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Effect polymorphism

A prototypical pure higher-order function:

map : V a b.(a — b) — List a — List b

We can only pass pure functions to map.

An effect-polymorphic version:

map’ : Vabe.(a>b) > List a > List b

Is this really necessary?
No! In Frank the signature of map is syntactic sugar for the signature of map’.

Key observation: almost always we need only one effect variable in a type signature
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Effect polymorphism

But Frank's syntactic sugar is fragile.

For instance, consider a generator iterating over a list:

Gen a = yield:a — 1

gen : List Int LN

gen xs = map ( X — yield x) xs; ()

(adjusting concrete Frank syntax for consistency with the rest of the talk)

If we forget the annotation on the arrow then Frank gives the following error message.

cannot unify effects e and Gen Int, £

Can we do better?
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From function arrows to effect contexts

Conventional effect typing — function arrows are annotated with effects

F (£, ¥) = £ x: ((Int 5 1) x Int) 5> 1

Modal effect typing — ambient effect context determines effects
= (f ,x) >fx: ((Int > 1) x Int) -1 @ E
~—~ —— ———— S
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Effects contexts

An effect context E is a row of typed operations
Example: get:1 — Int, put:Int — 1

Effect context rows are scoped (as in Frank and Koka)
> repeats are allowed (same name but possibly different signatures)
» order of repeated operations matters

» relative order of distinct operations does not matter
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Modal effect types

A mode is an effect context

A modality is a transformation from one mode to another
MET — simply-typed core calculus of modal effect types

METL — surface language for MET with: bidirectional typing for inferring introduction
and elimination of modalities 4 algebraic data types + polymorphism

Almost all examples in this talk use the simply-typed fragment of METL
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Overriding the ambient context with absolute modalities

F X — yield (x + 42) : ( Int — 1 ) @ yield:Int — 1
—_——
Q yield:Int — 1 @ yield:Int — 1
F X — yield (x + 42) : [yield:Int — 1]( Int — 1 ) @ .
e
Q@ yield:Int — 1 @ yield:Int — 1

The absolute modality [yield:Int — 1] overrides the empty ambient effect context
(.) in the function body enabling the yield operation to be performed.

In general [E] overrides the ambient effect context with E.

Effect contexts given by absolute modalities percolate through the structure of a type:
» a function of type [E] (4 — B) may perform effects E when invoked

» elements of a list of type [E](List (A — B)) may perform effects E when invoked
» a value of type [ElInt cannot perform any effects



Effect context abbreviations

Example:

eff Gen a = yield:a —» 1

» [Gen Int] denotes the modality [yield:Int — 1]

P [Gen Int, E] denotes the modality [yield:Int — 1, E]
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Absolute modalities and higher-order functions
Iteration specialised to integer lists:

iter : [J((Int — 1) — List Int — 1)
iter f nil = Q)
iter £ (cons x xs)

f x; iter f xs

Applying a pure higher-order function in an impure effect context:
F iter ( X — yield (x + 42)) : 1 @ Gen Int

What happened? Bidirectional typing eliminates the [1 modality of iter and then
upcasts its empty effect context to the singleton effect context Gen Int.

Terminology:

» boxing = modality introduction
» unboxing = modality elimination

In a conventional effect type system iter would be effect-polymorphic

iter : V e.(Int = 1) 3 List Int & 1
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Transforming the ambient context with relative modalities

Handling the Gen Int effect to produce a list of integers:

asList f =
handle f () with
return () = nil
yield x r = cons x (r ()

What type should asList have?
[1(<Gen Int>(1 — 1) — List Int)

The relative modality <Gen Int> extends the ambient effect context.

F fun f — handle f () with ... : <Gen Int>( 1 — 1 ) — List Int @ E
~~ —— N——
@ Gen Int, E @ Gen Int, E @ Gen Int, E

The effect context of £ is Gen Int, E.

In a conventional effect type system asList would be effect-polymorphic

asList : V e. (1 Sen 1ot ey 1) 3 List Int
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Coercions between modalities
Automatic unboxing in METL allows values to be coerced between different modalities
We can extend an absolute modality:

F f — £ : [Gen Int](1 — 1) — [Gen Int, Gen String](1 — 1) @ E

In a conventional effect type system this corresponds to:

Gen Int, e Gen Int, Gen String, e

+ £ f: (Ve =22 1) B (Ve.t 1)
We cannot extend a relative modality in the same way:
¥ f - f: <> = 1) = <Gen Int>(1 — 1) @ E # Ill-typed

This would insert a fresh yield:Int — 1 operation which may shadow other yield
operations in E.

