
Modal effect types

Sam Lindley

The University of Edinburgh

WG 2.11 Meeting #24, Edinburgh, December 2024

Joint work with
Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Anton Lorentzen

Effect polymorphism

A prototypical pure higher-order function

map : ∀ a b . (a → b) → List a → List b

We can only pass pure functions to map

Effect polymorphism

A prototypical pure higher-order function

map : ∀ a b . (a → b) → List a → List b

We can only pass pure functions to map

Effect polymorphism

An effect-polymorphic version

map’ : ∀ a b e . (a
e−→ b)

e−→ List a
e−→ List b

Is this really necessary?

No! In Frank the signature of map is syntactic sugar for the signature of map’.

Key observation: almost always we need only one effect variable in a type signature

Effect polymorphism

An effect-polymorphic version

map’ : ∀ a b e . (a
e−→ b)

e−→ List a
e−→ List b

Is this really necessary?

No! In Frank the signature of map is syntactic sugar for the signature of map’.

Key observation: almost always we need only one effect variable in a type signature

Effect polymorphism

An effect-polymorphic version

map’ : ∀ a b e . (a
e−→ b)

e−→ List a
e−→ List b

Is this really necessary?

No! In Frank the signature of map is syntactic sugar for the signature of map’.

Key observation: almost always we need only one effect variable in a type signature

Effect polymorphism

An effect-polymorphic version

map’ : ∀ a b e . (a
e−→ b)

e−→ List a
e−→ List b

Is this really necessary?

No! In Frank the signature of map is syntactic sugar for the signature of map’.

Key observation: almost always we need only one effect variable in a type signature

Effect polymorphism

But Frank’s syntactic sugar is fragile.

For instance, consider a yield effect and a generator iterating over a list.

gen : List Int
yield−−−→ 1

gen xs = map (fun x → do yield x) xs; ()

If we forget the annotation on the arrow then Frank gives the following error message.

cannot unify effects e and yield, £

Can we do better?

Effect polymorphism

But Frank’s syntactic sugar is fragile.

For instance, consider a yield effect and a generator iterating over a list.

gen : List Int
yield−−−→ 1

gen xs = map (fun x → do yield x) xs; ()

If we forget the annotation on the arrow then Frank gives the following error message.

cannot unify effects e and yield, £

Can we do better?

Effect polymorphism

But Frank’s syntactic sugar is fragile.

For instance, consider a yield effect and a generator iterating over a list.

gen : List Int
yield−−−→ 1

gen xs = map (fun x → do yield x) xs; ()

If we forget the annotation on the arrow then Frank gives the following error message.

cannot unify effects e and yield, £

Can we do better?

Effect polymorphism

But Frank’s syntactic sugar is fragile.

For instance, consider a yield effect and a generator iterating over a list.

gen : List Int
yield−−−→ 1

gen xs = map (fun x → do yield x) xs; ()

If we forget the annotation on the arrow then Frank gives the following error message.

cannot unify effects e and yield, £

Can we do better?

From function arrows to effect contexts

Conventional effect typing — function arrows are annotated with effects

⊢ fun (f, x) → f x : ((Int
E−→ 1) × Int)

E−→ 1

Modal effect typing — ambient effect context determines effects

⊢ fun (f︸︷︷︸
@ E

, x) → f x︸ ︷︷ ︸
@ E

: ((Int → 1︸ ︷︷ ︸
@ E

) × Int) → 1︸ ︷︷ ︸
@ E

@ E

From function arrows to effect contexts

Conventional effect typing — function arrows are annotated with effects

⊢ fun (f, x) → f x : ((Int
E−→ 1) × Int)

E−→ 1

Modal effect typing — ambient effect context determines effects

⊢ fun (f︸︷︷︸
@ E

, x) → f x︸ ︷︷ ︸
@ E

: ((Int → 1︸ ︷︷ ︸
@ E

) × Int) → 1︸ ︷︷ ︸
@ E

@ E

Effects contexts

An effect context E is a row of typed operations

Example: get : 1 ↠ Int, put : Int ↠ 1

Effect context rows are scoped (as in Frank and Koka)

▶ repeats are allowed (same name but possibly different signatures)

▶ order of repeated operations matters

▶ relative order of distinct operations does not matter

Effects contexts

An effect context E is a row of typed operations

Example: get : 1 ↠ Int, put : Int ↠ 1

Effect context rows are scoped (as in Frank and Koka)

▶ repeats are allowed (same name but possibly different signatures)

▶ order of repeated operations matters

▶ relative order of distinct operations does not matter

Effects contexts

An effect context E is a row of typed operations

Example: get : 1 ↠ Int, put : Int ↠ 1

Effect context rows are scoped (as in Frank and Koka)

▶ repeats are allowed (same name but possibly different signatures)

▶ order of repeated operations matters

▶ relative order of distinct operations does not matter

Modal effect types

Modes are effect contexts
Modalities are transformations on modes

Met — simply-typed core calculus of modal effect types

Metl — surface language for Met with: bidirectional typing for inferring introduction
and elimination of modalities + algebraic data types + polymorphism

