Modal effect types

Sam Lindley

The University of Edinburgh

FATA Seminar, Glasgow, 18th March 2025

Joint work with Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Anton Lorentzen

A prototypical pure higher-order function:

map : \forall a b.(a \rightarrow b) \rightarrow List a \rightarrow List b

A prototypical pure higher-order function:

map : \forall a b.(a \rightarrow b) \rightarrow List a \rightarrow List b

We can only pass pure functions to map.

An effect-polymorphic version:

map' : \forall a b e.(a \xrightarrow{e} b) \xrightarrow{e} List a \xrightarrow{e} List b

A prototypical pure higher-order function:

map : \forall a b.(a \rightarrow b) \rightarrow List a \rightarrow List b

We can only pass pure functions to map.

An effect-polymorphic version:

map' : \forall a b e.(a \xrightarrow{e} b) \xrightarrow{e} List a \xrightarrow{e} List b

Is this really necessary?

A prototypical pure higher-order function:

map : \forall a b.(a \rightarrow b) \rightarrow List a \rightarrow List b

We can only pass pure functions to map.

An effect-polymorphic version:

map' : \forall a b e.(a \xrightarrow{e} b) \xrightarrow{e} List a \xrightarrow{e} List b

Is this really necessary?

No! In Frank the signature of map is syntactic sugar for the signature of map'.

A prototypical pure higher-order function:

map : \forall a b.(a \rightarrow b) \rightarrow List a \rightarrow List b

We can only pass pure functions to map.

An effect-polymorphic version:

map' : \forall a b e.(a \xrightarrow{e} b) \xrightarrow{e} List a \xrightarrow{e} List b

Is this really necessary?

No! In Frank the signature of map is syntactic sugar for the signature of map'.

Key observation: almost always we need only one effect variable in a type signature

But Frank's syntactic sugar is fragile.

But Frank's syntactic sugar is fragile.

For instance, consider a generator iterating over a list:

```
eff Gen a = yield: a \rightarrow 1
gen : List Int \xrightarrow{\text{Gen Int}} 1
gen xs = map (fun x \rightarrow do yield x) xs; ()
```

(adjusting concrete Frank syntax for consistency with the rest of the talk)

But Frank's syntactic sugar is fragile.

For instance, consider a generator iterating over a list:

```
eff Gen a = yield: a \rightarrow 1
gen : List Int \xrightarrow{\text{Gen Int}} 1
gen xs = map (fun x \rightarrow do yield x) xs; ()
```

(adjusting concrete Frank syntax for consistency with the rest of the talk)

If we forget the annotation on the arrow then Frank gives the following error message. cannot unify effects e and Gen Int, £

But Frank's syntactic sugar is fragile.

For instance, consider a generator iterating over a list:

```
eff Gen a = yield: a \rightarrow 1
gen : List Int \xrightarrow{\text{Gen Int}} 1
gen xs = map (fun x \rightarrow do yield x) xs; ()
```

(adjusting concrete Frank syntax for consistency with the rest of the talk)

If we forget the annotation on the arrow then Frank gives the following error message. cannot unify effects e and Gen Int, £

Can we do better?

From function arrows to effect contexts

Conventional effect typing — function arrows are annotated with effects

 $\vdash \text{ fun (f, x)} \rightarrow \text{ f x : ((Int \xrightarrow{E} 1) \times Int)} \xrightarrow{E} 1$

From function arrows to effect contexts

Conventional effect typing — function arrows are annotated with effects

 $\vdash \text{ fun (f, x)} \rightarrow \text{ f x : ((Int \xrightarrow{E} 1) \times Int)} \xrightarrow{E} 1$

Modal effect typing — ambient effect context determines effects

 $\vdash \quad \texttt{fun} \ (\underbrace{\mathbf{f}}_{\mathbb{Q} \ \mathbb{E}}, \ \mathtt{x}) \ \underbrace{\rightarrow \ \mathbf{f} \ \mathtt{x}}_{\mathbb{Q} \ \mathbb{E}} \ : \ ((\underbrace{\texttt{Int} \ \rightarrow \ 1}_{\mathbb{Q} \ \mathbb{E}}) \ \times \ \texttt{Int}) \ \underbrace{\rightarrow \ 1}_{\mathbb{Q} \ \mathbb{E}} \ \mathbb{C} \ \mathbb{E}$

An effect context E is a row of typed operations

An effect context E is a row of typed operations

```
Example: get:1 ->> Int, put:Int ->> 1
```

An effect context E is a row of typed operations

```
Example: get:1 ->> Int, put:Int ->> 1
```

Effect context rows are scoped (as in Frank and Koka)

- repeats are allowed (same name but possibly different signatures)
- order of repeated operations matters
- relative order of distinct operations does not matter

