Modal effect types

Sam Lindley

The University of Edinburgh

FATA Seminar, Glasgow, 18th March 2025

Joint work with
Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerstrom, Anton Lorentzen

Effect polymorphism

A prototypical pure higher-order function:

map : V a b.(a — b) — List a — List b

Effect polymorphism

A prototypical pure higher-order function:

map : V a b.(a — b) — List a — List b

We can only pass pure functions to map.

An effect-polymorphic version:

map’ : Vabe.(a>b) S List a > List b

Effect polymorphism

A prototypical pure higher-order function:

map : V a b.(a — b) — List a — List b

We can only pass pure functions to map.

An effect-polymorphic version:

map’ : Vabe.(a>b) > List a > List b

Is this really necessary?

Effect polymorphism

A prototypical pure higher-order function:

map : V a b.(a — b) — List a — List b

We can only pass pure functions to map.

An effect-polymorphic version:

map’ : Vabe.(a>b) > List a > List b

Is this really necessary?

No! In Frank the signature of map is syntactic sugar for the signature of map’.

Effect polymorphism

A prototypical pure higher-order function:

map : V a b.(a — b) — List a — List b

We can only pass pure functions to map.

An effect-polymorphic version:

map’ : Vabe.(a>b) > List a > List b

Is this really necessary?
No! In Frank the signature of map is syntactic sugar for the signature of map’.

Key observation: almost always we need only one effect variable in a type signature

Effect polymorphism

But Frank's syntactic sugar is fragile.

Effect polymorphism

But Frank's syntactic sugar is fragile.

For instance, consider a generator iterating over a list:

Gen a = yield:a — 1

gen : List Int N

gen xs = map (X — yield x) xs; ()

(adjusting concrete Frank syntax for consistency with the rest of the talk)

Effect polymorphism

But Frank's syntactic sugar is fragile.

For instance, consider a generator iterating over a list:

Gen a = yield:a — 1

gen : List Int LN

gen xs = map (X — yield x) xs; ()

(adjusting concrete Frank syntax for consistency with the rest of the talk)

If we forget the annotation on the arrow then Frank gives the following error message.

cannot unify effects e and Gen Int, £

Effect polymorphism

But Frank's syntactic sugar is fragile.

For instance, consider a generator iterating over a list:

Gen a = yield:a — 1

gen : List Int LN

gen xs = map (X — yield x) xs; ()

(adjusting concrete Frank syntax for consistency with the rest of the talk)

If we forget the annotation on the arrow then Frank gives the following error message.

cannot unify effects e and Gen Int, £

Can we do better?

From function arrows to effect contexts

Conventional effect typing — function arrows are annotated with effects

= fun(f,x)—>fx:((Int£>1)><Int)£>1

From function arrows to effect contexts

Conventional effect typing — function arrows are annotated with effects

F (£, ¥) = £ x: ((Int 5 1) x Int) 5> 1

Modal effect typing — ambient effect context determines effects
= (f ,x) >fx: ((Int > 1) x Int) -1 @ E
~—~ —— ———— S

QE QE CE QE

Effects contexts

An effect context E is a row of typed operations

Effects contexts

An effect context E is a row of typed operations

Example: get:1 — Int, put:Int — 1

Effects contexts

An effect context E is a row of typed operations
Example: get:1 — Int, put:Int — 1

Effect context rows are scoped (as in Frank and Koka)
> repeats are allowed (same name but possibly different signatures)
» order of repeated operations matters

» relative order of distinct operations does not matter

Modal effect types

A mode is an effect context

A modality is a transformation from one mode to another

Modal effect types

A mode is an effect context

A modality is a transformation from one mode to another

MET — simply-typed core calculus of modal effect types

Modal effect types

A mode is an effect context

A modality is a transformation from one mode to another
MET — simply-typed core calculus of modal effect types

METL — surface language for MET with: bidirectional typing for inferring introduction
and elimination of modalities 4 algebraic data types + polymorphism

Modal effect types

A mode is an effect context

A modality is a transformation from one mode to another
MET — simply-typed core calculus of modal effect types

METL — surface language for MET with: bidirectional typing for inferring introduction
and elimination of modalities 4 algebraic data types + polymorphism