Almost all examples in this talk use the simply-typed fragment of Metl

Modal effect types

Modes are effect contexts
Modalities are transformations on modes

Met — simply-typed core calculus of modal effect types

Metl — surface language for Met with: bidirectional typing for inferring introduction
and elimination of modalities + algebraic data types + polymorphism

Almost all examples in this talk use the simply-typed fragment of Metl

Modal effect types

Modes are effect contexts
Modalities are transformations on modes

Met — simply-typed core calculus of modal effect types

Metl — surface language for Met with: bidirectional typing for inferring introduction
and elimination of modalities + algebraic data types + polymorphism

Almost all examples in this talk use the simply-typed fragment of Metl

Modal effect types

Modes are effect contexts
Modalities are transformations on modes

Met — simply-typed core calculus of modal effect types

Metl — surface language for Met with: bidirectional typing for inferring introduction
and elimination of modalities + algebraic data types + polymorphism

Almost all examples in this talk use the simply-typed fragment of Metl

Overriding the ambient context with absolute modalities

⊢ fun x → do yield (x + 42)︸ ︷︷ ︸
@ yield : Int ↠ 1

: [yield : Int ↠ 1](Int → 1︸ ︷︷ ︸
@ yield : Int ↠ 1

) @ .

The absolute modality [yield : Int ↠ 1] overrides the empty ambient effect context
(.) in the function body enabling the yield operation to be performed.

In general [E] overrides the ambient effect context with E.

Effect contexts given by absolute modalities percolate through the structure of a type:

▶ a function of type [E](A → B) may perform effects E when invoked

▶ elements of a list of type [E](List (A → B)) may perform effects E when invoked

Overriding the ambient context with absolute modalities

⊢ fun x → do yield (x + 42)︸ ︷︷ ︸
@ yield : Int ↠ 1

: [yield : Int ↠ 1](Int → 1︸ ︷︷ ︸
@ yield : Int ↠ 1

) @ .

The absolute modality [yield : Int ↠ 1] overrides the empty ambient effect context
(.) in the function body enabling the yield operation to be performed.

In general [E] overrides the ambient effect context with E.

Effect contexts given by absolute modalities percolate through the structure of a type:

▶ a function of type [E](A → B) may perform effects E when invoked

▶ elements of a list of type [E](List (A → B)) may perform effects E when invoked

Overriding the ambient context with absolute modalities

⊢ fun x → do yield (x + 42)︸ ︷︷ ︸
@ yield : Int ↠ 1

: [yield : Int ↠ 1](Int → 1︸ ︷︷ ︸
@ yield : Int ↠ 1

) @ .

The absolute modality [yield : Int ↠ 1] overrides the empty ambient effect context
(.) in the function body enabling the yield operation to be performed.

In general [E] overrides the ambient effect context with E.

Effect contexts given by absolute modalities percolate through the structure of a type:

▶ a function of type [E](A → B) may perform effects E when invoked

▶ elements of a list of type [E](List (A → B)) may perform effects E when invoked

Overriding the ambient context with absolute modalities

⊢ fun x → do yield (x + 42)︸ ︷︷ ︸
@ yield : Int ↠ 1

: [yield : Int ↠ 1](Int → 1︸ ︷︷ ︸
@ yield : Int ↠ 1

) @ .

The absolute modality [yield : Int ↠ 1] overrides the empty ambient effect context
(.) in the function body enabling the yield operation to be performed.

In general [E] overrides the ambient effect context with E.

Effect contexts given by absolute modalities percolate through the structure of a type:

▶ a function of type [E](A → B) may perform effects E when invoked

▶ elements of a list of type [E](List (A → B)) may perform effects E when invoked

Effect context abbreviations

Example:

eff Gen a = yield : a ↠ 1

▶ [Gen Int] denotes the modality [yield : Int ↠ 1]

▶ [Gen Int, E] denotes the modality [yield : Int ↠ 1, E]

Absolute modalities and higher-order functions
Iteration specialised to integer lists:

iter : []((Int → 1) → List Int → 1)
iter f nil = ()
iter f (cons x xs) = f x; iter f xs

Applying a pure higher-order function in an impure effect context:

⊢ iter (fun x → do yield (x + 42)) : 1 @ Gen Int

What happened? Bidirectional typing eliminates the [] modality of iter and then
upcasts its empty effect context to the singleton effect context Gen Int.

Terminology:
▶ Boxing = modality introduction
▶ Unboxing = modality elimination

In a conventional effect type system iter would be effect-polymorphic

iter : ∀ e . (Int
e−→ 1)

e−→ List Int
e−→ 1

Absolute modalities and higher-order functions
Iteration specialised to integer lists:

iter : []((Int → 1) → List Int → 1)
iter f nil = ()
iter f (cons x xs) = f x; iter f xs

Applying a pure higher-order function in an impure effect context:

⊢ iter (fun x → do yield (x + 42)) : 1 @ Gen Int

What happened? Bidirectional typing eliminates the [] modality of iter and then
upcasts its empty effect context to the singleton effect context Gen Int.

