
On the expressive power of types

Sam Lindley

The University of Edinburgh

TYPES 2022

What do we mean by expressive power?

Some possible answers:

I Computability

I Algorithmic complexity

I Macro expressiveness

Matthias Felleisen

[Felleisen, 1990, “On the expressive power of programming languages”]

What do we mean by expressive power?

Some possible answers:

I Computability

I Algorithmic complexity

I Macro expressiveness

Matthias Felleisen

[Felleisen, 1990, “On the expressive power of programming languages”]

What do we mean by expressive power?

Some possible answers:

I Computability

I Algorithmic complexity

I Macro expressiveness

Matthias Felleisen

[Felleisen, 1990, “On the expressive power of programming languages”]

What do we mean by expressive power?

Some possible answers:

I Computability

I Algorithmic complexity

I Macro expressiveness

Matthias Felleisen

[Felleisen, 1990, “On the expressive power of programming languages”]

Quiz

Can function types encode product types?

Can positive iso-recursive types encode positive equi-recursive types?

Can existential types encode universal types?

Can simple-typed lambda calculus encode System F?

Can row polymorphism encode row subtyping?

Quiz

Can function types encode product types?

Can positive iso-recursive types encode positive equi-recursive types?

Can existential types encode universal types?

Can simple-typed lambda calculus encode System F?

Can row polymorphism encode row subtyping?

Quiz

Can function types encode product types?

Can positive iso-recursive types encode positive equi-recursive types?

Can existential types encode universal types?

Can simple-typed lambda calculus encode System F?

Can row polymorphism encode row subtyping?

Quiz

Can function types encode product types?

Can positive iso-recursive types encode positive equi-recursive types?

Can existential types encode universal types?

Can simple-typed lambda calculus encode System F?

Can row polymorphism encode row subtyping?

Quiz

Can function types encode product types?

Can positive iso-recursive types encode positive equi-recursive types?

Can existential types encode universal types?

Can simple-typed lambda calculus encode System F?

Can row polymorphism encode row subtyping?

Quiz

Can function types encode product types?

Can positive iso-recursive types encode positive equi-recursive types?

Can existential types encode universal types?

Can simple-typed lambda calculus encode System F?

Can row polymorphism encode row subtyping?

Part I

Products

Motivation

Alonzo Church

The standard Church encoding for a pair can only be ascribed a type in simply-typed
lambda calculus if both components of the pair have the same type.

Do alternative simply-typed encodings exist for heterogeneous pairs?

Motivation

Alonzo Church

The standard Church encoding for a pair can only be ascribed a type in simply-typed
lambda calculus if both components of the pair have the same type.

Do alternative simply-typed encodings exist for heterogeneous pairs?

Call-by-name CPS

Products are encodable via a curried global CPS translation

N JAK = (A? → R)→ R

X ? = X
(A× B)? = N JAK×N JBK

(A→ B)? = N JAK→ N JBK

What about a local encoding?

Call-by-name CPS

Products are encodable via a curried global CPS translation

N JX K = (X → R)→ R
N JA→ BK = ((N JAK→ N JBK)→ R)→ R
N JA× BK = ((N JAK×N JBK)→ R)→ R

What about a local encoding?

Call-by-name CPS

Products are encodable via a curried global CPS translation

N JX K = (X → R)→ R
N JA→ BK = ((N JAK→ N JBK)→ R)→ R
N JA× BK = ((N JAK×N JBK)→ R)→ R

N JxK = λk .x k
N Jλx .MK = λk .k (λx .N JMK)
N JM NK = λk.N JMK (λf .f N JNK k)

N Jpair M NK = λk.k (pair N JMK N JNK)
N Jfst MK = λk.N JMK (λp.(fst p) k)
N Jsnd MK = λk.N JMK (λp.(snd p) k)

What about a local encoding?

Call-by-name CPS

Products are encodable via a curried global CPS translation

CJX K = (X → R)→ R
CJA→ BK = ((CJAK→ CJBK)→ R)→ R
CJA× BK = (CJAK→ CJBK→ R)→ R

CJxK = λk .x k
CJλx .MK = λk .k (λx .CJMK)
CJM NK = λk .CJMK (λf .f CJNK k)

CJpair M NK = λk .k CJMK CJNK
CJfst MK = λk .CJMK (λx .λy .x k)
CJsnd MK = λk .CJMK (λx .λy .y k)

What about a local encoding?

