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Effect polymorphism

But Frank’s syntactic sugar is fragile.

For instance, consider a yield effect and a generator iterating over a list.

gen : List Int
yield−−−→ 1

gen xs = map (fun x → do yield x) xs; ()

If we forget the annotation on the arrow then Frank gives the following error message.

cannot unify effects e and yield, £

Can we do better?
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From function arrows to effect contexts

Conventional effect typing — function arrows are annotated with effects

⊢ fun (f, x) → f x : ((Int
E−→ 1) × Int)

E−→ 1

Modal effect typing — ambient effect context determines effects
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Effects contexts

An effect context E is a row of typed operations

Example: get : 1 ↠ Int, put : Int ↠ 1

Effect context rows are scoped (as in Frank and Koka)

▶ repeats are allowed (same name but possibly different signatures)

▶ order of repeated operations matters

▶ relative order of distinct operations does not matter
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Metl — surface language for Met with: bidirectional typing for inferring introduction
and elimination of modalities + algebraic data types + polymorphism

Almost all examples in this talk use the simply-typed fragment of Metl
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Overriding the ambient context with absolute modalities

⊢ fun x → do yield (x + 42)︸ ︷︷ ︸
@ yield : Int ↠ 1

: [yield : Int ↠ 1]( Int → 1︸ ︷︷ ︸
@ yield : Int ↠ 1

) @ .

The absolute modality [yield : Int ↠ 1] overrides the empty ambient effect context
(.) in the function body enabling the yield operation to be performed.

In general [E] overrides the ambient effect context with E.

Effect contexts given by absolute modalities percolate through the structure of a type:

▶ a function of type [E](A → B) may perform effects E when invoked

▶ elements of a list of type [E](List (A → B)) may perform effects E when invoked
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Effect context abbreviations

Example:

eff Gen a = yield : a ↠ 1

▶ [Gen Int] denotes the modality [yield : Int ↠ 1]

▶ [Gen Int, E] denotes the modality [yield : Int ↠ 1, E]



Absolute modalities and higher-order functions
Iteration specialised to integer lists:

iter : []((Int → 1) → List Int → 1)
iter f nil = ()
iter f (cons x xs) = f x; iter f xs

Applying a pure higher-order function in an impure effect context:

⊢ iter (fun x → do yield (x + 42)) : 1 @ Gen Int

What happened? Bidirectional typing eliminates the [] modality of iter and then
upcasts its empty effect context to the singleton effect context Gen Int.

Terminology:
▶ Boxing = modality introduction
▶ Unboxing = modality elimination

In a conventional effect type system iter would be effect-polymorphic

iter : ∀ e . (Int
e−→ 1)

e−→ List Int
e−→ 1
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Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

What type should asList have?

[]((1 → 1) → List Int) ?

Unsound as it would allow us to write:

mismatch : [Gen String](String → List Int)
mismatch s = asList (fun () → do yield s)

String handled as Int!
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Coercions between modalities

Automatic unboxing in Metl allows values to be coerced between different modalities

We can extend an absolute modality:

⊢ fun f → f : [Gen Int](1 → 1︸ ︷︷ ︸
@ Gen Int

) → [Gen Int, Gen String]( 1 → 1︸ ︷︷ ︸
@ Gen Int, Gen String

) @ E

We cannot extend a relative modality in the same way:

⊬ fun f → f : <>(1 → 1︸ ︷︷ ︸
@ E

) → <Gen Int>( 1 → 1︸ ︷︷ ︸
@ Gen Int, E

) @ E # Ill-typed

This would insert a fresh yield : Int ↠ 1 operation which may shadow other yield

operations in E, permitting bad programs like mismatch.
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Composing handlers

State effect

eff State s = get : 1 ↠ s, put : s ↠ 1

A state handler (specialised to integer state)

state : [](<State Int>(1 → 1) → Int → 1)
state m = handle m () with
return x ⇒ fun s → x
get () r ⇒ fun s → r s s
put s’ r ⇒ fun s → r () s’
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Composing handlers

Using integer state to write a generator that yields the prefix sum of a list

prefixSum : [Gen Int, State Int](List Int → 1)
prefixSum xs = iter (fun x → do put (do get () + x); do yield (do get ())) xs

We can now handle the operations of prefixSum by composing two handlers

> asList (fun () → state (fun () → prefixSum [3,1,4,1,5,9]) 0)
# [3,4,8,9,14,23] : List Int

In a conventional effect system composing handlers requires effect polymorphism

asList : ∀ e . (1
Gen Int, e−−−−−−→ 1)

e−→ List Int

state : ∀ e . (1
State Int, e−−−−−−−→ 1)

e−→ Int
e−→ 1
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Storing effectful functions
First-order cooperative concurrency effect

eff Coop = suspend : 1 ↠ 1, ufork : 1 ↠ Bool

Recursive data type of cooperative processes

data Proc = proc (List Proc → 1)

push : [](Proc → List Proc → List Proc)
push x xs = xs ++ cons x nil

next : [](List Proc → 1)
next q = case q of
nil → ()
cons (proc p) ps → p ps

Scheduler parameterised by a list of suspended processes.

schedule : [](<Coop>(1 → 1) → List Proc → 1)
schedule m = handle m () with
return () ⇒ fun q → next q
suspend () r ⇒ fun q → next (push (proc (r ())) q)
ufork () r ⇒ fun q → r true (push (proc (r false)) q)