Almost all examples in this talk use the simply-typed fragment of METL

Overriding the ambient context with absolute modalities

F fun x — do yield (x +42) : (Int — 1) @ yield:Int — 1
—_——

Q@ yield:Int — 1 Q@ yield:Int — 1

Overriding the ambient context with absolute modalities

F fun x — do yield (x +42) : (Int — 1) @ yield:Int — 1
—_——

Q@ yield:Int — 1 Q@ yield:Int — 1

F fun x — do yield (x + 42) : [yield:Int — 1](Int — 1) @ .
——

Q@ yield:Int — 1 @ yield:Int —» 1

Overriding the ambient context with absolute modalities

F fun x — do yield (x +42) : (Int — 1) @ yield:Int — 1
—_——

Q@ yield:Int — 1 Q@ yield:Int —» 1

F fun x — do yield (x + 42) : [yield:Int — 1](Int — 1) @ .
——

Q@ yield:Int — 1 @ yield:Int —» 1

The absolute modality [yield:Int — 1] overrides the empty ambient effect context
(.) in the function body enabling the yield operation to be performed.

Overriding the ambient context with absolute modalities

F fun x — do yield (x +42) : (Int — 1) @ yield:Int — 1
—_——

Q@ yield:Int — 1 Q@ yield:Int —» 1

F fun x — do yield (x + 42) : [yield:Int — 1](Int — 1) @ .
——

Q@ yield:Int — 1 @ yield:Int —» 1

The absolute modality [yield:Int — 1] overrides the empty ambient effect context
(.) in the function body enabling the yield operation to be performed.

In general [E] overrides the ambient effect context with E.

Overriding the ambient context with absolute modalities

F X — yield (x + 42) : (Int — 1) @ yield:Int — 1
—_——
Q yield:Int — 1 @ yield:Int — 1
F X — yield (x + 42) : [yield:Int — 1](Int — 1) @ .
e
Q@ yield:Int — 1 @ yield:Int — 1

The absolute modality [yield:Int — 1] overrides the empty ambient effect context
(.) in the function body enabling the yield operation to be performed.

In general [E] overrides the ambient effect context with E.

Effect contexts given by absolute modalities percolate through the structure of a type:
» a function of type [E] (4 — B) may perform effects E when invoked

» elements of a list of type [E](List (A — B)) may perform effects E when invoked
» a value of type [ElInt cannot perform any effects

Effect context abbreviations

Example:

eff Gen a = yield:a —» 1

» [Gen Int] denotes the modality [yield:Int — 1]

P [Gen Int, E] denotes the modality [yield:Int — 1, E]

Absolute modalities and higher-order functions
Iteration specialised to integer lists:

iter : [J((Int — 1) — List Int — 1)
iter f nil = Q)
iter £ (cons x xs)

f x; iter f xs

Absolute modalities and higher-order functions
Iteration specialised to integer lists:

iter : [J((Int — 1) — List Int — 1)
iter f nil = Q)
iter £ (cons x xs)

f x; iter f xs

Applying a pure higher-order function in an impure effect context:

F iter (fun x — do yield (x + 42)) : 1 @ Gen Int

Absolute modalities and higher-order functions
Iteration specialised to integer lists:

iter : [J((Int — 1) — List Int — 1)
iter f nil = Q)
iter £ (cons x xs)

f x; iter f xs

Applying a pure higher-order function in an impure effect context:

= iter (X — yield (x + 42)) : 1 @ Gen Int

What happened? Bidirectional typing eliminates the [1 modality of iter and then
upcasts its empty effect context to the singleton effect context Gen Int.

Absolute modalities and higher-order functions
Iteration specialised to integer lists:

iter : [J((Int — 1) — List Int — 1)
iter f nil = Q)
iter £ (cons x xs)

f x; iter f xs

Applying a pure higher-order function in an impure effect context:
F iter (X — yield (x + 42)) : 1 @ Gen Int

What happened? Bidirectional typing eliminates the [1 modality of iter and then
upcasts its empty effect context to the singleton effect context Gen Int.

