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Effect polymorphism

A prototypical pure higher-order function:

map : ∀ a b.(a → b) → List a → List b

We can only pass pure functions to map.

An effect-polymorphic version:

map’ : ∀ a b e.(a
e−→ b)

e−→ List a
e−→ List b

Is this really necessary?

No! In Frank the signature of map is syntactic sugar for the signature of map’.

Key observation: almost always we need only one effect variable in a type signature
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Effect polymorphism

But Frank’s syntactic sugar is fragile.

For instance, consider a generator iterating over a list:

eff Gen a = yield:a ↠ 1

gen : List Int
Gen Int−−−−→ 1

gen xs = map (fun x → do yield x) xs; ()

(adjusting concrete Frank syntax for consistency with the rest of the talk)

If we forget the annotation on the arrow then Frank gives the following error message.

cannot unify effects e and Gen Int, £

Can we do better?
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From function arrows to effect contexts

Conventional effect typing — function arrows are annotated with effects

⊢ fun (f, x) → f x : ((Int
E−→ 1) × Int)

E−→ 1

Modal effect typing — ambient effect context determines effects

⊢ fun ( f︸︷︷︸
@ E

, x) → f x︸ ︷︷ ︸
@ E

: ((Int → 1︸ ︷︷ ︸
@ E

) × Int) → 1︸ ︷︷ ︸
@ E

@ E
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Effects contexts

An effect context E is a row of typed operations

Example: get:1 ↠ Int, put:Int ↠ 1

Effect context rows are scoped (as in Frank and Koka)

▶ repeats are allowed (same name but possibly different signatures)

▶ order of repeated operations matters

▶ relative order of distinct operations does not matter
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Modal effect types

A mode is an effect context

A modality is a transformation from one mode to another

Met — simply-typed core calculus of modal effect types

Metl — surface language for Met with: bidirectional typing for inferring introduction
and elimination of modalities + algebraic data types + polymorphism

Almost all examples in this talk use the simply-typed fragment of Metl
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Overriding the ambient context with absolute modalities

⊢ fun x → do yield (x + 42)︸ ︷︷ ︸
@ yield:Int ↠ 1

: ( Int → 1︸ ︷︷ ︸
@ yield:Int ↠ 1

) @ yield:Int ↠ 1

⊢ fun x → do yield (x + 42)︸ ︷︷ ︸
@ yield:Int ↠ 1

: [yield:Int ↠ 1]( Int → 1︸ ︷︷ ︸
@ yield:Int ↠ 1

) @ .

The absolute modality [yield:Int ↠ 1] overrides the empty ambient effect context
(.) in the function body enabling the yield operation to be performed.

In general [E] overrides the ambient effect context with E.

Effect contexts given by absolute modalities percolate through the structure of a type:

▶ a function of type [E](A → B) may perform effects E when invoked

▶ elements of a list of type [E](List (A → B)) may perform effects E when invoked

▶ a value of type [E]Int cannot perform any effects
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Effect context abbreviations

Example:

eff Gen a = yield:a ↠ 1

▶ [Gen Int] denotes the modality [yield:Int ↠ 1]

▶ [Gen Int, E] denotes the modality [yield:Int ↠ 1, E]



Absolute modalities and higher-order functions
Iteration specialised to integer lists:

iter : []((Int → 1) → List Int → 1)
iter f nil = ()
iter f (cons x xs) = f x; iter f xs

Applying a pure higher-order function in an impure effect context:

⊢ iter (fun x → do yield (x + 42)) : 1 @ Gen Int

What happened? Bidirectional typing eliminates the [] modality of iter and then
upcasts its empty effect context to the singleton effect context Gen Int.

Terminology:
▶ boxing = modality introduction
▶ unboxing = modality elimination

In a conventional effect type system iter would be effect-polymorphic

iter : ∀ e.(Int
e−→ 1)

e−→ List Int
e−→ 1
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Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with

return () ⇒ nil
yield x r ⇒ cons x (r ())

What type should asList have?

[](<Gen Int>(1 → 1) → List Int)

The relative modality <Gen Int> extends the ambient effect context.

⊢ fun f︸︷︷︸
@ Gen Int, E

→ handle f ()︸ ︷︷ ︸
@ Gen Int, E

with ... : <Gen Int>( 1 → 1︸ ︷︷ ︸
@ Gen Int, E

) → List Int @ E

The effect context of f is Gen Int, E.