Modal effect types

A mode is an effect context

A modality is a transformation from one mode to another

Modal effect types

A mode is an effect context

A modality is a transformation from one mode to another

 Met — simply-typed core calculus of modal effect types

A mode is an effect context

A modality is a transformation from one mode to another

 Met — simply-typed core calculus of modal effect types

 $\rm Metc}$ — surface language for $\rm Metc$ with: bidirectional typing for inferring introduction and elimination of modalities + algebraic data types + polymorphism

A mode is an effect context

A modality is a transformation from one mode to another

 Met — simply-typed core calculus of modal effect types

 $\rm Metc}$ — surface language for $\rm Metc}$ with: bidirectional typing for inferring introduction and elimination of modalities + algebraic data types + polymorphism

Almost all examples in this talk use the simply-typed fragment of Metl

$$\vdash \text{ fun } x \rightarrow \underbrace{\text{do yield } (x + 42)}_{\text{@ yield:Int } \rightarrow 1} : (\underbrace{\text{Int} \rightarrow 1}_{\text{@ yield:Int } \rightarrow 1}) \text{@ yield:Int } \rightarrow 1$$

$$\vdash \text{ fun } x \to \underbrace{\text{do yield } (x + 42)}_{@ \text{ yield:Int } \rightarrow 1} : (\underbrace{\text{ Int } \rightarrow 1}_{@ \text{ yield:Int } \rightarrow 1}) @ \text{ yield:Int } \rightarrow 1$$

$$\vdash \text{ fun } x \to \underbrace{\text{do yield } (x + 42)}_{@ \text{ yield:Int } \rightarrow 1} : [\text{yield:Int } \rightarrow 1](\underbrace{\text{ Int } \rightarrow 1}_{@ \text{ yield:Int } \rightarrow 1}) @$$

.

$$\vdash \text{ fun } x \rightarrow \underbrace{\text{do yield } (x + 42)}_{\text{@ yield:Int } \rightarrow 1} : (\underbrace{\text{Int} \rightarrow 1}_{\text{@ yield:Int } \rightarrow 1}) \text{@ yield:Int } \rightarrow 1$$

$$\vdash \text{ fun } x \rightarrow \underbrace{\text{do yield } (x + 42)}_{\text{@ yield:Int } \rightarrow 1} : [\text{yield:Int } \rightarrow 1](\underbrace{\text{Int} \rightarrow 1}_{\text{@ yield:Int } \rightarrow 1}) \text{@}$$

The **absolute modality** [yield:Int ->> 1] **overrides** the empty ambient effect context (.) in the function body enabling the yield operation to be performed.

.

$$\vdash \text{ fun } x \rightarrow \underbrace{\text{do yield } (x + 42)}_{@ \text{ yield:Int } \rightarrow 1} : (\underbrace{\text{Int } \rightarrow 1}_{@ \text{ yield:Int } \rightarrow 1}) @ \text{ yield:Int } \rightarrow 1$$

$$\vdash \text{ fun } x \rightarrow \underbrace{\text{do yield } (x + 42)}_{@ \text{ yield:Int } \rightarrow 1} : [\text{yield:Int } \rightarrow 1](\underbrace{\text{Int } \rightarrow 1}_{@ \text{ yield:Int } \rightarrow 1}) @$$

The **absolute modality** [yield:Int ->> 1] **overrides** the empty ambient effect context (.) in the function body enabling the yield operation to be performed.

.

In general [E] overrides the ambient effect context with E.

$$\vdash \text{ fun } x \rightarrow \underbrace{\text{do yield } (x + 42)}_{@ \text{ yield:Int } \rightarrow 1} : (\underbrace{\text{Int } \rightarrow 1}_{@ \text{ yield:Int } \rightarrow 1}) @ \text{ yield:Int } \rightarrow 1$$

$$\vdash \text{ fun } x \rightarrow \underbrace{\text{do yield } (x + 42)}_{@ \text{ yield:Int } \rightarrow 1} : [\text{yield:Int } \rightarrow 1](\underbrace{\text{Int } \rightarrow 1}_{@ \text{ yield:Int } \rightarrow 1}) @$$

The **absolute modality** [yield:Int ->> 1] **overrides** the empty ambient effect context (.) in the function body enabling the yield operation to be performed.

In general [E] overrides the ambient effect context with E.

