * t -> t Effect.t

28 let c x = perform (Ap0 (Const x))

29 let (~.) a = perform (Ap1 (Negate , a))

30 · · ·
31 let ap0 n = perform (Ap0 n)

32 let ap1 u x = perform (Ap1 (u, x))

33 let ap2 b x y = perform (Ap2 (b, x, y))

34

35 let der1 u x = match u with (* ∂
∂x

(u(x)) *)

36 | Negate -> ~. (c 1.0) (* ∂/∂x(−x) = −1 *)

37 | Sin -> cos_ x (* ∂/∂x(sin(x)) = cos(x) *)

38 | Cos -> ~. (sin_ x) (* ∂/∂x(cos(x)) = − sin(x) *)

39 | Exp -> exp_ x (* ∂/∂x(ex) = ex *)

40 · · ·

14/44

Smooth effect: base module

40 · · ·
41 let der2 b arg x y = match b with (* ∂

∂xarg
(b(xL, xR)), for xL = x, xR = y *)

42 (* ∂/∂x(x + y) = 1, ∂/∂y(x + y) = 1 *)

43 | Plus -> (match arg with L -> c 1.0 | R -> c 1.0)

44 (* ∂/∂x(x − y) = 1, ∂/∂y(x − y) = −1 *)

45 | Subtract -> (match arg with L -> c 1.0 | R -> c (-1.0))

46 (* ∂/∂x(x · y) = y , ∂/∂y(x · y) = x *)

47 | Times -> (match arg with L -> y | R -> x)

48 (* ∂/∂x(x/y) = 1/y, ∂/∂y(x/y) = − x/y 2 *)

49 | Divide ->

50 (match arg with L -> (c 1.0) /. y | R -> (~. x) /. (y *. y))

51 end

15/44

Overview

Automatic differentiation

Effects and handlers

The Smooth effect

Evaluate handler

Reverse mode handler

Benchmarks

Conclusion

16/44

Evaluate: handler

1 open Effect.Deep

2 open Float

3 open Smooth

4

5 module Evaluate = struct

6 include Smooth (struct type t = float end)

7

8 let (evaluate : ('a, 'a) handler) = {

9 retc = (fun x -> x);

10 exnc = raise;

11 effc = (fun (type x) (eff : x Effect.t) ->

12 match eff with

13 | Ap0 n -> Some (fun (k : (x, 'a) continuation) ->

14 match n with

15 | Const x -> continue (k : (float, ’a) continuation) x

16)

17 · · ·

16/44

Evaluate: handler

1 open Effect.Deep

2 open Float

3 open Smooth

4

5 module Evaluate = struct

6 include Smooth (struct type t = float end)

7

8 let (evaluate : ('a, 'a) handler) = {

9 retc = (fun x -> x);

10 exnc = raise;

11 effc = (fun (type x) (eff : x Effect.t) ->

12 match eff with

13 | Ap0 n -> Some (fun (k : (x, 'a) continuation) ->

14 match n with

15 | Const x -> continue (k : (float, ’a) continuation) x

16)

17 · · ·

16/44

Evaluate: handler

1 open Effect.Deep

2 open Float

3 open Smooth

4

5 module Evaluate = struct

6 include Smooth (struct type t = float end)

7

8 let (evaluate : ('a, 'a) handler) = {

9 retc = (fun x -> x);

10 exnc = raise;

11 effc = (fun (type x) (eff : x Effect.t) ->

12 match eff with

13 | Ap0 n -> Some (fun (k : (x, 'a) continuation) ->

14 match n with

15 | Const x -> continue (k : (float, ’a) continuation) x

16)

17 · · ·

17/44

Evaluate: handler

16 · · ·
17 | Ap1 (u, x) -> Some (fun k ->

18 match u with

19 | Negate -> continue k (neg x)

20 | Sin -> continue k (sin x)

21 | Cos -> continue k (cos x)

22 | Exp -> continue k (exp x)

23)

24 | Ap2 (b, x, y) -> Some (fun k ->

25 match b with

26 | Plus -> continue k (add x y)

27 | Subtract -> continue k (sub x y)

28 | Times -> continue k (mul x y)

29 | Divide -> continue k (div x y)

30)

31 | _ -> None

32)

33 }

34 end

18/44

Evaluate: example

1 open Effect.Deep

2 open Evaluate

3

4 let _ =

5 let open Evaluate in

6 let sqr x = x *. x in

7 let res = (match_with : ('c -> 'a) -> 'c -> ('a, 'b) handler -> 'b)
8 (fun (twice , x) -> if twice then sqr (sqr x) else sqr x)

9 (true , 5.0)

10 evaluate

11 in

12 Printf.printf "%f\n" res (* Prints "625.000000"= 54 *)

19/44

Overview

Automatic differentiation

Effects and handlers

The Smooth effect

Evaluate handler

Reverse mode handler

Benchmarks

Conclusion

20/44

Reverse mode

d

dx
g(f (x)) =

(
1 · g ′ (f (x))) · f ′(x)

let (x, bx) = (a, ref 0) in

let (y, by) = (f x, ref 0) in

let (z, bz) = (g y, ref 1) in

by := !by + ((g' y) * !bz);

bx := !bx + ((f' x) * !by);