Terminology:
▶ Boxing = modality introduction
▶ Unboxing = modality elimination

In a conventional effect type system iter would be effect-polymorphic

iter : ∀ e . (Int
e−→ 1)

e−→ List Int
e−→ 1

Absolute modalities and higher-order functions
Iteration specialised to integer lists:

iter : []((Int → 1) → List Int → 1)
iter f nil = ()
iter f (cons x xs) = f x; iter f xs

Applying a pure higher-order function in an impure effect context:

⊢ iter (fun x → do yield (x + 42)) : 1 @ Gen Int

What happened? Bidirectional typing eliminates the [] modality of iter and then
upcasts its empty effect context to the singleton effect context Gen Int.

Terminology:
▶ Boxing = modality introduction
▶ Unboxing = modality elimination

In a conventional effect type system iter would be effect-polymorphic

iter : ∀ e . (Int
e−→ 1)

e−→ List Int
e−→ 1

Absolute modalities and higher-order functions
Iteration specialised to integer lists:

iter : []((Int → 1) → List Int → 1)
iter f nil = ()
iter f (cons x xs) = f x; iter f xs

Applying a pure higher-order function in an impure effect context:

⊢ iter (fun x → do yield (x + 42)) : 1 @ Gen Int

What happened? Bidirectional typing eliminates the [] modality of iter and then
upcasts its empty effect context to the singleton effect context Gen Int.

Terminology:
▶ Boxing = modality introduction
▶ Unboxing = modality elimination

In a conventional effect type system iter would be effect-polymorphic

iter : ∀ e . (Int
e−→ 1)

e−→ List Int
e−→ 1

Absolute modalities and higher-order functions
Iteration specialised to integer lists:

iter : []((Int → 1) → List Int → 1)
iter f nil = ()
iter f (cons x xs) = f x; iter f xs

Applying a pure higher-order function in an impure effect context:

⊢ iter (fun x → do yield (x + 42)) : 1 @ Gen Int

What happened? Bidirectional typing eliminates the [] modality of iter and then
upcasts its empty effect context to the singleton effect context Gen Int.

Terminology:
▶ Boxing = modality introduction
▶ Unboxing = modality elimination

In a conventional effect type system iter would be effect-polymorphic

iter : ∀ e . (Int
e−→ 1)

e−→ List Int
e−→ 1

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

What type should asList have?

[]((1 → 1) → List Int) ?

Unsound as it would allow us to write:

mismatch : [Gen String](String → List Int)
mismatch s = asList (fun () → do yield s)

String handled as Int!

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

What type should asList have?

[]((1 → 1) → List Int) ?

Unsound as it would allow us to write:

mismatch : [Gen String](String → List Int)
mismatch s = asList (fun () → do yield s)

String handled as Int!

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

What type should asList have?

[]((1 → 1) → List Int) ?

Unsound as it would allow us to write:

mismatch : [Gen String](String → List Int)
mismatch s = asList (fun () → do yield s)

String handled as Int!

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

What type should asList have?

[]((1 → 1) → List Int) ?

Unsound as it would allow us to write:

mismatch : [Gen String](String → List Int)
mismatch s = asList (fun () → do yield s)

String handled as Int!

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

What type should asList have?

[]((1 → 1) → List Int) ?

Unsound as it would allow us to write:

mismatch : [Gen String](String → List Int)
mismatch s = asList (fun () → do yield s)

String handled as Int!

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

What type should asList have?

[]([Gen Int](1 → 1) → List a) ?

Sound, but consider:

⊢ fun f︸︷︷︸
@ Gen Int

→ handle f ()︸ ︷︷ ︸
@ Gen Int, E

with asList f : [Gen Int](1 → 1︸ ︷︷ ︸
@ Gen Int

) → List Int @ E

Restriction to [Gen Int] severely hinders resuability

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

What type should asList have?

[]([Gen Int](1 → 1) → List a) ?

Sound, but consider:

⊢ fun f︸︷︷︸
@ Gen Int

→ handle f ()︸ ︷︷ ︸
@ Gen Int, E

with asList f : [Gen Int](1 → 1︸ ︷︷ ︸
@ Gen Int

) → List Int @ E

Restriction to [Gen Int] severely hinders resuability

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

What type should asList have?

[]([Gen Int](1 → 1) → List a) ?

Sound, but consider:

⊢ fun f︸︷︷︸
@ Gen Int

→ handle f ()︸ ︷︷ ︸
@ Gen Int, E

with asList f : [Gen Int](1 → 1︸ ︷︷ ︸
@ Gen Int

) → List Int @ E

Restriction to [Gen Int] severely hinders resuability

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

What type should asList have?

[]([Gen Int](1 → 1) → List a) ?

Sound, but consider:

⊢ fun f︸︷︷︸
@ Gen Int

→ handle f ()︸ ︷︷ ︸
@ Gen Int, E

with asList f : [Gen Int](1 → 1︸ ︷︷ ︸
@ Gen Int

) → List Int @ E

Restriction to [Gen Int] severely hinders resuability

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

What type should asList have?

[](<Gen Int>(1 → 1) → List a)

The relative modality <Gen Int> extends the ambient effect context.

⊢ fun f︸︷︷︸
@ Gen Int, E

→ handle f ()︸ ︷︷ ︸
@ Gen Int, E

with asList f : <Gen Int>(1 → 1︸ ︷︷ ︸
@ Gen Int, E

) → List Int @ E

Now the effect context of f is Gen Int, E.