In a conventional effect type system asList would be effect-polymorphic

asList : ∀ e.(1
Gen Int, e−−−−−−→ 1)

e−→ List Int
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Coercions between modalities

Automatic unboxing in Metl allows values to be coerced between different modalities

We can extend an absolute modality:

⊢ fun f → f : [Gen Int](1 → 1) → [Gen Int, Gen String](1 → 1) @ E

In a conventional effect type system this corresponds to:

⊢ fun f → f : (∀ e.1
Gen Int, e−−−−−−→ 1)

E−→ (∀ e.1
Gen Int, Gen String, e−−−−−−−−−−−−−−→ 1)

We cannot extend a relative modality in the same way:

⊬ fun f → f : <>(1 → 1) → <Gen Int>(1 → 1) @ E # Ill-typed

This would insert a fresh yield:Int ↠ 1 operation which may shadow other yield

operations in E.

In a conventional effect type system this corresponds to:

⊬ fun f → f : (1
E−→ 1)

E−→ (1
Gen Int, E−−−−−−→ 1) # Ill-typed
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An absolute modality can be coerced into the corresponding relative modality.
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Composing handlers

State effect

eff State s = get:1 ↠ s, put:s ↠ 1

A state handler (specialised to integer state)

state : [](<State Int>(1 → 1) → Int → 1)
state m = handle m () with
return x ⇒ fun s → x
get () r ⇒ fun s → r s s
put s’ r ⇒ fun s → r () s’
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Composing handlers

Using integer state to write a generator that yields the prefix sum of a list

prefixSum : [Gen Int, State Int](List Int → 1)
prefixSum xs = iter (fun x → do put (do get () + x); do yield (do get ())) xs

We can now handle the operations of prefixSum by composing two handlers

> asList (fun () → state (fun () → prefixSum [3,1,4,1,5,9]) 0)
# [3,4,8,9,14,23] : List Int

In a conventional effect system composing handlers requires effect polymorphism

asList : ∀ e.(1
Gen Int, e−−−−−−→ 1)

e−→ List Int

state : ∀ e.(1
State Int, e−−−−−−−→ 1)

e−→ Int
e−→ 1
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Storing effectful functions
First-order cooperative concurrency effect

eff Coop = suspend:1 ↠ 1, ufork:1 ↠ Bool

Recursive data type of cooperative processes

data Proc = proc (List Proc → 1)

push : [](Proc → List Proc → List Proc)
push x xs = xs ++ cons x nil

next : [](List Proc → 1)
next q = case q of
nil → ()
cons (proc p) ps → p ps

Scheduler parameterised by a list of suspended processes

schedule : [](<Coop>(1 → 1) → List Proc → 1)
schedule m = handle m () with
return () ⇒ fun q → next q
suspend () r ⇒ fun q → next (push (proc (r ())) q)
ufork () r ⇒ fun q → r true (push (proc (r false)) q)

In a conventional effect system storing effectful functions requires effect polymorphism

data Proc e = proc (List Proc
e−→ 1)

schedule : ∀ e.(1
Coop, e−−−−→ 1)

e−→ List (Proc e)
e−→ 1
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Kinds

State handler for 1 → 1 computations

state’ : [](<State Int>(1 → (1 → 1)) → Int → (1 → 1))

Unsound as this type allows effects to leak

state’ (fun () → fun () → do put (do get () + 42)) 0 : 1 → 1

return clause of state’ lets fun () → do put (do get () + 42) escape scope of handler

Sound type signature

state’ : [](<State Int>(1 → (1 → 1)) → Int → <State Int>(1 → 1))

state versus state’:

state : [](<State Int>(1 → 1) → Int → 1)
state’ : [](<State Int>(1 → (1 → 1)) → Int → <State Int>(1 → 1))

▶ state cannot leak the state effect

▶ state’ can leak the state effect
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Kinds

▶ Absolute types (e.g. 1, List Int, and [Gen Int](List Int → 1))
built from base types, positive types, and types boxed by an absolute modality —
cannot leak effects

▶ Unrestricted types (e.g. 1 → 1, List Int → 1, and <Coop>(1 → 1))
also include functions not boxed by an absolute modality —
can leak effects

Kinds

▶ Abs classifies absolute types

▶ Any classifies unrestricted types

Subkinding allows absolute types to be treated as unrestricted: Abs ≤ Any
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Type polymorphism

Polymorphic version of iter

iter : ∀(a:Any).[]((a → 1) → List a → 1)
iter {a:Any} f nil = ()
iter {a:Any} f (cons x xs) = f x; iter {a} f xs

Explicit type abstractions and type applications in braces.