Terminology:

» boxing = modality introduction
» unboxing = modality elimination

Absolute modalities and higher-order functions
Iteration specialised to integer lists:

iter : [J((Int — 1) — List Int — 1)
iter f nil = Q)
iter £ (cons x xs)

f x; iter f xs

Applying a pure higher-order function in an impure effect context:
F iter (X — yield (x + 42)) : 1 @ Gen Int

What happened? Bidirectional typing eliminates the [1 modality of iter and then
upcasts its empty effect context to the singleton effect context Gen Int.

Terminology:

» boxing = modality introduction
» unboxing = modality elimination

In a conventional effect type system iter would be effect-polymorphic

iter : V e.(Int = 1) 3 List Int & 1

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with
return () = nil
yield x r = cons x (r ()

What type should asList have?

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with
return () = nil
yield x r = cons x (r ()

What type should asList have?
[1(<Gen Int>(1 — 1) — List Int)

The relative modality <Gen Int> extends the ambient effect context.

F fun f — handle f () with ... : <Gen Int>(1 — 1) — List Int @ E
~~ —— N——
@ Gen Int, E @ Gen Int, E @ Gen Int, E

The effect context of £ is Gen Int, E.

Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with
return () = nil
yield x r = cons x (r ()

What type should asList have?
[1(<Gen Int>(1 — 1) — List Int)

The relative modality <Gen Int> extends the ambient effect context.

F fun f — handle f () with ... : <Gen Int>(1 — 1) — List Int @ E
~~ —— N——
@ Gen Int, E @ Gen Int, E @ Gen Int, E

The effect context of £ is Gen Int, E.

In a conventional effect type system asList would be effect-polymorphic

asList : V e. (1 Sen 1ot ey 1) 3 List Int

Coercions between modalities

Automatic unboxing in METL allows values to be coerced between different modalities

We can extend an absolute modality:
F f — £ : [Gen Int](1 — 1) — [Gen Int, Gen String](1 — 1) @ E

Coercions between modalities

Automatic unboxing in METL allows values to be coerced between different modalities

We can extend an absolute modality:
F f — £ : [Gen Int](1 — 1) — [Gen Int, Gen String](1 — 1) @ E

In a conventional effect type system this corresponds to:

Gen Int, e Gen Int, Gen String, e

= f o f: (Vel 2o 4y B (Ve 1)

Coercions between modalities

Automatic unboxing in METL allows values to be coerced between different modalities

We can extend an absolute modality:
F f — £ : [Gen Int](1 — 1) — [Gen Int, Gen String](1 — 1) @ E

In a conventional effect type system this corresponds to:

Gen Int, e Gen Int, Gen String, e

= f o f: (Vel 2o 4y B (Ve 1)

We cannot extend a relative modality in the same way:
¥ f - f: <> = 1) = <Gen Int>(1 — 1) @ E # Ill-typed

Coercions between modalities
Automatic unboxing in METL allows values to be coerced between different modalities

We can extend an absolute modality:
F f — £ : [Gen Int](1 — 1) — [Gen Int, Gen String](1 — 1) @ E

In a conventional effect type system this corresponds to:

Gen Int, e Gen Int, Gen String, e

+ £ f: (Ve =22 1) B (Ve.t 1)
We cannot extend a relative modality in the same way:
¥ f - f: <> = 1) = <Gen Int>(1 — 1) @ E # Ill-typed

This would insert a fresh yield:Int — 1 operation which may shadow other yield
operations in E.

Coercions between modalities
Automatic unboxing in METL allows values to be coerced between different modalities
We can extend an absolute modality:

F f — £ : [Gen Int](1 — 1) — [Gen Int, Gen String](1 — 1) @ E

In a conventional effect type system this corresponds to:

Gen Int, e Gen Int, Gen String, e

+ £ f: (Ve =22 1) B (Ve.t 1)
We cannot extend a relative modality in the same way:
¥ f - f: <> = 1) = <Gen Int>(1 — 1) @ E # Ill-typed

This would insert a fresh yield:Int — 1 operation which may shadow other yield
operations in E.