In a conventional effect type system asList would be effect-polymorphic

asList : ∀ e . (1
Gen Int, e−−−−−−→ 1)

e−→ List Int

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

What type should asList have?

[](<Gen Int>(1 → 1) → List a)

The relative modality <Gen Int> extends the ambient effect context.

⊢ fun f︸︷︷︸
@ Gen Int, E

→ handle f ()︸ ︷︷ ︸
@ Gen Int, E

with asList f : <Gen Int>(1 → 1︸ ︷︷ ︸
@ Gen Int, E

) → List Int @ E

Now the effect context of f is Gen Int, E.

In a conventional effect type system asList would be effect-polymorphic

asList : ∀ e . (1
Gen Int, e−−−−−−→ 1)

e−→ List Int

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

What type should asList have?

[](<Gen Int>(1 → 1) → List a)

The relative modality <Gen Int> extends the ambient effect context.

⊢ fun f︸︷︷︸
@ Gen Int, E

→ handle f ()︸ ︷︷ ︸
@ Gen Int, E

with asList f : <Gen Int>(1 → 1︸ ︷︷ ︸
@ Gen Int, E

) → List Int @ E

Now the effect context of f is Gen Int, E.

In a conventional effect type system asList would be effect-polymorphic

asList : ∀ e . (1
Gen Int, e−−−−−−→ 1)

e−→ List Int

Coercions between modalities

Automatic unboxing in Metl allows values to be coerced between different modalities

We can extend an absolute modality:

⊢ fun f → f : [Gen Int](1 → 1︸ ︷︷ ︸
@ Gen Int

) → [Gen Int, Gen String](1 → 1︸ ︷︷ ︸
@ Gen Int, Gen String

) @ E

We cannot extend a relative modality in the same way:

⊬ fun f → f : <>(1 → 1︸ ︷︷ ︸
@ E

) → <Gen Int>(1 → 1︸ ︷︷ ︸
@ Gen Int, E

) @ E # Ill-typed

This would insert a fresh yield : Int ↠ 1 operation which may shadow other yield

operations in E, permitting bad programs like mismatch.

Coercions between modalities

Automatic unboxing in Metl allows values to be coerced between different modalities

We can extend an absolute modality:

⊢ fun f → f : [Gen Int](1 → 1︸ ︷︷ ︸
@ Gen Int

) → [Gen Int, Gen String](1 → 1︸ ︷︷ ︸
@ Gen Int, Gen String

) @ E

We cannot extend a relative modality in the same way:

⊬ fun f → f : <>(1 → 1︸ ︷︷ ︸
@ E

) → <Gen Int>(1 → 1︸ ︷︷ ︸
@ Gen Int, E

) @ E # Ill-typed

This would insert a fresh yield : Int ↠ 1 operation which may shadow other yield

operations in E, permitting bad programs like mismatch.

Coercions between modalities

Automatic unboxing in Metl allows values to be coerced between different modalities

We can extend an absolute modality:

⊢ fun f → f : [Gen Int](1 → 1︸ ︷︷ ︸
@ Gen Int

) → [Gen Int, Gen String](1 → 1︸ ︷︷ ︸
@ Gen Int, Gen String

) @ E

We cannot extend a relative modality in the same way:

⊬ fun f → f : <>(1 → 1︸ ︷︷ ︸
@ E

) → <Gen Int>(1 → 1︸ ︷︷ ︸
@ Gen Int, E

) @ E # Ill-typed

This would insert a fresh yield : Int ↠ 1 operation which may shadow other yield

operations in E, permitting bad programs like mismatch.

Coercions between modalities

An absolute modality can be coerced into the corresponding relative modality.

⊢ fun f → f : [Gen Int](1 → 1︸ ︷︷ ︸
@ Gen Int

) → <Gen Int>(1 → 1︸ ︷︷ ︸
@ Gen Int, E

) @ E

But the converse is not permitted

⊬ fun f → f : <Gen Int>(1 → 1︸ ︷︷ ︸
@ Gen Int, E

) → [Gen Int](1 → 1︸ ︷︷ ︸
@ Gen Int

) @ E # Ill-typed

as the argument may also use effects from the ambient effect context E.

Coercions between modalities

An absolute modality can be coerced into the corresponding relative modality.

⊢ fun f → f : [Gen Int](1 → 1︸ ︷︷ ︸
@ Gen Int

) → <Gen Int>(1 → 1︸ ︷︷ ︸
@ Gen Int, E

) @ E

But the converse is not permitted

⊬ fun f → f : <Gen Int>(1 → 1︸ ︷︷ ︸
@ Gen Int, E

) → [Gen Int](1 → 1︸ ︷︷ ︸
@ Gen Int

) @ E # Ill-typed

as the argument may also use effects from the ambient effect context E.