(z, !bx)

21/44

Reverse mode: numeric type

1 open Effect.Deep

2 open Smooth

3

4 type 't mpaired = {v : 't; mutable bv : 't}
5

6 module Reverse (T : SMOOTH) = struct

7 include Smooth (struct type t = T.t mpaired end)

8

9 let (reverse : (unit , unit) handler) = {

10 retc = (fun x -> x);

11 exnc = raise;

12 effc = (fun (type a) (eff : a Effect.t) ->

13 match eff with

14 · · ·

21/44

Reverse mode: numeric type

1 open Effect.Deep

2 open Smooth

3

4 type 't mpaired = {v : 't; mutable bv : 't}
5

6 module Reverse (T : SMOOTH) = struct

7 include Smooth (struct type t = T.t mpaired end)

8

9 let (reverse : (unit , unit) handler) = {

10 retc = (fun x -> x);

11 exnc = raise;

12 effc = (fun (type a) (eff : a Effect.t) ->

13 match eff with

14 · · ·

21/44

Reverse mode: numeric type

1 open Effect.Deep

2 open Smooth

3

4 type 't mpaired = {v : 't; mutable bv : 't}
5

6 module Reverse (T : SMOOTH) = struct

7 include Smooth (struct type t = T.t mpaired end)

8

9 let (reverse : (unit , unit) handler) = {

10 retc = (fun x -> x);

11 exnc = raise;

12 effc = (fun (type a) (eff : a Effect.t) ->

13 match eff with

14 · · ·

22/44

Reverse mode: handler

14 · · ·
15 | Ap0 n -> Some (fun (k : (a, _) continuation) -> let open T in

16 continue k {v = ap0 n; bv = c 0.0}

17)

18 | Ap1 (u, x) -> Some (fun k -> let open T in

19 let r = {v = ap1 u x.v; bv = c 0.0} in

20 continue k r;

21 x.bv <- x.bv +. (der1 u x.v *. r.bv)

22)

23 | Ap2 (b, x, y) -> Some (fun k -> let open T in

24 let r = {v = ap2 b x.v y.v; bv = c 0.0} in

25 continue k r;

26 x.bv <- x.bv +. (der2 b L x.v y.v *. r.bv);

27 y.bv <- y.bv +. (der2 b R x.v y.v *. r.bv)

28)

29 | _ -> None

30)

31 }

23/44

Reverse mode: derivative function

31 · · ·
32 (* grad f x =

∂f(z)
∂z

(x) *)

33 let grad (f : T.t mpaired -> T.t mpaired) (x : T.t) =

34 let r = {v = x; bv = T.c 0.0} in

35 match_with (fun x -> (f x).bv <- T.c 1.0) r reverse;

36 r.bv

37 end

24/44

Reverse mode: example

1 let _ =

2 let module E = Evaluate in

3 let module R = Reverse(E) in

4 let sqr x = R.(x *. x) in

5 let res = match_with

6 (fun (twice , y) ->

7 R.grad (fun x -> if twice then sqr (sqr x) else sqr x) y

8)

9 (true , 5.0)

10 E.evaluate

11 in

12 Printf.printf "%f\n" res (* Prints "500.000000"= 4 · 53 = ∂(x4)
∂x

(5)) *)

25/44

Reverse mode: nested example

1 let _ =

2 let module E = Evaluate in

3 let module R = Reverse(E) in

4 let module RR = Reverse(R) in

5 let sqr x = RR.(x *. x) in

6 let res = match_with (fun (twice , z) ->

7 R.grad (fun y ->

8 RR.grad (fun x -> if twice then sqr (sqr x) else sqr x) y

9) z

10) (true , 5.0) E.evaluate

11 in

12 Printf.printf "%f\n" res (* Prints "300.000000"= 12 · 52 = ∂2(x4)

∂x2
(5) *)

26/44

Reverse mode: original implementation

▶ We are not the first to implement reverse mode AD with handlers, see
[Sivaramakrishnan, 2018].

▶ [Sivaramakrishnan, 2018] was inspired by [Wang et al., 2019] who used delimited
continuations.

▶ We are the first to design a larger system and add tensor valued operations, as
well as benchmark.

27/44

Overview

Automatic differentiation

Effects and handlers

The Smooth effect

Evaluate handler

Reverse mode handler

Benchmarks

Conclusion

28/44

What to expect

▶ [Griewank and Walther, 2008, Sec. 4.4] show that for a composite measure of
“work”, reverse mode is O(1) w.r.t. the original program.

▶ Work includes
▶ memory fetches and stores,
▶ additions and subtractions,
▶ multiplications, and
▶ non-linear operations.

▶ With reasonable assumptions, they prove reverse mode should be 3× to 4× slower.