Effect contexts given by absolute modalities percolate through the structure of a type:

- \blacktriangleright a function of type [E] (A \rightarrow B) may perform effects E when invoked
- \blacktriangleright elements of a list of type [E](List (A \rightarrow B)) may perform effects E when invoked
- a value of type [E] Int cannot perform any effects

Example:

```
eff Gen a = yield: a \rightarrow 1
```

- [Gen Int] denotes the modality [yield:Int -> 1]
- ▶ [Gen Int, E] denotes the modality [yield:Int → 1, E]

Iteration specialised to integer lists:

```
iter : []((Int \rightarrow 1) \rightarrow List Int \rightarrow 1)
iter f nil = ()
iter f (cons x xs) = f x; iter f xs
```

Iteration specialised to integer lists:

```
iter : []((Int \rightarrow 1) \rightarrow List Int \rightarrow 1)
iter f nil = ()
iter f (cons x xs) = f x; iter f xs
```

Applying a pure higher-order function in an impure effect context:

```
\vdash iter (fun x \rightarrow do yield (x + 42)) : 1 @ Gen Int
```

Iteration specialised to integer lists:

```
iter : []((Int \rightarrow 1) \rightarrow List Int \rightarrow 1)
iter f nil = ()
iter f (cons x xs) = f x; iter f xs
```

Applying a pure higher-order function in an impure effect context:

```
\vdash iter (fun x \rightarrow do yield (x + 42)) : 1 @ Gen Int
```

What happened? Bidirectional typing eliminates the [] modality of iter and then upcasts its empty effect context to the singleton effect context Gen Int.

Iteration specialised to integer lists:

```
iter : []((Int \rightarrow 1) \rightarrow List Int \rightarrow 1)
iter f nil = ()
iter f (cons x xs) = f x; iter f xs
```

Applying a pure higher-order function in an impure effect context:

```
\vdash iter (fun x \rightarrow do yield (x + 42)) : 1 @ Gen Int
```

What happened? Bidirectional typing eliminates the [] modality of iter and then upcasts its empty effect context to the singleton effect context Gen Int.

Terminology:

- **boxing** = modality introduction
- unboxing = modality elimination

Iteration specialised to integer lists:

```
iter : []((Int \rightarrow 1) \rightarrow List Int \rightarrow 1)
iter f nil = ()
iter f (cons x xs) = f x; iter f xs
```

Applying a pure higher-order function in an impure effect context:

```
\vdash iter (fun x \rightarrow do yield (x + 42)) : 1 @ Gen Int
```

What happened? Bidirectional typing eliminates the [] modality of iter and then upcasts its empty effect context to the singleton effect context Gen Int.

Terminology:

- **boxing** = modality introduction
- unboxing = modality elimination

In a conventional effect type system ${\tt iter}$ would be effect-polymorphic

iter : \forall e.(Int $\stackrel{e}{\rightarrow}$ 1) $\stackrel{e}{\rightarrow}$ List Int $\stackrel{e}{\rightarrow}$ 1

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

```
asList f =

handle f () with

return () \Rightarrow nil

yield x r \Rightarrow cons x (r ())
```

What type should asList have?

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

```
asList f =

handle f () with

return () \Rightarrow nil

yield x r \Rightarrow cons x (r ())
```

What type should asList have?

[](<Gen Int>(1 \rightarrow 1) \rightarrow List Int)

The relative modality <Gen Int> extends the ambient effect context.

 $\vdash \texttt{fun} \underbrace{\texttt{f}}_{\texttt{@ Gen Int, E}} \rightarrow \texttt{handle} \underbrace{\texttt{f}}_{\texttt{@ Gen Int, E}} \texttt{with } \ldots \ : \ \texttt{Gen Int}\texttt{(} \underbrace{\texttt{1} \rightarrow \texttt{1}}_{\texttt{@ Gen Int, E}} \texttt{)} \rightarrow \texttt{List Int @ E}$

The effect context of f is Gen Int, E.

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

```
asList f =

handle f () with

return () \Rightarrow nil

yield x r \Rightarrow cons x (r ())
```

What type should asList have?

[](<Gen Int>(1 \rightarrow 1) \rightarrow List Int)

The relative modality <Gen Int> extends the ambient effect context.

 $\vdash \texttt{fun} \underbrace{\texttt{f}}_{\texttt{@ Gen Int, E}} \rightarrow \texttt{handle} \underbrace{\texttt{f}}_{\texttt{@ Gen Int, E}} \texttt{with } \ldots \texttt{: <Gen Int>(\underbrace{1 \rightarrow 1}_{\texttt{@ Gen Int, E}}) \rightarrow \texttt{List Int @ E}$

The effect context of f is Gen Int, E.

In a conventional effect type system asList would be effect-polymorphic asList : $\forall e.(1 \xrightarrow{Gen Int, e} 1) \xrightarrow{e} List Int$

Coercions between modalities

Automatic unboxing in Metl allows values to be coerced between different modalities

We can extend an absolute modality:

```
\vdash fun f \rightarrow f : [Gen Int](1 \rightarrow 1) \rightarrow [Gen Int, Gen String](1 \rightarrow 1) @ E
```

Coercions between modalities

Automatic unboxing in Metl allows values to be coerced between different modalities

We can extend an absolute modality:

 \vdash fun f \rightarrow f : [Gen Int](1 \rightarrow 1) \rightarrow [Gen Int, Gen String](1 \rightarrow 1) @ E

In a conventional effect type system this corresponds to:

 $\vdash \texttt{fun } \texttt{f} \rightarrow \texttt{f} : (\forall \texttt{ e.1} \xrightarrow{\texttt{Gen Int, e}} \texttt{1}) \xrightarrow{\texttt{E}} (\forall \texttt{ e.1} \xrightarrow{\texttt{Gen Int, Gen String, e}} \texttt{1})$

Coercions between modalities

Automatic unboxing in Metl allows values to be coerced between different modalities

We can extend an absolute modality:

 \vdash fun f \rightarrow f : [Gen Int](1 \rightarrow 1) \rightarrow [Gen Int, Gen String](1 \rightarrow 1) @ E

In a conventional effect type system this corresponds to:

 $\vdash \texttt{fun } \texttt{f} \rightarrow \texttt{f} : (\forall \texttt{ e.1} \xrightarrow{\texttt{Gen Int, e}} \texttt{1}) \xrightarrow{\texttt{E}} (\forall \texttt{ e.1} \xrightarrow{\texttt{Gen Int, Gen String, e}} \texttt{1})$

We cannot extend a relative modality in the same way:

 \nvdash fun f \rightarrow f : <>(1 \rightarrow 1) \rightarrow <Gen Int>(1 \rightarrow 1) © E # Ill-typed
Automatic unboxing in Metl allows values to be coerced between different modalities

We can extend an absolute modality:

 \vdash fun f \rightarrow f : [Gen Int](1 \rightarrow 1) \rightarrow [Gen Int, Gen String](1 \rightarrow 1) @ E

In a conventional effect type system this corresponds to:

 $\vdash \texttt{fun } \texttt{f} \rightarrow \texttt{f} : (\forall \texttt{ e.1} \xrightarrow{\texttt{Gen Int, e}} \texttt{1}) \xrightarrow{\texttt{E}} (\forall \texttt{ e.1} \xrightarrow{\texttt{Gen Int, Gen String, e}} \texttt{1})$

We cannot extend a relative modality in the same way:

 \nvdash fun f \rightarrow f : <>(1 \rightarrow 1) \rightarrow <Gen Int>(1 \rightarrow 1) @ E # Ill-typed

This would insert a fresh yield: Int \rightarrow 1 operation which may shadow other yield operations in E.

Automatic unboxing in Metl allows values to be coerced between different modalities

We can extend an absolute modality:

 \vdash fun f \rightarrow f : [Gen Int](1 \rightarrow 1) \rightarrow [Gen Int, Gen String](1 \rightarrow 1) @ E

In a conventional effect type system this corresponds to:

 $\vdash \texttt{fun } \texttt{f} \rightarrow \texttt{f} : (\forall \texttt{ e.1} \xrightarrow{\texttt{Gen Int, e}} \texttt{1}) \xrightarrow{\texttt{E}} (\forall \texttt{ e.1} \xrightarrow{\texttt{Gen Int, Gen String, e}} \texttt{1})$

We cannot extend a relative modality in the same way:

 \nvdash fun f \rightarrow f : <>(1 \rightarrow 1) \rightarrow <Gen Int>(1 \rightarrow 1) @ E # Ill-typed

This would insert a fresh yield: Int \rightarrow 1 operation which may shadow other yield operations in E.

In a conventional effect type system this corresponds to:

 $\not\vdash \text{ fun } f \ \rightarrow \ f \ : \ \textbf{(1} \ \xrightarrow{E} \ \textbf{1)} \ \xrightarrow{E} \ \textbf{(1} \ \xrightarrow{\text{Gen Int, } E} \ \textbf{1)} \ \# \ \text{Ill-typed}$

An absolute modality can be coerced into the corresponding relative modality.

```
\vdash fun f \rightarrow f : [Gen Int](1 \rightarrow 1) \rightarrow <Gen Int>(1 \rightarrow 1) @ E
```

An absolute modality can be coerced into the corresponding relative modality.

 \vdash fun f \rightarrow f : [Gen Int](1 \rightarrow 1) \rightarrow <Gen Int>(1 \rightarrow 1) @ E

In a conventional effect type system this corresponds to:

 $\vdash \text{ fun } f \rightarrow f : (\forall e.1 \xrightarrow{\text{Gen Int, e}} 1) \xrightarrow{E} (1 \xrightarrow{\text{Gen Int, E}} 1)$

An absolute modality can be coerced into the corresponding relative modality.

 \vdash fun f \rightarrow f : [Gen Int](1 \rightarrow 1) \rightarrow <Gen Int>(1 \rightarrow 1) @ E

In a conventional effect type system this corresponds to:

 $\vdash \text{fun } f \rightarrow f : (\forall e.1 \xrightarrow{\text{Gen Int, } e} 1) \xrightarrow{E} (1 \xrightarrow{\text{Gen Int, } E} 1)$

But the converse is not permitted

 \nvdash fun f \rightarrow f : <Gen Int>(1 \rightarrow 1) \rightarrow [Gen Int](1 \rightarrow 1) @ E # Ill-typed

as the argument may also use effects from the ambient effect context E.