Two possible polymorphic types for handling state

state : ∀(a:Abs).[](<State Int>(1 → a) → Int → a)
state’ : ∀(a:Any).[](<State Int>(1 → a) → Int → <State Int>a)

▶ ∀(a:Abs) ascribes kind Abs to a, allowing values of type a to escape the handler.

▶ ∀(a:Any) ascribes kind Any to a, not allowing values of type a to escape the handler.

Using η-expansion we can coerce state’ to have the type of state

⊢fun {a:Abs} m s → state’ {a} m s : ∀(a:Abs).[](<State Int>(1 → a) → Int → a) @ .
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Applying a modality to an absolute type

Modalities act only on non-absolute types, so a modality applied to an absolute type can
always be discarded.

Examples:

⊢ fun x → x : [Gen Int]List Int → List Int @ .
⊬ fun x → x : [Gen Int](1 → 1) → (1 → 1) @ .
a:Any ⊢ fun x → x : <State Int>([Gen Int]a) → [Gen Int]a @ .
a:Any ⊬ fun x → x : <State Int>a → a @ .
a:Abs ⊢ fun x → x : <State Int>a → a @ .
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The kind restriction on effects

Operation arguments and results are restricted to be absolute.

If we allowed leak:(1 → 1) ↠ 1, then we could write the following program

handle asList (fun () → do leak (fun () → do yield 42)) with
return _ ⇒ fun () ⇒ 37
leak p _ ⇒ p

which leaks the yield operation

Remark: it is possible to replace this restriction with an alternative formulation in which
the order of higher-order effects is important.
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Effect pollution
Read and fail effects

eff Read = ask : 1 → Int
eff Fail = fail : 1 → 0

Handling reading from a list of integers (if the list is empty then reading fails):

reads : [Fail](<Read>(1 → Int) → List Int → Int)
reads f =
handle f () with

return v ⇒ fun ns → v
ask () r ⇒ fun ns → case ns of

nil ⇒ do fail ()
cons n ns ⇒ r n ns

Handling failure as an option type:

maybeFail : [](<Fail>(1 → Int) → Maybe Int)
maybeFail f =
handle f () with

return v ⇒ Just v
fail () _ ⇒ Nothing
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Effect pollution

Naively composing reads with maybeFail leaks the Fail effect:

bad : [](List Int → <Read, Fail>(1 → Int))
bad ns f = maybeFail (reads f ns)

bad [1,2] (fun () → (do ask ()) + (do fail ())) : Maybe Int @ .

This expression evaluates to Nothing.

How can we encapsulate the use of Fail as an intermediate effect?

The aim is to define

good : [](List Int → <Read>(1 → Int) → Maybe Int)

by composing reads and maybeFail such that

good [1,2] (fun () → (do ask ()) + (do fail ())) : Maybe Int @ Fail

performs the fail operation.
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Effect encapsulation with masking

The solution is to mask the intermediate effect:

good : [](List Int → <Read>(1 → Int) → Maybe Int)
good ns f = maybeFail (reads (mask<fail> (f ())))

The expression mask<fail>(M) masks fail from the ambient effect context for M.

General form <L|D> specifies a transformation on effect contexts where:

▶ L is a row of effect labels that are removed from the effect context

▶ D is a row of effects that are added to the effect context

<D> is shorthand for <|D>
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Effect polymorphism

Higher-order cooperative concurrency effect

eff Coop = fork:[Coop](1 → 1) ↠ 1, suspend:1 ↠ 1

But the argument type of fork is absolute so cannot support other effects!

Metl includes effect polymorphism to support higher-order operations like fork

eff Coop e = fork:[Coop e, e](1 → 1) ↠ 1, suspend:1 ↠ 1

Effect variables are only needed for use-cases such as higher-order effects where a
computation must be stored for use in an effect context different from the ambient one.
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In the paper (to appear at OOPSLA 2025)

Modal effect types — https://arxiv.org/abs/2407.11816

Met

▶ simply-typed multimodal core calculus with effects

▶ type system, operational semantics, type soundness, effect safety

▶ extensions: sums and products (crisp elimination), type and effect polymorphism

F1
eff

▶ restricted core calculus of polymorphic effect types

▶ restriction: each scope can only refer to the lexically closest effect variables

▶ encoding of F1
eff in Met

Metl: simple bidirectional type checking for Met

▶ infers all introduction and elimination of modalities

▶ analogous to generalisation and instantiation

https://arxiv.org/abs/2407.11816


Ongoing and future work

Denotational semantics

Prototype implementation of Metl

Extension of Met to support named handlers

Improved (bidirectional) type inference

Combination with oxidizing OCaml (other modalities)


