
Parameterized algebraic theories
and applications

Cristina Matache

University of Edinburgh

1/32

Introduction: algebraic effects

Side effects (e.g. I/O, state, nondeterminism) in functional languages can
be modelled using:

▶ monads [Moggi’91] E.g. monads in Haskell;
▶ or using algebraic theories [Plotkin&Power]:

• operations (e.g. reading and writing to memory) produce the
effects;

• program equations specify the behaviour of operations.

There is a correspondence between strongmonads and algebraic theories.

2/32

Introduction: algebraic effects

Some effects do not fit into this algebraic framework.

Examples: dynamically allocating new memory locations, exception
catching, continuations, normalizing a probability distribution, measuring
qubits etc.

The following frameworks capture some of these effects:

▶ Scoped effects [Wu et. al.’14].
▶ Parameterized algebraic theories [Staton’13].

Contributions
▶ Scoped effects as parameterized theories

[Lindley, Matache, Moss, Staton, Wu, Yang ESOP’24].
▶ Work in progress towards a parameterized theory of Unix fork. 3/32

Outline

1 Algebraic effects and algebraic theories

2 Parameterized algebraic theories

3 Scoped effects

4 Scoped effects as parameterized algebraic theories

5 A parameterized theory of threads (work in progress)

4/32

Example: explicit nondeterminism (backtracking) [Plotkin&Pretnar’09, ’13]

Operations

or(x, y) choice
fail failure

Equations

x, y, z ⊢ or(x, or(y, z)) = or(or(x, y), z)

x ⊢ or(fail, x) = or(x, fail) = x

Generic effects:

or : unit → bool bool = arity unit = coarity
fail : unit → 0

Translation between generic effects and algebraic operations:

or(x, y) = if or() then x else y or() = or(true, false)

5/32

Example: explicit nondeterminism (backtracking) [Plotkin&Pretnar’09, ’13]

Operations

or(x, y) choice
fail failure

Equations

x, y, z ⊢ or(x, or(y, z)) = or(or(x, y), z)

x ⊢ or(fail, x) = or(x, fail) = x

Model = a set (carrier) + interpretations for the operations.

Fix a set A. The intended model for the theory of nondeterminism is:

▶ Carrier: the set List(A)
▶ Operations:JorK : List(A)2 → List(A), JorK(l1, l2) = l1@l2JfailK : 1 → List(A), JfailK() = []

6/32

Example: one-bit state

Operations

put(i; x), i ∈ 2 = {0, 1} writing
get(x0, x1) reading

Equations

x0, x1 ⊢ put(i; get(x0, x1)) = put(i; xi)

x ⊢ put(i; put(i′; x)) = put(i′; x)

x ⊢ get(put(0; x), put(1; x)) = x

Generic effects:

put : bool → unit unit = arity bool = coarity
get : unit → bool

7/32

Example: one-bit state

Operations

put(i; x), i ∈ 2 = {0, 1} writing
get(x0, x1) reading

Equations

x0, x1 ⊢ put(i; get(x0, x1)) = put(i; xi)

x ⊢ put(i; put(i′; x)) = put(i′; x)

x ⊢ get(put(0; x), put(1; x)) = x

Fix a set A. The intended model for the algebraic theory of state is:

▶ Carrier: (A× 2)2

▶ Operations:JputK : 2× (A× 2)2 → (A× 2)2 JputK(i, f) = λb. f(i)

JgetK : (A× 2)2 × (A× 2)2 → (A× 2)2 JgetK(f0, f1) = λb.

(f0 b) if b = 0

(f1 b) if b = 1 8/32

Algebraic theories

▶ Algebraic theories provide an equational reasoning system for
algebraic effects, with semantic models, such that equality in the
theory is sound and complete.

▶ List(A) and (A× 2)2 are free models on the set A.

▶ List and (−× 2)2 extend to strong monads on Set. Used for
implementation and denotational semantics.

▶ Correspondence between algebraic theories and finitary (strong)
monads on Set, via the free model construction.

9/32

Outline

1 Algebraic effects and algebraic theories

2 Parameterized algebraic theories

3 Scoped effects

4 Scoped effects as parameterized algebraic theories

5 A parameterized theory of threads (work in progress)

10/32

Parameterized theory example: local state

Local state = dynamically creating memory locations that store one bit
Parameters = location names
put(a, i; x) write value i ∈ {0, 1} to location a, continue as x;

a is a free parameter

get(a; x0, x1) read the bit stored in location a and continue as
either x0 or x1; a is a free parameter

new(i; a.x(a)) create a new location a, containing i ∈ {0, 1}
a is a fresh parameter, bound

+ operation for equality testing and equations [Staton LICS’13]

11/32

Parameterized theory example: local state

Parameters = location names

P = abstract type of parameters

Generic effects:

put(a, i; x) put : P× bool → unit

get(a; x0, x1) get : P → bool

new(i; a.x(a)) new : bool → P P = arity bool = coarity

For algebraic theories, arities and coarities are sums of unit. Now we allow
sums and products with P.