In a conventional effect type system this corresponds to:

¥ fof: 05050

Gen Int, E
LTy

1) # Ill-typed

Coercions between modalities

An absolute modality can be coerced into the corresponding relative modality.
F fun £ — f : [Gen Int](1 — 1) — <Gen Int>(1 — 1) @ E

Coercions between modalities

An absolute modality can be coerced into the corresponding relative modality.
= f — f : [Gen Int](1 — 1) — <Gen Int>(1 — 1) @ E

In a conventional effect type system this corresponds to:

Gen Int, e E Gen Int, E
—_— —

= f > f: (Ve.l 1) = (1 1)

Coercions between modalities

An absolute modality can be coerced into the corresponding relative modality.
= f — f : [Gen Int](1 — 1) — <Gen Int>(1 — 1) @ E

In a conventional effect type system this corresponds to:

l_ £ = f - (V e.1 Gen Int, e 1) E) (1 Gen Int, E 1)
But the converse is not permitted
¥ f - f : <Gen Int>(1 — 1) — [Gen Int](1 — 1) @ E # Ill-typed

as the argument may also use effects from the ambient effect context E.

Coercions between modalities

An absolute modality can be coerced into the corresponding relative modality.
= f — f : [Gen Int](1 — 1) — <Gen Int>(1 — 1) @ E

In a conventional effect type system this corresponds to:

l_ £ = f - (V e.1 Gen Int, e 1) E) (1 Gen Int, E 1)
But the converse is not permitted
¥ f - f : <Gen Int>(1 — 1) — [Gen Int](1 — 1) @ E # Ill-typed

as the argument may also use effects from the ambient effect context E.

In a conventional effect type system this corresponds to:

Gen Int, E Gen Int, e
—_— — 1)

¥ fof: @ 1) 5 (Ve

Composing handlers

State effect

eff State s = get:1 —» s, put:s —» 1

Composing handlers

State effect

eff State s = get:1 —» s, put:s —» 1

A state handler (specialised to integer state)

state : [](<State Int>(1 — 1) — Int — 1)
state m = handle m () with

return x = fun s — x

get O r = funs - rss

put s> r = funs —r () s’

Composing handlers

Using integer state to write a generator that yields the prefix sum of a list

prefixSum : [Gen Int, State Int](List Int — 1)
prefixSum xs = iter (fun x — do put (do get () + x); do yield (do get ())) xs

Composing handlers

Using integer state to write a generator that yields the prefix sum of a list

prefixSum : [Gen Int, State Int](List Int — 1)
prefixSum xs = iter (X — put (do get () + x); yield (do get ())) xs

We can now handle the operations of prefixSum by composing two handlers

> asList (() — state (() — prefixSum [3,1,4,1,5,9]1) 0)
[3,4,8,9,14,23] : List Int

Composing handlers

Using integer state to write a generator that yields the prefix sum of a list

prefixSum : [Gen Int, State Int](List Int — 1)
prefixSum xs = iter (X — put (do get () + x); yield (do get ())) xs

We can now handle the operations of prefixSum by composing two handlers

> asList (() — state (() — prefixSum [3,1,4,1,5,9]1) 0)
[3,4,8,9,14,23] : List Int

In a conventional effect system composing handlers requires effect polymorphism

asList : V e.(1 =210 4y List Int

e
_>
1) S Int 3 1

State Int, e
—_—

state : V e. (1

Storing effectful functions
First-order cooperative concurrency effect

eff Coop = suspend:1 —» 1, ufork:1 — Bool

Storing effectful functions
First-order cooperative concurrency effect

eff Coop = suspend:1 —» 1, ufork:1 — Bool

Recursive data type of cooperative processes

data Proc = proc (List Proc — 1) next : []J(List Proc — 1)
next q = case q of
push : [J](Proc — List Proc — List Proc) nil - 0O

push x xs = xs ++ cons x nil cons (proc p) ps — p ps

Storing effectful functions
First-order cooperative concurrency effect

eff Coop = suspend:1 —» 1, ufork:1 — Bool

Recursive data type of cooperative processes

data Proc = proc (List Proc — 1) next : []J(List Proc — 1)
next q = case q of

push : [J](Proc — List Proc — List Proc) nil - 0O

push x xs = xs ++ cons x nil cons (proc p) ps — p ps

Scheduler parameterised by a list of suspended processes

schedule : [](<Coop>(1 — 1) — List Proc — 1)

schedule m = handle m () with
return Q = fun q — next q
suspend () r = fun q — next (push (proc (r ())) q)
ufork () r = fun q — r true (push (proc (r false)) q)