Call-by-name CPS

Products are encodable via a curried global CPS translation

CJX K = (X → R)→ R
CJA→ BK = ((CJAK→ CJBK)→ R)→ R
CJA× BK = (CJAK→ CJBK→ R)→ R

CJxK = λk .x k
CJλx .MK = λk .k (λx .CJMK)
CJM NK = λk .CJMK (λf .f CJNK k)

CJpair M NK = λk .k CJMK CJNK
CJfst MK = λk .CJMK (λx .λy .x k)
CJsnd MK = λk .CJMK (λx .λy .y k)

What about a local encoding?

Localising CPS
Untyped

UJpair M NK = λs.s UJMK UJNK
UJfst MK = UJMK (λx .λy .x)
UJsnd MK = UJMK (λx .λy .y)

Simply typed — homogeneous products

HJA× AK = (HJAK→ HJAK→ HJAK)→ HJAK
HJpair MA NAK = λsHJAK→HJAK→HJAK.s HJMK HJNK
HJfst MA×AK = HJMK (λxHJAK.λyHJAK.x)

HJsnd MA×AK = HJMK (λxHJAK.λyHJAK.y)

Polymorphic

FJA× BK = ∀Z .(FJAK→ FJBK→ Z)→ Z

FJpairA,B M NK = ΛZ .λsFJAK→FJBK→Z .s FJMK FJNK
FJfstA,B MK = FJMK FJAK (λxFJAK.λyFJBK.x)

FJsndA,B MK = FJMK FJBK (λxFJAK.λyFJBK.y)

Localising CPS
Untyped

UJpair M NK = λs.s UJMK UJNK
UJfst MK = UJMK (λx .λy .x)
UJsnd MK = UJMK (λx .λy .y)

Simply typed — homogeneous products

HJA× AK = (HJAK→ HJAK→ HJAK)→ HJAK
HJpair MA NAK = λsHJAK→HJAK→HJAK.s HJMK HJNK
HJfst MA×AK = HJMK (λxHJAK.λyHJAK.x)

HJsnd MA×AK = HJMK (λxHJAK.λyHJAK.y)

Polymorphic

FJA× BK = ∀Z .(FJAK→ FJBK→ Z)→ Z

FJpairA,B M NK = ΛZ .λsFJAK→FJBK→Z .s FJMK FJNK
FJfstA,B MK = FJMK FJAK (λxFJAK.λyFJBK.x)

FJsndA,B MK = FJMK FJBK (λxFJAK.λyFJBK.y)

Localising CPS
Untyped

UJpair M NK = λs.s UJMK UJNK
UJfst MK = UJMK (λx .λy .x)
UJsnd MK = UJMK (λx .λy .y)

Simply typed — homogeneous products

HJA× AK = (HJAK→ HJAK→ HJAK)→ HJAK
HJpair MA NAK = λsHJAK→HJAK→HJAK.s HJMK HJNK
HJfst MA×AK = HJMK (λxHJAK.λyHJAK.x)

HJsnd MA×AK = HJMK (λxHJAK.λyHJAK.y)

Polymorphic

FJA× BK = ∀Z .(FJAK→ FJBK→ Z)→ Z

FJpairA,B M NK = ΛZ .λsFJAK→FJBK→Z .s FJMK FJNK
FJfstA,B MK = FJMK FJAK (λxFJAK.λyFJBK.x)

FJsndA,B MK = FJMK FJBK (λxFJAK.λyFJBK.y)

No local encoding of X × Y
We seek β-normal forms fstX ,Y and sndX ,Y such that:

Jp : X × Y ` fst p : X K = p : JX × Y K ` fstX ,Y : X
Jp : X × Y ` snd p : Y K = p : JX × Y K ` sndX ,Y : Y

So we must have m, n,M1, ...,Mm,N1, ...,Nn such that:

fstX ,Y = p M1 . . . Mm

sndX ,Y = p N1 . . . Nn

The typing rule for application means that we also have

A1 → · · · → Am → X = JX × Y K = B1 → · · · → Bn → Y

where
(p : JX × Y K ` Mi : Ai)1≤i≤m
(p : JX × Y K ` Nj : Bi)1≤j≤nj

But these equations could only hold if X and Y were the same type!

No local encoding of X × Y
We seek β-normal forms fstX ,Y and sndX ,Y such that:

Jp : X × Y ` fst p : X K = p : JX × Y K ` fstX ,Y : X
Jp : X × Y ` snd p : Y K = p : JX × Y K ` sndX ,Y : Y

So we must have m, n,M1, ...,Mm,N1, ...,Nn such that:

fstX ,Y = p M1 . . . Mm

sndX ,Y = p N1 . . . Nn

The typing rule for application means that we also have

A1 → · · · → Am → X = JX × Y K = B1 → · · · → Bn → Y

where
(p : JX × Y K ` Mi : Ai)1≤i≤m
(p : JX × Y K ` Nj : Bi)1≤j≤nj

But these equations could only hold if X and Y were the same type!