Composing handlers

State effect

eff State s = get : 1 ↠ s, put : s ↠ 1

A state handler (specialised to integer state)

state : [](<State Int>(1 → 1) → Int → 1)
state m = handle m () with
return x ⇒ fun s → x
get () r ⇒ fun s → r s s
put s’ r ⇒ fun s → r () s’

Composing handlers

State effect

eff State s = get : 1 ↠ s, put : s ↠ 1

A state handler (specialised to integer state)

state : [](<State Int>(1 → 1) → Int → 1)
state m = handle m () with
return x ⇒ fun s → x
get () r ⇒ fun s → r s s
put s’ r ⇒ fun s → r () s’

Composing handlers

Using integer state to write a generator that yields the prefix sum of a list

prefixSum : [Gen Int, State Int](List Int → 1)
prefixSum xs = iter (fun x → do put (do get () + x); do yield (do get ())) xs

We can now handle the operations of prefixSum by composing two handlers

> asList (fun () → state (fun () → prefixSum [3,1,4,1,5,9]) 0)
[3,4,8,9,14,23] : List Int

In a conventional effect system composing handlers requires effect polymorphism

asList : ∀ e . (1
Gen Int, e−−−−−−→ 1)

e−→ List Int

state : ∀ e . (1
State Int, e−−−−−−−→ 1)

e−→ Int
e−→ 1

Composing handlers

Using integer state to write a generator that yields the prefix sum of a list

prefixSum : [Gen Int, State Int](List Int → 1)
prefixSum xs = iter (fun x → do put (do get () + x); do yield (do get ())) xs

We can now handle the operations of prefixSum by composing two handlers

> asList (fun () → state (fun () → prefixSum [3,1,4,1,5,9]) 0)
[3,4,8,9,14,23] : List Int

In a conventional effect system composing handlers requires effect polymorphism

asList : ∀ e . (1
Gen Int, e−−−−−−→ 1)

e−→ List Int

state : ∀ e . (1
State Int, e−−−−−−−→ 1)

e−→ Int
e−→ 1

Composing handlers

Using integer state to write a generator that yields the prefix sum of a list

prefixSum : [Gen Int, State Int](List Int → 1)
prefixSum xs = iter (fun x → do put (do get () + x); do yield (do get ())) xs

We can now handle the operations of prefixSum by composing two handlers

> asList (fun () → state (fun () → prefixSum [3,1,4,1,5,9]) 0)
[3,4,8,9,14,23] : List Int

In a conventional effect system composing handlers requires effect polymorphism

asList : ∀ e . (1
Gen Int, e−−−−−−→ 1)

e−→ List Int

state : ∀ e . (1
State Int, e−−−−−−−→ 1)

e−→ Int
e−→ 1

Storing effectful functions
First-order cooperative concurrency effect

eff Coop = suspend : 1 ↠ 1, ufork : 1 ↠ Bool

Recursive data type of cooperative processes

data Proc = proc (List Proc → 1)

push : [](Proc → List Proc → List Proc)
push x xs = xs ++ cons x nil

next : [](List Proc → 1)
next q = case q of
nil → ()
cons (proc p) ps → p ps

Scheduler parameterised by a list of suspended processes.

schedule : [](<Coop>(1 → 1) → List Proc → 1)
schedule m = handle m () with
return () ⇒ fun q → next q
suspend () r ⇒ fun q → next (push (proc (r ())) q)
ufork () r ⇒ fun q → r true (push (proc (r false)) q)

In a conventional effect system storing effectful functions requires effect polymorphism

data Proc e = proc (List Proc
e−→ 1)

schedule : ∀ e . (1
Coop, e−−−−→ 1)

e−→ List (Proc e)
e−→ 1

Storing effectful functions
First-order cooperative concurrency effect

eff Coop = suspend : 1 ↠ 1, ufork : 1 ↠ Bool

Recursive data type of cooperative processes

data Proc = proc (List Proc → 1)

push : [](Proc → List Proc → List Proc)
push x xs = xs ++ cons x nil

next : [](List Proc → 1)
next q = case q of
nil → ()
cons (proc p) ps → p ps

Scheduler parameterised by a list of suspended processes.

schedule : [](<Coop>(1 → 1) → List Proc → 1)
schedule m = handle m () with
return () ⇒ fun q → next q
suspend () r ⇒ fun q → next (push (proc (r ())) q)
ufork () r ⇒ fun q → r true (push (proc (r false)) q)

In a conventional effect system storing effectful functions requires effect polymorphism

data Proc e = proc (List Proc
e−→ 1)

schedule : ∀ e . (1
Coop, e−−−−→ 1)

e−→ List (Proc e)
e−→ 1

Storing effectful functions
First-order cooperative concurrency effect

eff Coop = suspend : 1 ↠ 1, ufork : 1 ↠ Bool

Recursive data type of cooperative processes

data Proc = proc (List Proc → 1)

push : [](Proc → List Proc → List Proc)
push x xs = xs ++ cons x nil

next : [](List Proc → 1)
next q = case q of
nil → ()
cons (proc p) ps → p ps

Scheduler parameterised by a list of suspended processes.

schedule : [](<Coop>(1 → 1) → List Proc → 1)
schedule m = handle m () with
return () ⇒ fun q → next q
suspend () r ⇒ fun q → next (push (proc (r ())) q)
ufork () r ⇒ fun q → r true (push (proc (r false)) q)