Storing effectful functions
First-order cooperative concurrency effect

eff Coop = suspend:1 —» 1, ufork:1 — Bool

Recursive data type of cooperative processes

data Proc = proc (List Proc — 1) next : []J(List Proc — 1)
next q = case q of

push : [J](Proc — List Proc — List Proc) nil - 0O

push x xs = xs ++ cons x nil cons (proc p) ps — p ps

Scheduler parameterised by a list of suspended processes

schedule : [](<Coop>(1 — 1) — List Proc — 1)

schedule m = handle m () with
return Q = fun q — next q
suspend () r = fun q — next (push (proc (r ())) q)
ufork () r = fun q — r true (push (proc (r false)) q)

In a conventional effect system storing effectful functions requires effect polymorphism

data Proc e = proc (List Proc i) 1)

schedule : V e.(1 Coop. 1) 3 List (Proc e) > 1

Kinds

State handler for 1 — 1 computations

state’ : [](<State Int>(1 —- (1 — 1)) — Int — (1 — 1))

Kinds

State handler for 1 — 1 computations

state’ : [](<State Int>(1 —- (1 — 1)) — Int — (1 — 1))

Unsound as this type allows effects to leak
state’ (O — O — put (do get () +42)) 0 : 1 — 1

return clause of state’ lets () — do put (do get () + 42) escape scope of handler

Kinds

State handler for 1 — 1 computations

state’ : [](<State Int>(1 —- (1 — 1)) — Int — (1 — 1))

Unsound as this type allows effects to leak
state’ (O — O — put (do get () +42)) 0 : 1 — 1

return clause of state’ lets () — do put (do get () + 42) escape scope of handler

Sound type signature

state’ : [](<State Int>(1 — (1 — 1)) — Int — <State Int>(1 — 1))

Kinds

State handler for 1 — 1 computations

state’ : [](<State Int>(1 — (1 — 1)) — Int — (1 — 1))
Unsound as this type allows effects to leak
state’ (O — O — put (do get () +42)) 0 : 1 — 1
return clause of state’ lets () — do put (do get () + 42) escape scope of handler

Sound type signature

state’ : [](<State Int>(1 — (1 — 1)) — Int — <State Int>(1 — 1))

state VErsus state’:

state : [](<State Int>(1 — 1) — Int — 1)
state’ : [](<State Int>(1 — (1 — 1)) — Int — <State Int>(1 — 1))

Kinds

State handler for 1 — 1 computations

state’ : [](<State Int>(1 — (1 — 1)) — Int — (1 — 1))
Unsound as this type allows effects to leak
state’ (O — O — put (do get () +42)) 0 : 1 — 1
return clause of state’ lets () — do put (do get () + 42) escape scope of handler

Sound type signature

state’ : [](<State Int>(1 — (1 — 1)) — Int — <State Int>(1 — 1))

state VErsus state’:

state : [](<State Int>(1 — 1) — Int — 1)
state’ : [](<State Int>(1 — (1 — 1)) — Int — <State Int>(1 — 1))

> state cannot leak the state effect

P> state’ can leak the state effect

Kinds

> Absolute types (e.g. 1, List Int, and [Gen Int](List Int — 1))
built from base types, positive types, and types boxed by an absolute modality —
cannot leak effects

» Unrestricted types (e.g. 1 — 1, List Int — 1, and <Coop>(1 — 1))

also include functions not boxed by an absolute modality —
can leak effects

Kinds

> Absolute types (e.g. 1, List Int, and [Gen Int](List Int — 1))
built from base types, positive types, and types boxed by an absolute modality —
cannot leak effects

» Unrestricted types (e.g. 1 — 1, List Int — 1, and <Coop>(1 — 1))
also include functions not boxed by an absolute modality —
can leak effects

Kinds
P Abs classifies absolute types

» Any classifies unrestricted types

Kinds

> Absolute types (e.g. 1, List Int, and [Gen Int](List Int — 1))
built from base types, positive types, and types boxed by an absolute modality —
cannot leak effects

» Unrestricted types (e.g. 1 — 1, List Int — 1, and <Coop>(1 — 1))
also include functions not boxed by an absolute modality —
can leak effects

Kinds
P Abs classifies absolute types

» Any classifies unrestricted types

Subkinding allows absolute types to be treated as unrestricted: Abs < Any

Type polymorphism

Polymorphic version of iter

iter : V(a:Any).[1((a — 1) — List a — 1)
iter {a:Any} f nil O
iter {a:Any} f (cons x xs) = f x; iter {a} f xs

Explicit type abstractions and type applications in braces.