12/32

Parameterized algebraic theories [Staton FOSSACS’13, LICS’13, POPL’15]

▶ Uniform framework for axiomatizing local effects.

▶ Extend plain algebraic theories with binding.

▶ Provide an equational reasoning system, sound and complete with
respect to models.

▶ Correspond to monads on a functor category.

13/32

Parameterized algebraic theories [Staton FOSSACS’13, LICS’13, POPL’15]

Example Parameters Models in
name generation names

SetFin
local state location names

π-calculus (fragment) communication channels
first-order logic individuals

quantum computation qubits (linear) SetBij

scoped effects [ESOP’24] scopes (ordered, linear) Set|N|

Unix fork (work in progess) thread IDs SetFin

For each of these functor categories: parameterized theories correspond to
sifted-colimit-preserving strong monads (via the free model construction).

14/32

Outline

1 Algebraic effects and algebraic theories

2 Parameterized algebraic theories

3 Scoped effects

4 Scoped effects as parameterized algebraic theories

5 A parameterized theory of threads (work in progress)

15/32

Example: explicit nondeterminism with once [Wu et. al.’14]

Operations:

or(x, y) choice
fail failure
once(x) choose the first non-failing result of x

The free model uses the List monad. For a set A:JorK : List(A)2 → List(A), JorK(l1, l2) = l1@l2JfailK : 1 → List(A), JfailK() = []

We want the interpretation of once to be:JonceK : List(A) → List(A) JonceK([a, . . .]) = [a] JonceK([]) = []

16/32

Algebraicity

Operations JopK in the free model of a theory behave well with respect to
the structure of the induced monad T :JopK : TA → TA >>= : TA× (A ⇒ TB) → TB(JopK(x)>>= λa. y

)
= JopK(x >>= λa. y)

Example:JorK : List(N)2 → List(N) >>= : List(N)× (N⇒ List(N)) → List(N)

k = λn. [n, n+ 1]
(JorK([1], [3])>>= k

)
=

(
[1, 3]>>= k

)
= [1, 2, 3, 4]

JorK([1]>>= k, [3]>>= k) = JorK([1, 2], [3, 4]) = [1, 2, 3, 4]

17/32

Algebraicity

Operations JopK in the free model of a theory behave well with respect to
the structure of the induced monad T :JopK : TA → TA >>= : TA× (A ⇒ TB) → TB(JopK(x)>>= λa. y

)
= JopK(x >>= λa. y)

Example using the generic effect:

or : unit → bool

if or() then f(); h() else g(); h() =
(
if or() then f() else g()

)
;h()

18/32

Algebraicity fails for once

JonceK : List(A) → List(A) is not algebraic with respect to the List monad.

Example:

JorK : List(N)2 → List(N) >>= : List(N)× (N⇒ List(N)) → List(N)

k = λn. [n, n+ 1]
(JonceK(JorK([1], [3])))>>= k =

(
[1]>>= k

)
= [1, 2]

JonceK(JorK([1], [3])>>= k
)
= JonceK([1, 2, 3, 4]) = [1]

▶ once doesn’t present a monad in the usual sense
▶ Intuition: the scope of once is delimited, even though its arity is that

of an algebraic operation. once is called a scoped effect.

19/32

Scoped effects: background

▶ Other examples: exception catching, state with local variables.

▶ Scoped effects implemented as effect handlers [Plotkin&Pretnar’09, ’13]. Not
guaranteed to satisfy equations.

▶ Treating scoped effects as operations: work on free monads from
signatures and extending effect handlers to handle scoped
operations. [Wu et. al.’14], [Piróg et.al. LICS’18], [Yang et.al. ESOP’22, ICFP’23]

Our contribution [Lindley, Matache, Moss, Staton, Wu, Yang ESOP’24]

Finding a notion of algebraic theory to axiomatize scoped effects.

20/32

Outline

1 Algebraic effects and algebraic theories

2 Parameterized algebraic theories

3 Scoped effects

4 Scoped effects as parameterized algebraic theories

5 A parameterized theory of threads (work in progress)

21/32

Scoped effects as parameterized algebraic theories

Parameters = names of scopes

A scoped effect = a theory with ordered, linear parameters

Example: explicit nondeterminism with once
or(x, y) choice

fail failure

once(a.x(a)) open a new scope named a, continue as x(a); a is bound

close(a; y) close the scope a, y cannot use a anymore; a is free

Closing a scope becomes an explicit operation. We write:

once
(
a.or(close(a; 1), close(a; 3))

)
instead of once(or(1, 3))

22/32

Equations for explicit nondeterminism with once

Explicit nondeterminism

or(x, or(y, z)) = or(or(x, y), z)

or(fail, x) = or(x, fail) = x

Once/close

once(a.close(a; x)) = x

once(a.fail) = fail

once(a.or(x(a), x(a))) = once(a.x(a))

once
(
a.or(close(a; x), y(a))

)
= x

We can prove using the equations:

once
(
a.or(close(a; or(1, 2)), close(a; or(3, 4))

)
= or(1, 2)

23/32

Models for explicit nondeterminism with once

Model = an object from Set|N| (carrier) + interpretations for the operations.