An absolute modality can be coerced into the corresponding relative modality.

 \vdash fun f \rightarrow f : [Gen Int](1 \rightarrow 1) \rightarrow <Gen Int>(1 \rightarrow 1) @ E

In a conventional effect type system this corresponds to:

 $\vdash \text{ fun } f \rightarrow f : (\forall e.1 \xrightarrow{\text{Gen Int, } e} 1) \xrightarrow{E} (1 \xrightarrow{\text{Gen Int, } E} 1)$

But the converse is not permitted

 \nvdash fun f \rightarrow f : <Gen Int>(1 \rightarrow 1) \rightarrow [Gen Int](1 \rightarrow 1) @ E # Ill-typed

as the argument may also use effects from the ambient effect context E.

In a conventional effect type system this corresponds to:

 $\not\vdash \ \texttt{fun } f \ \rightarrow \ f \ : \ (\texttt{1} \ \xrightarrow{\texttt{Gen Int, } E} \ \texttt{1}) \ \xrightarrow{\texttt{E}} \ (\forall \ \texttt{e.1} \ \xrightarrow{\texttt{Gen Int, } e} \ \texttt{1})$

State effect

eff State s = get:1 \rightarrow s, put:s \rightarrow 1

State effect

eff State s = get:1 ->> s, put:s ->> 1

A state handler (specialised to integer state)

```
state : [] (<State Int>(1 \rightarrow 1) \rightarrow Int \rightarrow 1)
state m = handle m () with
return x \Rightarrow fun s \rightarrow x
get () r \Rightarrow fun s \rightarrow r s s
put s' r \Rightarrow fun s \rightarrow r () s'
```

Using integer state to write a generator that yields the prefix sum of a list

```
prefixSum : [Gen Int, State Int] (List Int \rightarrow 1)
prefixSum xs = iter (fun x \rightarrow do put (do get () + x); do yield (do get ())) xs
```

Using integer state to write a generator that yields the prefix sum of a list prefixSum : [Gen Int, State Int](List Int \rightarrow 1) prefixSum xs = iter (fun x \rightarrow do put (do get () + x); do yield (do get ())) xs

We can now handle the operations of prefixSum by composing two handlers

```
> asList (fun () \rightarrow state (fun () \rightarrow prefixSum [3,1,4,1,5,9]) 0) # [3,4,8,9,14,23] : List Int
```

Using integer state to write a generator that yields the prefix sum of a list prefixSum : [Gen Int, State Int](List Int \rightarrow 1) prefixSum xs = iter (fun x \rightarrow do put (do get () + x); do yield (do get ())) xs

We can now handle the operations of ${\tt prefixSum}$ by composing two handlers

```
> asList (fun () \rightarrow state (fun () \rightarrow prefixSum [3,1,4,1,5,9]) 0) # [3,4,8,9,14,23] : List Int
```

In a conventional effect system composing handlers requires effect polymorphism

asList : $\forall e.(1 \xrightarrow{\text{Gen Int, e}} 1) \xrightarrow{e} \text{List Int}$ state : $\forall e.(1 \xrightarrow{\text{State Int, e}} 1) \xrightarrow{e} \text{Int} \xrightarrow{e} 1$

First-order cooperative concurrency effect

```
eff Coop = suspend:1 ->> 1, ufork:1 ->> Bool
```

First-order cooperative concurrency effect

eff Coop = suspend:1 ->> 1, ufork:1 ->> Bool

Recursive data type of cooperative processes

```
data Proc = proc (List Proc 
ightarrow 1)
```

```
push : [](Proc \rightarrow List Proc \rightarrow List Proc)
push x xs = xs ++ cons x nil
```

First-order cooperative concurrency effect

```
eff Coop = suspend:1 ->> 1, ufork:1 ->> Bool
```

Recursive data type of cooperative processes

```
data Proc = proc (List Proc \rightarrow 1) no

push : [] (Proc \rightarrow List Proc \rightarrow List Proc)

push x xs = xs ++ cons x nil
```

Scheduler parameterised by a list of suspended processes

```
schedule : [](<Coop>(1 \rightarrow 1) \rightarrow List Proc \rightarrow 1)
schedule m = handle m () with
return () \Rightarrow fun q \rightarrow next q
suspend () r \Rightarrow fun q \rightarrow next (push (proc (r ())) q)
ufork () r \Rightarrow fun q \rightarrow r true (push (proc (r false)) q)
```

First-order cooperative concurrency effect

```
eff Coop = suspend:1 ->> 1, ufork:1 ->> Bool
```

Recursive data type of cooperative processes

```
data Proc = proc (List Proc \rightarrow 1)next : [] (List Proc \rightarrow 1)push : [] (Proc \rightarrow List Proc \rightarrow List Proc)next q = case q ofpush x xs = xs ++ cons x nilcons (proc p) ps \rightarrow p ps
```