In a conventional effect type system this corresponds to:

¥ fof: 05050
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An absolute modality can be coerced into the corresponding relative modality.
= f — f : [Gen Int](1 — 1) — <Gen Int>(1 — 1) @ E

In a conventional effect type system this corresponds to:

l_ £ = f - (V e.1 Gen Int, e 1) E) (1 Gen Int, E 1)
But the converse is not permitted
¥ f - f : <Gen Int>(1 — 1) — [Gen Int](1 — 1) @ E # Ill-typed

as the argument may also use effects from the ambient effect context E.
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Composing handlers

State effect

eff State s = get:1 —» s, put:s —» 1

A state handler (specialised to integer state)

state : [](<State Int>(1 — 1) — Int — 1)
state m = handle m () with

return x = fun s — x

get O r = funs - rss

put s> r = funs —r () s’
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prefixSum : [Gen Int, State Int](List Int — 1)
prefixSum xs = iter (fun x — do put (do get () + x); do yield (do get ())) xs
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Composing handlers

Using integer state to write a generator that yields the prefix sum of a list

prefixSum : [Gen Int, State Int](List Int — 1)
prefixSum xs = iter ( X — put (do get () + x); yield (do get ())) xs

We can now handle the operations of prefixSum by composing two handlers

> asList ( () — state ( () — prefixSum [3,1,4,1,5,9]1) 0)
# [3,4,8,9,14,23] : List Int

In a conventional effect system composing handlers requires effect polymorphism

asList : V e.(1 =210 4y List Int

e
_>
1) S Int 3 1

State Int, e
—_—

state : V e. (1
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next q = case q of
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Storing effectful functions
First-order cooperative concurrency effect

eff Coop = suspend:1 —» 1, ufork:1 — Bool

Recursive data type of cooperative processes

data Proc = proc (List Proc — 1) next : []J(List Proc — 1)
next q = case q of

push : [J](Proc — List Proc — List Proc) nil - 0O

push x xs = xs ++ cons x nil cons (proc p) ps — p ps

Scheduler parameterised by a list of suspended processes

schedule : [](<Coop>(1 — 1) — List Proc — 1)

schedule m = handle m () with
return Q = fun q — next q
suspend () r = fun q — next (push (proc (r ())) q)
ufork () r = fun q — r true (push (proc (r false)) q)

In a conventional effect system storing effectful functions requires effect polymorphism

data Proc e = proc (List Proc i) 1)

schedule : V e.(1 Coop. 1) 3 List (Proc e) > 1
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State handler for 1 — 1 computations

state’ : [](<State Int>(1 — (1 — 1)) — Int — (1 — 1))
Unsound as this type allows effects to leak
state’ ( O — O — put (do get () +42)) 0 : 1 — 1
return clause of state’ lets () — do put (do get () + 42) escape scope of handler

Sound type signature

state’ : [](<State Int>(1 — (1 — 1)) — Int — <State Int>(1 — 1))

state VErsus state’:

state : [](<State Int>(1 — 1) — Int — 1)
state’ : [](<State Int>(1 — (1 — 1)) — Int — <State Int>(1 — 1))

> state cannot leak the state effect

P> state’ can leak the state effect
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Kinds

> Absolute types (e.g. 1, List Int, and [Gen Int](List Int — 1))
built from base types, positive types, and types boxed by an absolute modality —
cannot leak effects

» Unrestricted types (e.g. 1 — 1, List Int — 1, and <Coop>(1 — 1))
also include functions not boxed by an absolute modality —
can leak effects

Kinds
P Abs classifies absolute types

» Any classifies unrestricted types

Subkinding allows absolute types to be treated as unrestricted: Abs < Any
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» V(a:Abs) ascribes kind Abs to a, allowing values of type a to escape the handler.

» V(a:Any) ascribes kind Any to a, not allowing values of type a to escape the handler.



Type polymorphism

Polymorphic version of iter

iter : V(a:Any).[1((a — 1) — List a — 1)
iter {a:Any} f nil O
iter {a:Any} f (cons x xs) = f x; iter {a} f xs

Explicit type abstractions and type applications in braces.

Two possible polymorphic types for handling state
state : V(a:Abs).[](<State Int>(1 — a) — Int — a)
state’ : V(a:Any).[](<State Int>(1 — a) — Int — <State Int>a)
» V(a:Abs) ascribes kind Abs to a, allowing values of type a to escape the handler.

» V(a:Any) ascribes kind Any to a, not allowing values of type a to escape the handler.

Using n-expansion we can coerce state’ to have the type of state
F {a:Abs} m s — state’ {a} m s : V(a:Abs).[](<State Int>(1 — a) — Int — a) @ .
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Applying a modality to an absolute type

Modalities act only on non-absolute types, so a modality applied to an absolute type can
always be discarded.