In a conventional effect system storing effectful functions requires effect polymorphism

data Proc e = proc (List Proc
e−→ 1)

schedule : ∀ e . (1
Coop, e−−−−→ 1)

e−→ List (Proc e)
e−→ 1

Storing effectful functions
First-order cooperative concurrency effect

eff Coop = suspend : 1 ↠ 1, ufork : 1 ↠ Bool

Recursive data type of cooperative processes

data Proc = proc (List Proc → 1)

push : [](Proc → List Proc → List Proc)
push x xs = xs ++ cons x nil

next : [](List Proc → 1)
next q = case q of
nil → ()
cons (proc p) ps → p ps

Scheduler parameterised by a list of suspended processes.

schedule : [](<Coop>(1 → 1) → List Proc → 1)
schedule m = handle m () with
return () ⇒ fun q → next q
suspend () r ⇒ fun q → next (push (proc (r ())) q)
ufork () r ⇒ fun q → r true (push (proc (r false)) q)

In a conventional effect system storing effectful functions requires effect polymorphism

data Proc e = proc (List Proc
e−→ 1)

schedule : ∀ e . (1
Coop, e−−−−→ 1)

e−→ List (Proc e)
e−→ 1

Masking
Using a generator to find an integer satisfying a predicate

findWrong : []((Int → Bool) → List Int → Maybe Int) # ill-typed
findWrong p xs =
handle (iter (fun x → if p x then do yield x) xs) with

return _ ⇒ nothing
yield x _ ⇒ just x

Unsound to invoke p in the scope of the handler — would accidentally handle any yield
operations performed by p

⊢ ... handle (iter (fun x → if (p x)︸ ︷︷ ︸
@ Gen Int, E

then do yield x) xs) with ... : _ @ E

Changing the type of p to <Gen Int>(Int → Bool) fixes the type error but leaks the
implementation detail that findWrong uses yield

Masking solves the problem

⊢ ... handle (iter (fun x → if mask<yield>(p x)︸ ︷︷ ︸
@ E

...) with ... : _ @ E

Masking
Using a generator to find an integer satisfying a predicate

findWrong : []((Int → Bool) → List Int → Maybe Int) # ill-typed
findWrong p xs =
handle (iter (fun x → if p x then do yield x) xs) with

return _ ⇒ nothing
yield x _ ⇒ just x

Unsound to invoke p in the scope of the handler — would accidentally handle any yield
operations performed by p

⊢ ... handle (iter (fun x → if (p x)︸ ︷︷ ︸
@ Gen Int, E

then do yield x) xs) with ... : _ @ E

Changing the type of p to <Gen Int>(Int → Bool) fixes the type error but leaks the
implementation detail that findWrong uses yield

Masking solves the problem

⊢ ... handle (iter (fun x → if mask<yield>(p x)︸ ︷︷ ︸
@ E

...) with ... : _ @ E

Masking
Using a generator to find an integer satisfying a predicate

findWrong : []((Int → Bool) → List Int → Maybe Int) # ill-typed
findWrong p xs =
handle (iter (fun x → if p x then do yield x) xs) with

return _ ⇒ nothing
yield x _ ⇒ just x

Unsound to invoke p in the scope of the handler — would accidentally handle any yield
operations performed by p

⊢ ... handle (iter (fun x → if (p x)︸ ︷︷ ︸
@ Gen Int, E

then do yield x) xs) with ... : _ @ E

Changing the type of p to <Gen Int>(Int → Bool) fixes the type error but leaks the
implementation detail that findWrong uses yield

Masking solves the problem

⊢ ... handle (iter (fun x → if mask<yield>(p x)︸ ︷︷ ︸
@ E

...) with ... : _ @ E

Masking
Using a generator to find an integer satisfying a predicate

findWrong : []((Int → Bool) → List Int → Maybe Int) # ill-typed
findWrong p xs =
handle (iter (fun x → if p x then do yield x) xs) with

return _ ⇒ nothing
yield x _ ⇒ just x

Unsound to invoke p in the scope of the handler — would accidentally handle any yield
operations performed by p

⊢ ... handle (iter (fun x → if (p x)︸ ︷︷ ︸
@ Gen Int, E

then do yield x) xs) with ... : _ @ E

Changing the type of p to <Gen Int>(Int → Bool) fixes the type error but leaks the
implementation detail that findWrong uses yield

Masking solves the problem

⊢ ... handle (iter (fun x → if mask<yield>(p x)︸ ︷︷ ︸
@ E

...) with ... : _ @ E

Masking

mask<yield>(M) masks yield from the ambient effect context for M.

mask<yield>(p x) initially returns a value of type <yield|>Bool instead of Bool, where
<yield|> is a relative modality masking yield from the ambient effect context.

General form <L|D> specifies a transformation on effect contexts where:

▶ L is a row of effect labels that are removed from the effect context

▶ D is a row of effects that are added to the effect context

<D> is shorthand for <|D>

Masking

mask<yield>(M) masks yield from the ambient effect context for M.

mask<yield>(p x) initially returns a value of type <yield|>Bool instead of Bool, where
<yield|> is a relative modality masking yield from the ambient effect context.

General form <L|D> specifies a transformation on effect contexts where:

▶ L is a row of effect labels that are removed from the effect context

▶ D is a row of effects that are added to the effect context

<D> is shorthand for <|D>

Masking

mask<yield>(M) masks yield from the ambient effect context for M.

mask<yield>(p x) initially returns a value of type <yield|>Bool instead of Bool, where
<yield|> is a relative modality masking yield from the ambient effect context.