Scheduler parameterised by a list of suspended processes

```
schedule : [](<Coop>(1 \rightarrow 1) \rightarrow List Proc \rightarrow 1)
schedule m = handle m () with
return () \Rightarrow fun q \rightarrow next q
suspend () r \Rightarrow fun q \rightarrow next (push (proc (r ())) q)
ufork () r \Rightarrow fun q \rightarrow r true (push (proc (r false)) q)
```

In a conventional effect system storing effectful functions requires effect polymorphism

```
data Proc e = proc (List Proc \stackrel{e}{\rightarrow} 1)
schedule : \forall e.(1 \stackrel{Coop, e}{\longrightarrow} 1) \stackrel{e}{\rightarrow} List (Proc e) \stackrel{e}{\rightarrow} 1
```

State handler for 1 $\,\rightarrow\,$ 1 computations

state' : []((State Int $(1 \rightarrow (1 \rightarrow 1)) \rightarrow$ Int $\rightarrow (1 \rightarrow 1))$

State handler for $1 \rightarrow 1$ computations

state' : []((Int $(1 \rightarrow (1 \rightarrow 1)) \rightarrow$ Int $\rightarrow (1 \rightarrow 1))$

Unsound as this type allows effects to leak

state' (fun () \rightarrow fun () \rightarrow do put (do get () + 42)) 0 : 1 \rightarrow 1

return clause of state' lets fun () \rightarrow do put (do get () + 42) escape scope of handler

State handler for $1 \rightarrow 1$ computations

state' : [](<State Int>(1 \rightarrow (1 \rightarrow 1)) \rightarrow Int \rightarrow (1 \rightarrow 1))

Unsound as this type allows effects to leak

state' (fun () \rightarrow fun () \rightarrow do put (do get () + 42)) 0 : 1 \rightarrow 1

return clause of state' lets fun () \rightarrow do put (do get () + 42) escape scope of handler

Sound type signature

state' : []($(\text{State Int}(1 \rightarrow (1 \rightarrow 1)) \rightarrow \text{Int} \rightarrow (\text{State Int}(1 \rightarrow 1))$

State handler for $1 \rightarrow 1$ computations state' : [](<State Int>(1 \rightarrow (1 \rightarrow 1)) \rightarrow Int \rightarrow (1 \rightarrow 1)) Unsound as this type allows effects to leak state' (fun () \rightarrow fun () \rightarrow do put (do get () + 42)) 0 : 1 \rightarrow 1 return clause of state' lets fun () \rightarrow do put (do get () + 42) escape scope of handler Sound type signature state' : [](<State Int>(1 \rightarrow (1 \rightarrow 1)) \rightarrow Int \rightarrow <State Int>(1 \rightarrow 1))

```
state Versus state':
```

State handler for $1 \rightarrow 1$ computations state' : [](<State Int>(1 \rightarrow (1 \rightarrow 1)) \rightarrow Int \rightarrow (1 \rightarrow 1)) Unsound as this type allows effects to leak state' (fun () \rightarrow fun () \rightarrow do put (do get () + 42)) 0 : 1 \rightarrow 1 return clause of state' lets fun () \rightarrow do put (do get () + 42) escape scope of handler Sound type signature state' : [](<State Int>(1 \rightarrow (1 \rightarrow 1)) \rightarrow Int \rightarrow <State Int>(1 \rightarrow 1))

```
state Versus state':
```

- state cannot leak the state effect
- state' can leak the state effect

- ► Absolute types (e.g. 1, List Int, and [Gen Int] (List Int → 1)) built from base types, positive types, and types boxed by an absolute modality cannot leak effects
- ► Unrestricted types (e.g. 1 → 1, List Int → 1, and <Coop>(1 → 1)) also include functions not boxed by an absolute modality can leak effects

- ► Absolute types (e.g. 1, List Int, and [Gen Int] (List Int → 1)) built from base types, positive types, and types boxed by an absolute modality cannot leak effects
- ▶ Unrestricted types (e.g. 1 → 1, List Int → 1, and <Coop>(1 → 1)) also include functions not boxed by an absolute modality can leak effects

Kinds

- Abs classifies absolute types
- Any classifies unrestricted types

- ► Absolute types (e.g. 1, List Int, and [Gen Int](List Int → 1)) built from base types, positive types, and types boxed by an absolute modality cannot leak effects
- ▶ Unrestricted types (e.g. 1 → 1, List Int → 1, and <Coop>(1 → 1)) also include functions not boxed by an absolute modality can leak effects

Kinds

- Abs classifies absolute types
- Any classifies unrestricted types

Subkinding allows absolute types to be treated as unrestricted: Abs \leq Any

Type polymorphism

Polymorphic version of iter

```
iter : \forall(a:Any).[]((a \rightarrow 1) \rightarrow List a \rightarrow 1)
iter {a:Any} f nil = ()
iter {a:Any} f (cons x xs) = f x; iter {a} f xs
```

Explicit type abstractions and type applications in braces.