In a conventional effect system storing effectful functions requires effect polymorphism

data Proc e = proc (List Proc
e−→ 1)

schedule : ∀ e . (1
Coop, e−−−−→ 1)

e−→ List (Proc e)
e−→ 1
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schedule : [](<Coop>(1 → 1) → List Proc → 1)
schedule m = handle m () with
return () ⇒ fun q → next q
suspend () r ⇒ fun q → next (push (proc (r ())) q)
ufork () r ⇒ fun q → r true (push (proc (r false)) q)

In a conventional effect system storing effectful functions requires effect polymorphism

data Proc e = proc (List Proc
e−→ 1)

schedule : ∀ e . (1
Coop, e−−−−→ 1)

e−→ List (Proc e)
e−→ 1
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Masking
Using a generator to find an integer satisfying a predicate

findWrong : []((Int → Bool) → List Int → Maybe Int) # ill-typed
findWrong p xs =
handle (iter (fun x → if p x then do yield x) xs) with

return _ ⇒ nothing
yield x _ ⇒ just x

Unsound to invoke p in the scope of the handler — would accidentally handle any yield
operations performed by p

⊢ ... handle (iter (fun x → if (p x)︸ ︷︷ ︸
@ Gen Int, E

then do yield x) xs) with ... : _ @ E

Changing the type of p to <Gen Int>(Int → Bool) fixes the type error but leaks the
implementation detail that findWrong uses yield

Masking solves the problem

⊢ ... handle (iter (fun x → if mask<yield>(p x)︸ ︷︷ ︸
@ E

... ) with ... : _ @ E
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Masking

mask<yield>(M) masks yield from the ambient effect context for M.

mask<yield>(p x) initially returns a value of type <yield|>Bool instead of Bool, where
<yield|> is a relative modality masking yield from the ambient effect context.

General form <L|D> specifies a transformation on effect contexts where:

▶ L is a row of effect labels that are removed from the effect context

▶ D is a row of effects that are added to the effect context

<D> is shorthand for <|D>
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Kinds

State handler for 1 → 1 computations

state’ : [](<State Int>(1 → (1 → 1)) → Int → (1 → 1))

Unsound as this type allows effects to leak

state’ (fun () → fun () → do put (do get () + 42)) 0 : 1 → 1

return clause of state’ lets fun () → do put (do get () + 42) escape scope of handler

Sound type signature

state’ : [](<State Int>(1 → (1 → 1)) → Int → <State Int>(1 → 1))

state versus state’:

state : [](<State Int>(1 → 1) → Int → 1)
state’ : [](<State Int>(1 → (1 → 1)) → Int → <State Int>(1 → 1))

▶ state cannot leak the state effect

▶ state’ can leak the state effect
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Kinds

▶ Absolute types formed only from base types and types boxed by an absolute
modality cannot leak effects

▶ Unrestricted types may include functions not boxed by an absolute modality so
may leak effects

Kinds:

▶ Abs classifies absolute types

▶ Any classifies unrestricted types

Subkinding allows absolute types to be treated as unrestricted
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Type polymorphism

Polymorphic version of iter

iter : ∀ a . []((a → 1) → List a → 1)
iter {a} f nil = ()
iter {a} f (cons x xs) = f x; iter {a} f xs

Explicit type abstractions and type applications in braces.

Two possible polymorphic types for handling state

state : ∀ [a] . [](<State Int>(1 → a) → Int → a)
state’ : ∀ a . [](<State Int>(1 → a) → Int → <State Int>a)

▶ ∀ [a] ascribes kind Abs to a, allowing values of type a to escape the handler.

▶ ∀ a ascribes kind Any to a, not allowing values of type a to escape the handler.

Using η-expansion we can coerce state’ to have the type of state

⊢ fun {a} m s → state’ {a} m s : ∀ [a] . [](<State Int>(1 → a) → Int → a) @ .
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The kind restriction on effects

Operation arguments and results are restricted to be absolute.

If we allowed leak : (1 → 1) ↠ 1, then we could write the following program

handle asList (fun () → do leak (fun () → do yield 42)) with
return _ ⇒ fun () ⇒ 37
leak p _ ⇒ p

which leaks the yield operation



The kind restriction on effects

Operation arguments and results are restricted to be absolute.

If we allowed leak : (1 → 1) ↠ 1, then we could write the following program

handle asList (fun () → do leak (fun () → do yield 42)) with
return _ ⇒ fun () ⇒ 37
leak p _ ⇒ p

which leaks the yield operation



Effect polymorphism

Higher-order cooperative concurrency effect

eff Coop = fork : [Coop](1 → 1) ↠ 1, suspend : 1 ↠ 1

But the argument type of fork is absolute so cannot support other effects!

Metl includes effect polymorphism to support higher-order operations like fork

eff Coop e = fork : [Coop e, e](1 → 1) ↠ 1, suspend : 1 ↠ 1

Effect variables are only needed for use-cases such as higher-order effects where a
computation must be stored for use in an effect context different from the ambient one.
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In the paper

Modal effect types — https://arxiv.org/abs/2407.11816

Met

▶ simply-typed multimodal core calculus with effects

▶ type system, operational semantics, type soundness, effect safety

▶ extensions: sums and products (crisp elimination), type and effect polymorphism

F1
eff

▶ restricted core calculus of polymorphic effect types

▶ restriction: each scope can only refer to the lexically closest effect variables

▶ encoding of F1
eff in Met

Metl: simple bidirectional type checking for Met

▶ infers all introduction and elimination of modalities

▶ analogous to generalisation and instantiation

https://arxiv.org/abs/2407.11816