General form <L|D> specifies a transformation on effect contexts where:

▶ L is a row of effect labels that are removed from the effect context

▶ D is a row of effects that are added to the effect context

<D> is shorthand for <|D>

Masking

mask<yield>(M) masks yield from the ambient effect context for M.

mask<yield>(p x) initially returns a value of type <yield|>Bool instead of Bool, where
<yield|> is a relative modality masking yield from the ambient effect context.

General form <L|D> specifies a transformation on effect contexts where:

▶ L is a row of effect labels that are removed from the effect context

▶ D is a row of effects that are added to the effect context

<D> is shorthand for <|D>

Kinds

State handler for 1 → 1 computations

state’ : [](<State Int>(1 → (1 → 1)) → Int → (1 → 1))

Unsound as this type allows effects to leak

state’ (fun () → fun () → do put (do get () + 42)) 0 : 1 → 1

return clause of state’ lets fun () → do put (do get () + 42) escape scope of handler

Sound type signature

state’ : [](<State Int>(1 → (1 → 1)) → Int → <State Int>(1 → 1))

state versus state’:

state : [](<State Int>(1 → 1) → Int → 1)
state’ : [](<State Int>(1 → (1 → 1)) → Int → <State Int>(1 → 1))

▶ state cannot leak the state effect

▶ state’ can leak the state effect

Kinds

State handler for 1 → 1 computations

state’ : [](<State Int>(1 → (1 → 1)) → Int → (1 → 1))

Unsound as this type allows effects to leak

state’ (fun () → fun () → do put (do get () + 42)) 0 : 1 → 1

return clause of state’ lets fun () → do put (do get () + 42) escape scope of handler

Sound type signature

state’ : [](<State Int>(1 → (1 → 1)) → Int → <State Int>(1 → 1))

state versus state’:

state : [](<State Int>(1 → 1) → Int → 1)
state’ : [](<State Int>(1 → (1 → 1)) → Int → <State Int>(1 → 1))

▶ state cannot leak the state effect

▶ state’ can leak the state effect

Kinds

State handler for 1 → 1 computations

state’ : [](<State Int>(1 → (1 → 1)) → Int → (1 → 1))

Unsound as this type allows effects to leak

state’ (fun () → fun () → do put (do get () + 42)) 0 : 1 → 1

return clause of state’ lets fun () → do put (do get () + 42) escape scope of handler

Sound type signature

state’ : [](<State Int>(1 → (1 → 1)) → Int → <State Int>(1 → 1))

state versus state’:

state : [](<State Int>(1 → 1) → Int → 1)
state’ : [](<State Int>(1 → (1 → 1)) → Int → <State Int>(1 → 1))

▶ state cannot leak the state effect

▶ state’ can leak the state effect

Kinds

State handler for 1 → 1 computations

state’ : [](<State Int>(1 → (1 → 1)) → Int → (1 → 1))

Unsound as this type allows effects to leak

state’ (fun () → fun () → do put (do get () + 42)) 0 : 1 → 1

return clause of state’ lets fun () → do put (do get () + 42) escape scope of handler

Sound type signature

state’ : [](<State Int>(1 → (1 → 1)) → Int → <State Int>(1 → 1))

state versus state’:

state : [](<State Int>(1 → 1) → Int → 1)
state’ : [](<State Int>(1 → (1 → 1)) → Int → <State Int>(1 → 1))

▶ state cannot leak the state effect

▶ state’ can leak the state effect

Kinds

State handler for 1 → 1 computations

state’ : [](<State Int>(1 → (1 → 1)) → Int → (1 → 1))

Unsound as this type allows effects to leak

state’ (fun () → fun () → do put (do get () + 42)) 0 : 1 → 1

return clause of state’ lets fun () → do put (do get () + 42) escape scope of handler

Sound type signature

state’ : [](<State Int>(1 → (1 → 1)) → Int → <State Int>(1 → 1))

state versus state’:

state : [](<State Int>(1 → 1) → Int → 1)
state’ : [](<State Int>(1 → (1 → 1)) → Int → <State Int>(1 → 1))

▶ state cannot leak the state effect

▶ state’ can leak the state effect

Kinds

▶ Absolute types formed only from base types and types boxed by an absolute
modality cannot leak effects

▶ Unrestricted types may include functions not boxed by an absolute modality so
may leak effects

Kinds:

▶ Abs classifies absolute types

▶ Any classifies unrestricted types

Subkinding allows absolute types to be treated as unrestricted

Kinds

▶ Absolute types formed only from base types and types boxed by an absolute
modality cannot leak effects

▶ Unrestricted types may include functions not boxed by an absolute modality so
may leak effects

Kinds:

▶ Abs classifies absolute types

▶ Any classifies unrestricted types

Subkinding allows absolute types to be treated as unrestricted

Kinds

▶ Absolute types formed only from base types and types boxed by an absolute
modality cannot leak effects

▶ Unrestricted types may include functions not boxed by an absolute modality so
may leak effects

Kinds:

▶ Abs classifies absolute types

▶ Any classifies unrestricted types

Subkinding allows absolute types to be treated as unrestricted

Type polymorphism

Polymorphic version of iter

iter : ∀ a . []((a → 1) → List a → 1)
iter {a} f nil = ()
iter {a} f (cons x xs) = f x; iter {a} f xs

Explicit type abstractions and type applications in braces.