Type polymorphism

Polymorphic version of iter

iter : V(a:Any).[1((a — 1) — List a — 1)

iter {a:Any} f nil O
iter {a:Any} f (cons x xs) = f x; iter {a} f xs

Explicit type abstractions and type applications in braces.

Two possible polymorphic types for handling state

state : V(a:Abs).[](<State Int>(1 — a) — Int — a)
state’ : V(a:Any).[](<State Int>(1 — a) — Int — <State Int>a)

» V(a:Abs) ascribes kind Abs to a, allowing values of type a to escape the handler.

» V(a:Any) ascribes kind Any to a, not allowing values of type a to escape the handler.

Type polymorphism

Polymorphic version of iter

iter : V(a:Any).[1((a — 1) — List a — 1)
iter {a:Any} f nil O
iter {a:Any} f (cons x xs) = f x; iter {a} f xs

Explicit type abstractions and type applications in braces.

Two possible polymorphic types for handling state
state : V(a:Abs).[](<State Int>(1 — a) — Int — a)
state’ : V(a:Any).[](<State Int>(1 — a) — Int — <State Int>a)
» V(a:Abs) ascribes kind Abs to a, allowing values of type a to escape the handler.

» V(a:Any) ascribes kind Any to a, not allowing values of type a to escape the handler.

Using n-expansion we can coerce state’ to have the type of state
F {a:Abs} m s — state’ {a} m s : V(a:Abs).[](<State Int>(1 — a) — Int — a) @ .

Applying a modality to an absolute type

Modalities act only on non-absolute types, so a modality applied to an absolute type can
always be discarded.

Applying a modality to an absolute type

Modalities act only on non-absolute types, so a modality applied to an absolute type can
always be discarded.

Examples:

F fun x — x : [Gen Int]List Int — List Int Q@ .

¥ fun x — x : [Gen Int](1 — 1) — (1 — 1) @ .

a:Any F fun x — x : <State Int>([Gen Int]a) — [Gen Intla @ .
a:Any K fun x — x : <State Int>a — a @ .

a:Abs F fun x — x : <State Int>a — a @ .

The kind restriction on effects

Operation arguments and results are restricted to be absolute.

The kind restriction on effects

Operation arguments and results are restricted to be absolute.

If we allowed 1eak:(1 — 1) — 1, then we could write the following program

asList (O — leak (O — yield 42))
- = O =37
leak p _ = p

which leaks the yie1d operation

The kind restriction on effects

Operation arguments and results are restricted to be absolute.

If we allowed 1eak:(1 — 1) — 1, then we could write the following program

asList (O — leak (O — yield 42))
- = O =37
leak p _ = p

which leaks the yie1d operation

Remark: it is possible to replace this restriction with an alternative formulation in which
the order of higher-order effects is important.

Effect pollution
Read and fail effects

eff Read
eff Fail

ask : 1 — Int
fail : 1 — O

Effect pollution
Read and fail effects
Read = ask :
Fail = fail : 1
Handling reading from a list of integers (if the list is empty then reading fails):

[Fail] (<Read>(1 — Int) — List Int — Int)

reads :
reads f =
£ 0
v = ns — v
ask QO r = ns — ns
nil = fail)
= Ir n ns

cons n ns

Effect pollution
Read and fail effects

Read = ask : 1

Fail = fail : 1

Handling reading from a list of integers (if the list is empty then reading fails):

[Fail] (<Read>(1 — Int) — List Int — Int)

reads :
reads f =
£ 0
v = ns — v
ask QO r = ns — ns
nil = fail)
cons nns = T nns

Handling failure as an option type:
maybeFail : [](<Fail>(1 — Int) — Maybe Int)

maybeFail f
£ 0

v
fail O _

= Just v
= Nothing

Effect pollution

Naively composing reads with maybeFail leaks the Fail effect:

bad : [](List Int — <Read, Fail>(1 — Int))
bad ns f = maybeFail (reads f ns)

bad [1,2] (() — (do ask ()) + (do fail ())) : Maybe Int @ .

