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Automatic differentiation: what and why

▶ Derivative based optimization.

▶ Automatic differentiation (AD) is a family of algorithms which automatically
computes derivatives.

▶ AD is only a small constant multiple slower than the original program.

▶ Wide variety of implementations and methods.

▶ Available methods depend on the language’s features.

▶ Idea: effects and handlers provide a practical basis for AD.
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Automatic differentiation: chain rule two different ways

g(f (x)) at x = a

let x = a in

let y = f x in

g y

d

dx
g(f (x)) = g ′ (f (x)) · (f ′(x) · 1) let (x, dx) = (a, 1) in

let (y, dy) = (f x, (f' x) * dx) in

(g y, (g' y) * dy)

d

dx
g(f (x)) =

(
1 · g ′ (f (x))) · f ′(x)

let x = a in

let bz = 1 in

let (z, bx) =

let y = f x in

let (z, by) =

let z = g y in

(z, bz * (g' y))

in (z, by * (f' x))

in (z, bx)
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Automatic differentiation: stateful reverse mode AD

let x = a in

let bz = 1 in

let (z, bx) =

let y = f x in

let (z, by) =

let z = g y in

(z, bz * (g' y))

in (z, by * (f' x))

in (z, bx)

7→

let (x, bx) = (a, ref 0) in

let (y, by) = (f x, ref 0) in

let (z, bz) = (g y, ref 1) in

by := !by + (!bz * (g' y));

bx := !bx + (!by * (f' x));

(z, !bx)

How do we move beyond straight-line programs?

Effects and handlers!
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Effects and handlers: what and why

▶ Structured user-defined side-effects.

▶ Like catchable exceptions, but allows continuing from thrown location.

▶ Provide abstraction, composition, and reuse.

▶ Allows for complicated control flow.

▶ In OCaml as of 5.0!

▶ Gives a straight-line view of operations.
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Effects and handlers: bubbling up

▶ We want to “bubble up” the arithmetic operations to get a straight-line program.

▶ Say we have:

let x = C[sin 0.5] in D[x]

▶ Bubbling up, we get:

let y = sin 0.5 in

let x = C[y] in D[x]

▶ We can also make the second line a first-class function

let y = sin 0.5 in

let k = (fun v -> let x = C[v] in D[x]) in

k y

▶ Effects and handlers do exactly this!
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Smooth effect: data types

1 type nullary = Const of float

2 type unary = Negate | Sin | Cos | Exp

3 type binary = Plus | Subtract | Times | Divide

4 type arg = L | R
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Smooth effect: signature

6 open Effect

7

8 module type SMOOTH = sig

9 type t

10 type _ Effect.t += Ap0 : nullary -> t Effect.t

11 | Ap1 : unary * t -> t Effect.t

12 | Ap2 : binary * t * t -> t Effect.t

13 val c : float -> t

14 val ( ~. ) : t -> t

15 · · ·
16 val ap0 : nullary -> t

17 val ap1 : unary -> t -> t

18 val ap2 : binary -> t -> t -> t

19 val der1 : unary -> t -> t

20 val der2 : binary -> arg -> t -> t -> t

21 end
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Smooth effect: base module

23 module Smooth (T : sig type t end) : SMOOTH with type t = T.t = struct

24 type t = T.t

25 type _ Effect.t += Ap0 : nullary -> t Effect.t

26 | Ap1 : unary * t -> t Effect.t

27 | Ap2 : binary * t * t -> t Effect.t

28 let c x = perform (Ap0 (Const x))

29 let ( ~. ) a = perform (Ap1 (Negate , a))

30 · · ·
31 let ap0 n = perform (Ap0 n)

32 let ap1 u x = perform (Ap1 (u, x))

33 let ap2 b x y = perform (Ap2 (b, x, y))

34

35 let der1 u x = match u with (* ∂
∂x

(u(x)) *)

36 | Negate -> ~. (c 1.0) (* ∂/∂x(−x) = −1 *)

37 | Sin -> cos_ x (* ∂/∂x(sin(x)) = cos(x) *)

38 | Cos -> ~. (sin_ x) (* ∂/∂x(cos(x)) = − sin(x) *)

39 | Exp -> exp_ x (* ∂/∂x(ex) = ex *)

40 · · ·
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Smooth effect: base module

40 · · ·
41 let der2 b arg x y = match b with (* ∂

∂xarg
(b(xL, xR)), for xL = x, xR = y *)

42 (* ∂/∂x(x + y) = 1, ∂/∂y(x + y) = 1 *)

43 | Plus -> (match arg with L -> c 1.0 | R -> c 1.0)

44 (* ∂/∂x(x − y) = 1, ∂/∂y(x − y) = −1 *)

45 | Subtract -> (match arg with L -> c 1.0 | R -> c ( -1.0))

