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Algebraic effects

▶ Effects can be modelled using strong monads on cartesian closed
categories [Moggi’91].

▶ and analyzed using algebraic theories [Plotkin & Power] in terms of
operations and program equations.

▶ The correspondence between algebraic theories and strong monads
on Set can be used to recover Moggi’s monads.
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Question

Effects that dynamically allocate resources (local) need more
sophisticated algebraic theories/monads. E.g. local state.
[Plotkin & Power’02], [Power’06], [Melliès’10,’14], [Staton’13]

Question
Can concurrency (forking threads and waiting for them) be axiomatized as
a local algebraic effect?

Ongoing work using parameterized algebraic theories [Staton’13].
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Outline

1 Parameterized algebraic theories

2 Parameterized theory of threads with names

3 Operational semantics for threads with names
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Parameterized algebraic theories [Staton FOSSACS’13, LICS’13, POPL’15]

▶ Uniform framework for axiomatizing local effects:

Example Parameters
local state location names

read(a, x, y) read the bit stored in location a and continue as either x or y
a is a free parameter

new0(a.x(a)) create a new location a, containing 0

a is a fresh parameter, bound

+ other operations and equations

▶ Extend algebraic theories by allowing binding of abstract parameters.
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Parameterized algebraic theories [Staton FOSSACS’13, LICS’13, POPL’15]

▶ Uniform framework for axiomatizing local effects:

Example Parameters
local state location names

π-calculus (fragment) communication channels
first-order logic individuals

quantum computation qubits

▶ Extend algebraic theories by allowing binding of abstract parameters.
▶ Correspondence to monads on a functor category.

π-calculus (fragment): does not contain parallel composition as an operation
see also [Stark’08], [van Glabbeek & Plotkin’10]

6/15



Outline

1 Parameterized algebraic theories

2 Parameterized theory of threads with names

3 Operational semantics for threads with names

7/15



Parameterized theory of threads with names

Parameters = thread IDs

Operations:
fork(a.x(a), y) x = parent thread; variable standing for another term

y = child thread; variable
a = ID of child; bound name that x can use, but y can’t

wait(a, x) wait for the thread named a to finish, continue as x

stop this thread has finished (no continuation)

prints(x) print s (observable behaviour), continue as x

Forking and waiting are similar to the ones in Unix.
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(Tentative) Equations for the parameterized theory of threads

y : 0 | − ⊢ fork(a.stop, y) = y

x : 0 | − ⊢ fork(a.wait(a, x), stop) = x

x : 2, y : 1 | b ⊢ fork(a.wait(b, x(b, a)), wait(b, y(b))) = wait(b, fork(a.x(b, a), y(b)))
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x : 2 | a, b ⊢ wait(a,wait(b, x(a, b))) = wait(b,wait(a, x(a, b)))

. . .

Goal
Compare the equations with an operational semantics.
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Operational semantics for threads with names

Configuration T = a set of running (named) threads

Labels = printed symbols

Labelled transition system:

T ⊎ {[a]fork(b.t1, t2)} → T ⊎ {[a]t1, [b]t2} b fresh
T ⊎ {[a]wait(b, t), [b]stop} → T ⊎ {[a]t, [b]stop}
T ⊎ {[a]prints(t)}

s−→ T ⊎ {[a]t}

Terms t1 and t2 are contextually equivalent if they have the same sets of
traces in all contexts.
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Operational semantics for threads with names

Goal
(1) Does equality in the theory imply contextual equivalence?

(2) And vice-versa?

(1) No, unless we remove some equations.
y : 0 | − ⊢ fork(a.stop, y) = y x : 0 | − ⊢ fork(a.wait(a, x), stop) = x

x : 2, y : 1 | b ⊢ fork(a.wait(b, x(b, a)), wait(b, y(b))) = wait(b, fork(a.x(b, a), y(b)))

x : 0 | − ⊢ fork(a.x, stop) = x y : 0 | − ⊢ fork(a.wait(a, stop), y) = y

x : 1 | a ⊢ wait(a,wait(a, x(a))) = wait(a, x(a))

x : 2 | a, b ⊢ wait(a,wait(b, x(a, b))) = wait(b,wait(a, x(a, b)))

x : 2, y1, y2 : 0 | − ⊢ fork(a.fork(b.x(a, b), y2), y1) = fork(b.fork(a.x(a, b), y1), y2)

x, y : 0 | − ⊢ fork(a.x, y) = fork(a.y, x)

x, y : 1, z : 0 | − ⊢ fork(a.x(a), fork(b.y(b), z)) = fork(b.fork(a.x(a), y(b)), z) 12/15



Operational semantics for threads with names

Goal
(1) Does equality in the theory imply contextual equivalence?

(2) And vice-versa?

(1) is hard to prove because of the quantification over all contexts.

Trace equivalence equates too many programs.

Question
What should we replace contextual equivalence with? What is a good
notion of trace?
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Trace equivalence equates too many programs

y : 0 | − ⊢ fork(a.stop, y) = y

t1 = fork(a.stop, print1(stop)) {1}

t2 = print1(stop) {1}

Terms t1 and t2 are trace equivalent, but not contextually equivalent:

C = fork(b.wait(b, print2(stop)), □)

C[t1] {21, 12}

C[t2] {12}
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Summary

Work in progress about:

▶ axiomatizing Unix fork and wait
▶ as an algebraic theory, parameterized by thread ID’s
▶ and comparing to an operational semantics

Question
What is an appropriate notion of program equivalence? How does it
compare to the axiomatization?

15/15


	Parameterized algebraic theories
	Parameterized theory of threads with names
	Operational semantics for threads with names