Two possible polymorphic types for handling state

state : ∀ [a] . [](<State Int>(1 → a) → Int → a)
state’ : ∀ a . [](<State Int>(1 → a) → Int → <State Int>a)

▶ ∀ [a] ascribes kind Abs to a, allowing values of type a to escape the handler.

▶ ∀ a ascribes kind Any to a, not allowing values of type a to escape the handler.

Using η-expansion we can coerce state’ to have the type of state

⊢ fun {a} m s → state’ {a} m s : ∀ [a] . [](<State Int>(1 → a) → Int → a) @ .

Type polymorphism

Polymorphic version of iter

iter : ∀ a . []((a → 1) → List a → 1)
iter {a} f nil = ()
iter {a} f (cons x xs) = f x; iter {a} f xs

Explicit type abstractions and type applications in braces.

Two possible polymorphic types for handling state

state : ∀ [a] . [](<State Int>(1 → a) → Int → a)
state’ : ∀ a . [](<State Int>(1 → a) → Int → <State Int>a)

▶ ∀ [a] ascribes kind Abs to a, allowing values of type a to escape the handler.

▶ ∀ a ascribes kind Any to a, not allowing values of type a to escape the handler.

Using η-expansion we can coerce state’ to have the type of state

⊢ fun {a} m s → state’ {a} m s : ∀ [a] . [](<State Int>(1 → a) → Int → a) @ .

Type polymorphism

Polymorphic version of iter

iter : ∀ a . []((a → 1) → List a → 1)
iter {a} f nil = ()
iter {a} f (cons x xs) = f x; iter {a} f xs

Explicit type abstractions and type applications in braces.

Two possible polymorphic types for handling state

state : ∀ [a] . [](<State Int>(1 → a) → Int → a)
state’ : ∀ a . [](<State Int>(1 → a) → Int → <State Int>a)

▶ ∀ [a] ascribes kind Abs to a, allowing values of type a to escape the handler.

▶ ∀ a ascribes kind Any to a, not allowing values of type a to escape the handler.

Using η-expansion we can coerce state’ to have the type of state

⊢ fun {a} m s → state’ {a} m s : ∀ [a] . [](<State Int>(1 → a) → Int → a) @ .

The kind restriction on effects

Operation arguments and results are restricted to be absolute.

If we allowed leak : (1 → 1) ↠ 1, then we could write the following program

handle asList (fun () → do leak (fun () → do yield 42)) with
return _ ⇒ fun () ⇒ 37
leak p _ ⇒ p

which leaks the yield operation

The kind restriction on effects

Operation arguments and results are restricted to be absolute.

If we allowed leak : (1 → 1) ↠ 1, then we could write the following program

handle asList (fun () → do leak (fun () → do yield 42)) with
return _ ⇒ fun () ⇒ 37
leak p _ ⇒ p

which leaks the yield operation

Effect polymorphism

Higher-order cooperative concurrency effect

eff Coop = fork : [Coop](1 → 1) ↠ 1, suspend : 1 ↠ 1

But the argument type of fork is absolute so cannot support other effects!

Metl includes effect polymorphism to support higher-order operations like fork

eff Coop e = fork : [Coop e, e](1 → 1) ↠ 1, suspend : 1 ↠ 1

Effect variables are only needed for use-cases such as higher-order effects where a
computation must be stored for use in an effect context different from the ambient one.

Effect polymorphism

Higher-order cooperative concurrency effect

eff Coop = fork : [Coop](1 → 1) ↠ 1, suspend : 1 ↠ 1

But the argument type of fork is absolute so cannot support other effects!

Metl includes effect polymorphism to support higher-order operations like fork

eff Coop e = fork : [Coop e, e](1 → 1) ↠ 1, suspend : 1 ↠ 1

Effect variables are only needed for use-cases such as higher-order effects where a
computation must be stored for use in an effect context different from the ambient one.

Effect polymorphism

Higher-order cooperative concurrency effect

eff Coop = fork : [Coop](1 → 1) ↠ 1, suspend : 1 ↠ 1

But the argument type of fork is absolute so cannot support other effects!

Metl includes effect polymorphism to support higher-order operations like fork

eff Coop e = fork : [Coop e, e](1 → 1) ↠ 1, suspend : 1 ↠ 1

Effect variables are only needed for use-cases such as higher-order effects where a
computation must be stored for use in an effect context different from the ambient one.

In the paper

Modal effect types — https://arxiv.org/abs/2407.11816

Met

▶ simply-typed multimodal core calculus with effects

▶ type system, operational semantics, type soundness, effect safety

▶ extensions: sums and products (crisp elimination), type and effect polymorphism

F1
eff

▶ restricted core calculus of polymorphic effect types

▶ restriction: each scope can only refer to the lexically closest effect variables

▶ encoding of F1
eff in Met

Metl: simple bidirectional type checking for Met

▶ infers all introduction and elimination of modalities

▶ analogous to generalisation and instantiation

https://arxiv.org/abs/2407.11816