This expression evaluates to Nothing.

Effect pollution

Naively composing reads with maybeFail leaks the Fail effect:

bad : [J(List Int — <Read, Fail>(1 — Int))
bad ns f = maybeFail (reads f ns)

bad [1,2] (() — (do ask ()) + (do fail ())) : Maybe Int @ .

This expression evaluates to Nothing.

How can we encapsulate the use of Fail as an intermediate effect?

Effect pollution

Naively composing reads with maybeFail leaks the Fail effect:

bad : [J(List Int — <Read, Fail>(1 — Int))
bad ns f = maybeFail (reads f ns)

bad [1,2] (() — (do ask ()) + (do fail ())) : Maybe Int @ .

This expression evaluates to Nothing.
How can we encapsulate the use of Fail as an intermediate effect?

The aim is to define

good : [J(List Int — <Read>(1 — Int) — Maybe Int)

by composing reads and maybeFail such that

good [1,2] (() — (do ask ()) + (do fail ())) : Maybe Int @ Fail

performs the fail operation.

Effect encapsulation with masking

The solution is to mask the intermediate effect:

good : []J(List Int — <Read>(1 — Int) — Maybe Int)
good ns f = maybeFail (reads (mask<fail> (£ ())))

The expression mask<fail>(M) masks fail from the ambient effect context for m.

Effect encapsulation with masking

The solution is to mask the intermediate effect:

good : [J(List Int — <Read>(1 — Int) — Maybe Int)
good ns f = maybeFail (reads (<fail> (£ O)))

The expression <fail>(M) masks fail from the ambient effect context for M.

General form <L|D> specifies a transformation on effect contexts where:
> L is a row of effect labels that are removed from the effect context

» D is a row of effects that are added to the effect context

Effect encapsulation with masking

The solution is to mask the intermediate effect:

good : [J(List Int — <Read>(1 — Int) — Maybe Int)
good ns f = maybeFail (reads (<fail> (£ O)))

The expression <fail>(M) masks fail from the ambient effect context for M.

General form <L|D> specifies a transformation on effect contexts where:
> L is a row of effect labels that are removed from the effect context

» D is a row of effects that are added to the effect context

<D> is shorthand for <|D>

Effect polymorphism

Higher-order cooperative concurrency effect
Coop = fork:[Coop](1 — 1) — 1, suspend:1 —» 1

But the argument type of fork is absolute so cannot support other effects!

Effect polymorphism

Higher-order cooperative concurrency effect

Coop = fork:[Coop](1 — 1) — 1, suspend:1 —» 1

But the argument type of fork is absolute so cannot support other effects!

METL includes effect polymorphism to support higher-order operations like fork

Coop e = fork:[Coop e, e](1 — 1) — 1, suspend:1 — 1

Effect polymorphism

Higher-order cooperative concurrency effect
Coop = fork:[Coop](1 — 1) — 1, suspend:1 —» 1

But the argument type of fork is absolute so cannot support other effects!

METL includes effect polymorphism to support higher-order operations like fork

Coop e = fork:[Coop e, e](1 — 1) — 1, suspend:1 — 1

Effect variables are only needed for use-cases such as higher-order effects where a
computation must be stored for use in an effect context different from the ambient one.

In the paper (to appear at OOPSLA 2025)

Modal effect types — https://arxiv.org/abs/2407.11816

MET

» simply-typed multimodal core calculus with effects

P type system, operational semantics, type soundness, effect safety

> extensions: sums and products (crisp elimination), type and effect polymorphism
i

» restricted core calculus of polymorphic effect types

» restriction: each scope can only refer to the lexically closest effect variables

> encoding of Fl; in MET

METL: simple bidirectional type checking for MET
» infers all introduction and elimination of modalities

» analogous to generalisation and instantiation

https://arxiv.org/abs/2407.11816

Ongoing and future work

Denotational semantics

Prototype implementation of METL
Extension of MET to support named handlers
Improved (bidirectional) type inference

Combination with oxidizing OCaml (other modalities)