The free model on A = (A0, ∅, ∅, . . .) ∈ Set|N| has:

▶ Carrier: the sequence TA(n) = Listn+1(A0), for n ∈ N
▶ Operations:JonceKn : TA(n+ 1) → TA(n) JonceKn([a, . . .]) = a, JonceKn([]) = []JcloseKn : TA(n) → TA(n+ 1) JcloseKn(l) = [l]JorKn : TA(n)2 → TA(n) JorKn(l1, l2) = l1@l2JfailKn : 1 → TA(n) JfailKn() = []

Recall: once(a.x(a)) close(a; y) or(x, y) fail
24/32

Scoped effects as parameterized algebraic theories

Theorem [ESOP’24]

The free model on A = (A0, ∅, ∅, . . .) ∈ Set|N| (from previous slide) is the
monad algebra used to model nondeterminism with once in [Piróg et.al.
LICS’18].

▶ Therefore, we have an equational characterization of a model from
the scoped effects literature.

▶ We have analogous results for exception catching and state with local
variables.

▶ Parameterized theories allow sound and complete equational
reasoning for scoped effects.

25/32

Outline

1 Algebraic effects and algebraic theories

2 Parameterized algebraic theories

3 Scoped effects

4 Scoped effects as parameterized algebraic theories

5 A parameterized theory of threads (work in progress)

26/32

Applications of parameterized theories

Example Parameters Models in
name generation names

SetFin
local state location names

π-calculus (fragment) communication channels
first-order logic individuals

quantum computation qubits (linear) SetBij

scoped effects [ESOP’24] scopes (ordered,linear) Set|N|

Unix fork (work in progess) thread IDs SetFin

I’ll discuss the example of forking threads. Parameters are unconstrained.

27/32

Parameterized theory of threads with names

Parameters = thread IDs = P

Operations:
fork(a.x(a), y) x = parent thread; might use a

y = child thread; cannot use a

a = ID of child; bound name

wait(a; x) wait for the thread named a to finish, continue as x

stop this thread has finished (no continuation)

Generic effects: fork : unit → P+ unit wait : P → unit

28/32

(Tentative) Equations for the parameterized theory of threads

Children that stop immediately:

x : 0 | − ⊢ fork(a.x, stop) = x x : 0 | − ⊢ fork(a.wait(a; x), stop) = x

Forking and waiting commute:

x : 2, y : 1 | b ⊢ fork(a.wait(b; x(b, a)), wait(b; y(b))) = wait(b; fork(a.x(b, a), y(b)))

Waiting is idempotent and commutative:

x : 1 | a ⊢ wait(a; wait(a; x(a))) = wait(a; x(a))

x : 2 | a, b ⊢ wait(a; wait(b; x(a, b))) = wait(b; wait(a; x(a, b)))

29/32

(Tentative) Equations for the parameterized theory of threads

Forking is commutative and associative:

x : 2, y1, y2 : 0 | − ⊢ fork(a.fork(b.x(a, b), y2), y1) = fork(b.fork(a.x(a, b), y1), y2)

x, y : 1, z : 0 | − ⊢ fork(a.x(a), fork(b.y(b), z)) = fork(b.fork(a.x(a), y(b)), z)

The parent might stop before its children:

y : 0 | − ⊢ fork(a.stop, y) ̸= y

But:
y : 0 | − ⊢ fork(a.wait(a; stop), y) = y

30/32

Parameterized theory of threads – Work in progress

▶ Find a nice description of the free model for this theory (without
quotienting by equations), and hence of a monad.

▶ Compare the equations with an operational semantics for threads.
Change the equations if needed.

Goal
A sound and adequate denotational semantics for Unix threads, using a
monad.

31/32

Summary and future work

Summary:

▶ Parameterized algebraic theories extend algebraic theories with more
arities (formed from an abstract type P).

▶ They can be used to reason equationally about:
• scoped effects (operations that are not “algebraic”)
• forking threads (work in progress)

Future work:

▶ Effect handlers for parameterized operations
▶ For scoped effects

• Axiomatize more examples e.g. backtracking with cut
• Programming with generic effects 32/32

	Algebraic effects and algebraic theories
	Parameterized algebraic theories
	Scoped effects
	Scoped effects as parameterized algebraic theories
	A parameterized theory of threads (work in progress)