46 (* ∂/∂x(x · y) = y , ∂/∂y(x · y) = x *)

47 | Times -> (match arg with L -> y | R -> x)

48 (* ∂/∂x(x/y) = 1/y, ∂/∂y(x/y) = − x/y 2 *)

49 | Divide ->

50 (match arg with L -> (c 1.0) /. y | R -> (~. x) /. (y *. y))

51 end



15/44

Overview

Automatic differentiation

Effects and handlers

The Smooth effect

Evaluate handler

Reverse mode handler

Benchmarks

Conclusion



16/44

Evaluate: handler

1 open Effect.Deep

2 open Float

3 open Smooth

4

5 module Evaluate = struct

6 include Smooth (struct type t = float end)

7

8 let (evaluate : ('a, 'a) handler) = {

9 retc = (fun x -> x);

10 exnc = raise;

11 effc = (fun (type x) (eff : x Effect.t) ->

12 match eff with

13 | Ap0 n -> Some (fun (k : (x, 'a) continuation) ->

14 match n with

15 | Const x -> continue (k : (float, ’a) continuation) x

16 )

17 · · ·
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Evaluate: handler

16 · · ·
17 | Ap1 (u, x) -> Some (fun k ->

18 match u with

19 | Negate -> continue k (neg x)

20 | Sin -> continue k (sin x)

21 | Cos -> continue k (cos x)

22 | Exp -> continue k (exp x)

23 )

24 | Ap2 (b, x, y) -> Some (fun k ->

25 match b with

26 | Plus -> continue k (add x y)

27 | Subtract -> continue k (sub x y)

28 | Times -> continue k (mul x y)

29 | Divide -> continue k (div x y)

30 )

31 | _ -> None

32 )

33 }

34 end
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Evaluate: example

1 open Effect.Deep

2 open Evaluate

3

4 let _ =

5 let open Evaluate in

6 let sqr x = x *. x in

7 let res = (match_with : ('c -> 'a) -> 'c -> ('a, 'b) handler -> 'b)
8 (fun (twice , x) -> if twice then sqr (sqr x) else sqr x)

9 (true , 5.0)

10 evaluate

11 in

12 Printf.printf "%f\n" res (* Prints "625.000000"= 54 *)



19/44

Overview

Automatic differentiation

Effects and handlers

The Smooth effect

Evaluate handler

Reverse mode handler

Benchmarks

Conclusion



20/44

Reverse mode

d

dx
g(f (x)) =

(
1 · g ′ (f (x))) · f ′(x)

let (x, bx) = (a, ref 0) in

let (y, by) = (f x, ref 0) in

let (z, bz) = (g y, ref 1) in

by := !by + ((g' y) * !bz);

bx := !bx + ((f' x) * !by);

(z, !bx)
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Reverse mode: numeric type

1 open Effect.Deep

2 open Smooth

3

4 type 't mpaired = {v : 't; mutable bv : 't}
5

6 module Reverse (T : SMOOTH) = struct

7 include Smooth (struct type t = T.t mpaired end)

8

9 let (reverse : (unit , unit) handler) = {

10 retc = (fun x -> x);

11 exnc = raise;

12 effc = (fun (type a) (eff : a Effect.t) ->

13 match eff with

14 · · ·
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Reverse mode: handler

14 · · ·
15 | Ap0 n -> Some (fun (k : (a, _) continuation) -> let open T in

16 continue k {v = ap0 n; bv = c 0.0}

17 )

18 | Ap1 (u, x) -> Some (fun k -> let open T in

19 let r = {v = ap1 u x.v; bv = c 0.0} in

20 continue k r;

21 x.bv <- x.bv +. (der1 u x.v *. r.bv)

22 )

23 | Ap2 (b, x, y) -> Some (fun k -> let open T in

24 let r = {v = ap2 b x.v y.v; bv = c 0.0} in

25 continue k r;

26 x.bv <- x.bv +. (der2 b L x.v y.v *. r.bv);

27 y.bv <- y.bv +. (der2 b R x.v y.v *. r.bv)

28 )

29 | _ -> None

30 )

31 }
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Reverse mode: derivative function

31 · · ·
32 (* grad f x =

∂f(z)
∂z

(x) *)

33 let grad (f : T.t mpaired -> T.t mpaired) (x : T.t) =

34 let r = {v = x; bv = T.c 0.0} in

35 match_with (fun x -> (f x).bv <- T.c 1.0) r reverse;

36 r.bv

37 end
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Reverse mode: example

1 let _ =

2 let module E = Evaluate in

3 let module R = Reverse(E) in

4 let sqr x = R.(x *. x) in

5 let res = match_with

6 (fun (twice , y) ->

7 R.grad (fun x -> if twice then sqr (sqr x) else sqr x) y

8 )

9 (true , 5.0)