Type polymorphism

Polymorphic version of iter

```
iter : \forall(a:Any).[]((a \rightarrow 1) \rightarrow List a \rightarrow 1)
iter {a:Any} f nil = ()
iter {a:Any} f (cons x xs) = f x; iter {a} f xs
```

Explicit type abstractions and type applications in braces.

Two possible polymorphic types for handling state

```
state : \forall (a:Abs).[] (<State Int>(1 \rightarrow a) \rightarrow Int \rightarrow a)
state' : \forall (a:Any).[] (<State Int>(1 \rightarrow a) \rightarrow Int \rightarrow <State Int>a)
```

 \triangleright \forall (a:Abs) ascribes kind Abs to a, allowing values of type a to escape the handler.

 \blacktriangleright \forall (a:Any) ascribes kind Any to a, not allowing values of type a to escape the handler.

Type polymorphism

Polymorphic version of iter

```
iter : \forall(a:Any).[]((a \rightarrow 1) \rightarrow List a \rightarrow 1)
iter {a:Any} f nil = ()
iter {a:Any} f (cons x xs) = f x; iter {a} f xs
```

Explicit type abstractions and type applications in braces.

Two possible polymorphic types for handling state

```
state : \forall(a:Abs).[](<State Int>(1 \rightarrow a) \rightarrow Int \rightarrow a)
state' : \forall(a:Any).[](<State Int>(1 \rightarrow a) \rightarrow Int \rightarrow <State Int>a)
```

 \triangleright \forall (a:Abs) ascribes kind Abs to a, allowing values of type a to escape the handler.

► ∀(a: Any) ascribes kind Any to a, not allowing values of type a to escape the handler.

Using η -expansion we can coerce state' to have the type of state $\vdash fun \{a:Abs\} m s \rightarrow state' \{a\} m s : \forall (a:Abs).[] (<State Int>(1 \rightarrow a) \rightarrow Int \rightarrow a) @ .$ Applying a modality to an absolute type

Modalities act only on non-absolute types, so a modality applied to an absolute type can always be discarded.

Applying a modality to an absolute type

Modalities act only on non-absolute types, so a modality applied to an absolute type can always be discarded.

Examples:

The kind restriction on effects

Operation arguments and results are restricted to be absolute.

The kind restriction on effects

Operation arguments and results are restricted to be absolute.

```
If we allowed leak: (1 \rightarrow 1) \rightarrow 1, then we could write the following program handle asList (fun () \rightarrow do leak (fun () \rightarrow do yield 42)) with return _ \Rightarrow fun () \Rightarrow 37 leak p _ \Rightarrow p
```

which leaks the yield operation

The kind restriction on effects

Operation arguments and results are restricted to be absolute.

```
If we allowed leak: (1 \rightarrow 1) \rightarrow 1, then we could write the following program handle asList (fun () \rightarrow do leak (fun () \rightarrow do yield 42)) with return _ \Rightarrow fun () \Rightarrow 37 leak p _ \Rightarrow p
```

which leaks the yield operation

Remark: it is possible to replace this restriction with an alternative formulation in which the order of higher-order effects is important.

Read and fail effects

eff Read = ask : $1 \rightarrow \text{Int}$ eff Fail = fail : $1 \rightarrow 0$

Read and fail effects

```
eff Read = ask : 1 \rightarrow \text{Int}
eff Fail = fail : 1 \rightarrow 0
```

Handling reading from a list of integers (if the list is empty then reading fails):

```
reads : [Fail](<Read>(1 \rightarrow Int) \rightarrow List Int \rightarrow Int)
reads f =
handle f () with
return v \Rightarrow fun ns \rightarrow v
ask () r \Rightarrow fun ns \rightarrow case ns of
nil \Rightarrow do fail ()
cons n ns \Rightarrow r n ns
```

Read and fail effects

```
eff Read = ask : 1 \rightarrow \text{Int}
eff Fail = fail : 1 \rightarrow 0
```

Handling reading from a list of integers (if the list is empty then reading fails):

```
reads : [Fail](<Read>(1 \rightarrow Int) \rightarrow List Int \rightarrow Int)
reads f =
handle f () with
return v \Rightarrow fun ns \rightarrow v
ask () r \Rightarrow fun ns \rightarrow case ns of
nil \Rightarrow do fail ()
cons n ns \Rightarrow r n ns
```

Handling failure as an option type:

```
maybeFail : [](<Fail>(1 → Int) → Maybe Int)
maybeFail f =
handle f () with
return v ⇒ Just v
fail () → Nothing
```

Naively composing reads with maybeFail leaks the Fail effect:

```
bad : [](List Int \rightarrow <Read, Fail>(1 \rightarrow Int))
bad ns f = maybeFail (reads f ns)
```

bad [1,2] (fun () \rightarrow (do ask ()) + (do fail ())) : Maybe Int @ .