Examples:

F fun x — x : [Gen Int]List Int — List Int Q@ .

¥ fun x — x : [Gen Int](1 — 1) — (1 — 1) @ .

a:Any F fun x — x : <State Int>([Gen Int]a) — [Gen Intla @ .
a:Any K fun x — x : <State Int>a — a @ .

a:Abs F fun x — x : <State Int>a — a @ .
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which leaks the yie1d operation



The kind restriction on effects

Operation arguments and results are restricted to be absolute.

If we allowed 1eak:(1 — 1) — 1, then we could write the following program

asList ( O — leak ( O — yield 42))
- = O =37
leak p _ = p

which leaks the yie1d operation

Remark: it is possible to replace this restriction with an alternative formulation in which
the order of higher-order effects is important.



Effect pollution
Read and fail effects

eff Read
eff Fail

ask : 1 — Int
fail : 1 — O



Effect pollution
Read and fail effects
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Fail = fail : 1
Handling reading from a list of integers (if the list is empty then reading fails):
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reads :
reads f =
£ 0
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Effect pollution
Read and fail effects

Read = ask : 1

Fail = fail : 1

Handling reading from a list of integers (if the list is empty then reading fails):

[Fail] (<Read>(1 — Int) — List Int — Int)

reads :
reads f =
£ 0
v = ns — v
ask QO r = ns — ns
nil = fail )
cons nns = T nns

Handling failure as an option type:
maybeFail : [](<Fail>(1 — Int) — Maybe Int)

maybeFail f
£ 0

v
fail O _

= Just v
= Nothing



Effect pollution

Naively composing reads with maybeFail leaks the Fail effect:

bad : [](List Int — <Read, Fail>(1 — Int))
bad ns f = maybeFail (reads f ns)

bad [1,2] ( () — (do ask ()) + (do fail ())) : Maybe Int @ .

This expression evaluates to Nothing.
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Effect pollution

Naively composing reads with maybeFail leaks the Fail effect:

bad : [J(List Int — <Read, Fail>(1 — Int))
bad ns f = maybeFail (reads f ns)

bad [1,2] ( () — (do ask ()) + (do fail ())) : Maybe Int @ .

This expression evaluates to Nothing.
How can we encapsulate the use of Fail as an intermediate effect?

The aim is to define

good : [J(List Int — <Read>(1 — Int) — Maybe Int)

by composing reads and maybeFail such that

good [1,2] ( () — (do ask ()) + (do fail ())) : Maybe Int @ Fail

performs the fail operation.



Effect encapsulation with masking

The solution is to mask the intermediate effect:

good : []J(List Int — <Read>(1 — Int) — Maybe Int)
good ns f = maybeFail (reads (mask<fail> (£ ())))

The expression mask<fail>(M) masks fail from the ambient effect context for m.
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Effect encapsulation with masking

The solution is to mask the intermediate effect:

good : [J(List Int — <Read>(1 — Int) — Maybe Int)
good ns f = maybeFail (reads ( <fail> (£ O)))

The expression <fail>(M) masks fail from the ambient effect context for M.

General form <L|D> specifies a transformation on effect contexts where:
> L is a row of effect labels that are removed from the effect context

» D is a row of effects that are added to the effect context

<D> is shorthand for <|D>



Effect polymorphism

Higher-order cooperative concurrency effect
Coop = fork:[Coop](1 — 1) — 1, suspend:1 —» 1

But the argument type of fork is absolute so cannot support other effects!
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Effect polymorphism

Higher-order cooperative concurrency effect
Coop = fork:[Coop](1 — 1) — 1, suspend:1 —» 1

But the argument type of fork is absolute so cannot support other effects!

METL includes effect polymorphism to support higher-order operations like fork

Coop e = fork:[Coop e, e](1 — 1) — 1, suspend:1 — 1

Effect variables are only needed for use-cases such as higher-order effects where a
computation must be stored for use in an effect context different from the ambient one.



In the paper (to appear at OOPSLA 2025)

Modal effect types — https://arxiv.org/abs/2407.11816

MET

» simply-typed multimodal core calculus with effects

P type system, operational semantics, type soundness, effect safety

> extensions: sums and products (crisp elimination), type and effect polymorphism
i

» restricted core calculus of polymorphic effect types

» restriction: each scope can only refer to the lexically closest effect variables

> encoding of Fl; in MET

METL: simple bidirectional type checking for MET
» infers all introduction and elimination of modalities

» analogous to generalisation and instantiation


https://arxiv.org/abs/2407.11816

Ongoing and future work

Denotational semantics

Prototype implementation of METL
Extension of MET to support named handlers
Improved (bidirectional) type inference

Combination with oxidizing OCaml (other modalities)