10 E.evaluate

11 in

12 Printf.printf "%f\n" res (* Prints "500.000000"= 4 · 53 = ∂(x4)
∂x

(5)) *)
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Reverse mode: nested example

1 let _ =

2 let module E = Evaluate in

3 let module R = Reverse(E) in

4 let module RR = Reverse(R) in

5 let sqr x = RR.(x *. x) in

6 let res = match_with (fun (twice , z) ->

7 R.grad (fun y ->

8 RR.grad (fun x -> if twice then sqr (sqr x) else sqr x) y

9 ) z

10 ) (true , 5.0) E.evaluate

11 in

12 Printf.printf "%f\n" res (* Prints "300.000000"= 12 · 52 = ∂2(x4)

∂x2
(5) *)
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Reverse mode: original implementation

▶ We are not the first to implement reverse mode AD with handlers, see
[Sivaramakrishnan, 2018].

▶ [Sivaramakrishnan, 2018] was inspired by [Wang et al., 2019] who used delimited
continuations.

▶ We are the first to design a larger system and add tensor valued operations, as
well as benchmark.
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What to expect

▶ [Griewank and Walther, 2008, Sec. 4.4] show that for a composite measure of
“work”, reverse mode is O(1) w.r.t. the original program.

▶ Work includes
▶ memory fetches and stores,
▶ additions and subtractions,
▶ multiplications, and
▶ non-linear operations.

▶ With reasonable assumptions, they prove reverse mode should be 3× to 4× slower.
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Microbenchmark: code

1

x
=

∞∑
n=0

(−1)n(x − 1)n =
∞∑
n=0

an

a0 = 1, an = −(x − 1) · an−1

1 open Smooth

2

3 module Taylor_Recip_Benchmark (T : SMOOTH) = struct

4 let approx_recip iters x = let open T in

5 let prev = ref (c 1.0) in (* a0 *)

6 let acc = ref (c 1.0) in (*
∑0

n=0 an *)

7 for _i = 1 to iters do

8 prev := !prev *. (~. (x -. (c 1.0))); (* a i = −(x− 1) · a i−1 *)

9 acc := !prev +. !acc (*
∑ i

n=0 an = a i +
∑ i−1

n=0 an *)

10 done;

11 !acc (*
∑iters

n=0 an *)

12 end
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Microbenchmark: results

(a) Evaluation mode (b) Reverse mode
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Microbenchmark: results

Reverse mode is about 8.3× slower

Figure: Reverse and evaluation modes, log-log scale
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Macrobenchmark

▶ Benchmark suite of [Srajer et al., 2018]
▶ reproducible: containers
▶ extensible: test harnesses, modular
▶ realistic: real ML and computer vision functions

▶ Problem: one effect call per real-valued operation will be inefficient
▶ Solution: tensor/matrix/ND-array operations

▶ Owl scientific computing library of [Wang et al., 2022]
▶ Extend Smooth to 35 operations
▶ Extend Reverse to handle new operation types

▶ We implement the objective function for Gaussian mixture models

▶ 3 different parameters N, K , and D

▶ K · D is the total number of input variables, giving our x-axis
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Macrobenchmark: other systems

Language Tool Approach

C++ - Manual (by hand)
C++ - Finite differences
C Tapenade Static
Python Autograd Dynamic
Python TensorFlow 2.0 (eager) Dynamic
Python TensorFlow 2.0 (graph) Static
Python PyTorch Dynamic
Python TorchScript Static
Julia ForwardDiff.jl Dynamic
Julia Zygote Static
F# DiffSharp Dynamic
OCaml This work Dynamic
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Macrobenchmark: results (1k)
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Macrobenchmark: results (1k, manual)
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Macrobenchmark: results (1k, static)
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Macrobenchmark: results (1k, dynamic)



38/44

Macrobenchmark: results (1k, all)
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Macrobenchmark: results (10k)
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Overview

Automatic differentiation

Effects and handlers

The Smooth effect

Evaluate handler

Reverse mode handler

Benchmarks

Conclusion
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More to say on AD and effect handlers

▶ Many different modes
▶ Checkpointed reverse mode for time-space tradeoff
▶ Higher-order functions
▶ Hessians

▶ Different languages, some with effect type systems
▶ Koka
▶ Frank
▶ Eff

▶ Mathematical correctness
▶ Denotational semantics
▶ For forward mode and (simpler) reverse mode

See my thesis:
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Conclusion

▶ AD (and reverse mode specifically) requires complex control flow.

▶ Effect handlers enable a simple implementation which follows the math.

▶ With little effort and moving to tensor valued operations, we are competitive
among similar tools.

▶ Future work:
▶ Use Torch bindings in OCaml.
▶ Correctness of reverse mode.
▶ Custom functions (higher-order effects?).

Preprint:
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