This expression evaluates to Nothing.

Naively composing reads with maybeFail leaks the Fail effect:

```
bad : [](List Int \rightarrow <Read, Fail>(1 \rightarrow Int))
bad ns f = maybeFail (reads f ns)
```

```
bad [1,2] (fun () \rightarrow (do ask ()) + (do fail ())) : Maybe Int @.
```

This expression evaluates to Nothing.

How can we encapsulate the use of Fail as an intermediate effect?
Effect pollution

Naively composing reads with maybeFail leaks the Fail effect:

```
bad : [](List Int \rightarrow <Read, Fail>(1 \rightarrow Int))
bad ns f = maybeFail (reads f ns)
```

```
bad [1,2] (fun () \rightarrow (do ask ()) + (do fail ())) : Maybe Int @.
```

This expression evaluates to Nothing.

How can we encapsulate the use of Fail as an intermediate effect?

```
The aim is to define
good : [](List Int → <Read>(1 → Int) → Maybe Int)
by composing reads and maybeFail such that
good [1,2] (fun () → (do ask ()) + (do fail ())) : Maybe Int @ Fail
performs the fail operation.
```

Effect encapsulation with masking

The solution is to **mask** the intermediate effect:

```
good : [](List Int \rightarrow <Read>(1 \rightarrow Int) \rightarrow Maybe Int)
good ns f = maybeFail (reads (mask<fail> (f ())))
```

The expression mask<fail>(M) masks fail from the ambient effect context for M.

Effect encapsulation with masking

The solution is to **mask** the intermediate effect:

```
good : [](List Int \rightarrow <Read>(1 \rightarrow Int) \rightarrow Maybe Int)
good ns f = maybeFail (reads (mask<fail> (f ())))
```

The expression mask<fail>(M) masks fail from the ambient effect context for M.

General form <LID> specifies a transformation on effect contexts where:

- L is a row of effect labels that are removed from the effect context
- D is a row of effects that are added to the effect context

Effect encapsulation with masking

The solution is to **mask** the intermediate effect:

```
good : [](List Int \rightarrow <Read>(1 \rightarrow Int) \rightarrow Maybe Int)
good ns f = maybeFail (reads (mask<fail> (f ())))
```

The expression mask<fail>(M) masks fail from the ambient effect context for M.

General form <L|D> specifies a transformation on effect contexts where:

- L is a row of effect labels that are removed from the effect context
- D is a row of effects that are added to the effect context

<D> is shorthand for <|D>

Effect polymorphism

Higher-order cooperative concurrency effect

```
eff Coop = fork: [Coop] (1 \rightarrow 1) \rightarrow 1, suspend: 1 \rightarrow 1
```

But the argument type of fork is absolute so cannot support other effects!

Effect polymorphism

Higher-order cooperative concurrency effect

```
eff Coop = fork: [Coop] (1 \rightarrow 1) \rightarrow 1, suspend: 1 \rightarrow 1
```

But the argument type of fork is absolute so cannot support other effects!

METL includes effect polymorphism to support higher-order operations like fork eff Coop e = fork: [Coop e, e] $(1 \rightarrow 1) \rightarrow 1$, suspend: $1 \rightarrow 1$

Effect polymorphism

Higher-order cooperative concurrency effect

```
eff Coop = fork: [Coop] (1 \rightarrow 1) \rightarrow 1, suspend: 1 \rightarrow 1
```

But the argument type of fork is absolute so cannot support other effects!

METL includes effect polymorphism to support higher-order operations like fork

```
eff Coop e = fork: [Coop e, e] (1 \rightarrow 1) \rightarrow 1, suspend: 1 \rightarrow 1
```

Effect variables are **only needed** for use-cases such as higher-order effects where a computation must be stored for use in an effect context different from the ambient one.

In the paper (to appear at OOPSLA 2025)

Modal effect types — https://arxiv.org/abs/2407.11816

Met

- simply-typed multimodal core calculus with effects
- ▶ type system, operational semantics, type soundness, effect safety
- extensions: sums and products (crisp elimination), type and effect polymorphism

$\mathbf{F}_{\mathrm{eff}}^{\mathbf{1}}$

- restricted core calculus of polymorphic effect types
- restriction: each scope can only refer to the lexically closest effect variables
- \blacktriangleright encoding of $\mathrm{F}^1_{\mathrm{eff}}$ in Met

 $\mathrm{Metl:}$ simple bidirectional type checking for Met

- infers all introduction and elimination of modalities
- analogous to generalisation and instantiation

Ongoing and future work

Denotational semantics

Prototype implementation of METL

Extension of Met to support named handlers

Improved (bidirectional) type inference

Combination with oxidizing OCaml (other modalities)