29/44

Microbenchmark: code

1

x
=

∞∑
n=0

(−1)n(x − 1)n =
∞∑
n=0

an

a0 = 1, an = −(x − 1) · an−1

1 open Smooth

2

3 module Taylor_Recip_Benchmark (T : SMOOTH) = struct

4 let approx_recip iters x = let open T in

5 let prev = ref (c 1.0) in (* a0 *)

6 let acc = ref (c 1.0) in (*
∑0

n=0 an *)

7 for _i = 1 to iters do

8 prev := !prev *. (~. (x -. (c 1.0))); (* a i = −(x− 1) · a i−1 *)

9 acc := !prev +. !acc (*
∑ i

n=0 an = a i +
∑ i−1

n=0 an *)

10 done;

11 !acc (*
∑iters

n=0 an *)

12 end

29/44

Microbenchmark: code

1

x
=

∞∑
n=0

(−1)n(x − 1)n =
∞∑
n=0

an

a0 = 1, an = −(x − 1) · an−1

1 open Smooth

2

3 module Taylor_Recip_Benchmark (T : SMOOTH) = struct

4 let approx_recip iters x = let open T in

5 let prev = ref (c 1.0) in (* a0 *)

6 let acc = ref (c 1.0) in (*
∑0

n=0 an *)

7 for _i = 1 to iters do

8 prev := !prev *. (~. (x -. (c 1.0))); (* a i = −(x− 1) · a i−1 *)

9 acc := !prev +. !acc (*
∑ i

n=0 an = a i +
∑ i−1

n=0 an *)

10 done;

11 !acc (*
∑iters

n=0 an *)

12 end

30/44

Microbenchmark: results

(a) Evaluation mode (b) Reverse mode

31/44

Microbenchmark: results

Reverse mode is about 8.3× slower

Figure: Reverse and evaluation modes, log-log scale

32/44

Macrobenchmark

▶ Benchmark suite of [Srajer et al., 2018]
▶ reproducible: containers
▶ extensible: test harnesses, modular
▶ realistic: real ML and computer vision functions

▶ Problem: one effect call per real-valued operation will be inefficient
▶ Solution: tensor/matrix/ND-array operations

▶ Owl scientific computing library of [Wang et al., 2022]
▶ Extend Smooth to 35 operations
▶ Extend Reverse to handle new operation types

▶ We implement the objective function for Gaussian mixture models

▶ 3 different parameters N, K , and D

▶ K · D is the total number of input variables, giving our x-axis

33/44

Macrobenchmark: other systems

Language Tool Approach

C++ - Manual (by hand)
C++ - Finite differences
C Tapenade Static
Python Autograd Dynamic
Python TensorFlow 2.0 (eager) Dynamic
Python TensorFlow 2.0 (graph) Static
Python PyTorch Dynamic
Python TorchScript Static
Julia ForwardDiff.jl Dynamic
Julia Zygote Static
F# DiffSharp Dynamic
OCaml This work Dynamic

34/44

Macrobenchmark: results (1k)

35/44

Macrobenchmark: results (1k, manual)

36/44

Macrobenchmark: results (1k, static)

37/44

Macrobenchmark: results (1k, dynamic)

38/44

Macrobenchmark: results (1k, all)

39/44

Macrobenchmark: results (10k)

40/44

Overview

Automatic differentiation

Effects and handlers

The Smooth effect

Evaluate handler

Reverse mode handler

Benchmarks

Conclusion

41/44

More to say on AD and effect handlers

▶ Many different modes
▶ Checkpointed reverse mode for time-space tradeoff
▶ Higher-order functions
▶ Hessians

▶ Different languages, some with effect type systems
▶ Koka
▶ Frank
▶ Eff

▶ Mathematical correctness
▶ Denotational semantics
▶ For forward mode and (simpler) reverse mode

See my thesis:

42/44

Conclusion

▶ AD (and reverse mode specifically) requires complex control flow.

▶ Effect handlers enable a simple implementation which follows the math.

▶ With little effort and moving to tensor valued operations, we are competitive
among similar tools.

▶ Future work:
▶ Use Torch bindings in OCaml.
▶ Correctness of reverse mode.
▶ Custom functions (higher-order effects?).

Preprint:

43/44

Bibliography I

Griewank, A. and Walther, A. (2008).
Evaluating Derivatives.
Other Titles in Applied Mathematics. Society for Industrial and Applied
Mathematics.

Sivaramakrishnan, K. C. (2018).
Reverse-mode Algorithmic differentiation using effect handlers.

Srajer, F., Kukelova, Z., and Fitzgibbon, A. (2018).
A benchmark of selected algorithmic differentiation tools on some problems in
computer vision and machine learning.
Optimization Methods and Software, 33(4-6):889–906.
Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/10556788.2018.1435651.

44/44

Bibliography II

Wang, F., Zheng, D., Decker, J., Wu, X., Essertel, G. M., and Rompf, T. (2019).
Demystifying differentiable programming: shift/reset the penultimate
backpropagator.
Proceedings of the ACM on Programming Languages, 3(ICFP):96:1–96:31.

Wang, L., Zhao, J., and Mortier, R. (2022).
OCaml Scientific Computing: Functional Programming in Data Science and
Artificial Intelligence.
Undergraduate Topics in Computer Science. Springer International Publishing,
Cham.

	Automatic differentiation
	Effects and handlers
	The Smooth effect
	Evaluate handler
	Reverse mode handler
	Benchmarks
	Conclusion