No local encoding of X × Y
We seek β-normal forms fstX ,Y and sndX ,Y such that:

Jp : X × Y ` fst p : X K = p : JX × Y K ` fstX ,Y : X
Jp : X × Y ` snd p : Y K = p : JX × Y K ` sndX ,Y : Y

So we must have m, n,M1, ...,Mm,N1, ...,Nn such that:

fstX ,Y = p M1 . . . Mm

sndX ,Y = p N1 . . . Nn

The typing rule for application means that we also have

A1 → · · · → Am → X = JX × Y K = B1 → · · · → Bn → Y

where
(p : JX × Y K ` Mi : Ai)1≤i≤m
(p : JX × Y K ` Nj : Bi)1≤j≤nj

But these equations could only hold if X and Y were the same type!

No local encoding of X × Y
We seek β-normal forms fstX ,Y and sndX ,Y such that:

Jp : X × Y ` fst p : X K = p : JX × Y K ` fstX ,Y : X
Jp : X × Y ` snd p : Y K = p : JX × Y K ` sndX ,Y : Y

So we must have m, n,M1, ...,Mm,N1, ...,Nn such that:

fstX ,Y = p M1 . . . Mm

sndX ,Y = p N1 . . . Nn

The typing rule for application means that we also have

A1 → · · · → Am → X = JX × Y K = B1 → · · · → Bn → Y

where
(p : JX × Y K ` Mi : Ai)1≤i≤m
(p : JX × Y K ` Nj : Bi)1≤j≤nj

But these equations could only hold if X and Y were the same type!

Hang on a minute!

John Longley Dag Normann Oleg Kiselyov

Type-indexed local encodings of products are well-known in PCF and System T.
Examples:

I [Longley and Normann, 2015]

I [Kiselyov, 2021]
http://okmij.org/ftp/Computation/simple-encodings.html#product

How do we reconcile the existence of such encodings with the non-existence result?

http://okmij.org/ftp/Computation/simple-encodings.html#product

No local encoding of X × (X → X)

Consider X × (X → X). We seek β-normal forms fstX ,X→X and sndX ,X→X such that:

Jp : X × (X → X) ` fst p : X K = p : JX × (X → X)K ` fstX ,X→X : X
Jp : X × (X → X) ` snd p : X → X K = p : JX × (X → X)K ` sndX ,X→X : X → X

As before, fstX ,X→X must be of the form

p M1 . . . Mm

and hence:
JX × (X → X)K = A1 → · · · → Am → X

No local encoding of X × (X → X)

Consider X × (X → X). We seek β-normal forms fstX ,X→X and sndX ,X→X such that:

Jp : X × (X → X) ` fst p : X K = p : JX × (X → X)K ` fstX ,X→X : X
Jp : X × (X → X) ` snd p : X → X K = p : JX × (X → X)K ` sndX ,X→X : X → X

As before, fstX ,X→X must be of the form

p M1 . . . Mm

and hence:
JX × (X → X)K = A1 → · · · → Am → X

No local encoding of X × (X → X) (continued)

Two choices for sndX ,X→X :

1. p N1 . . . Nm−1
=⇒ Am = X and Mm = p M ′1 . . . M

′
m

M ′m = p M ′′1 . . . M ′′m
...

No finite such snd can exist.

2. λz .N ′

=⇒ Jsnd (pair x y)K = λz .N ′[Jpair x yK/p]
No lambda abstraction can be β-converted to y .

No local encoding of X × (X → X) (continued)

Two choices for sndX ,X→X :

1. p N1 . . . Nm−1

=⇒ Am = X and Mm = p M ′1 . . . M
′
m

M ′m = p M ′′1 . . . M ′′m
...

No finite such snd can exist.

2. λz .N ′

=⇒ Jsnd (pair x y)K = λz .N ′[Jpair x yK/p]
No lambda abstraction can be β-converted to y .

No local encoding of X × (X → X) (continued)

Two choices for sndX ,X→X :

1. p N1 . . . Nm−1
=⇒ Am = X and Mm = p M ′1 . . . M

′
m

M ′m = p M ′′1 . . . M ′′m
...

No finite such snd can exist.

2. λz .N ′

=⇒ Jsnd (pair x y)K = λz .N ′[Jpair x yK/p]
No lambda abstraction can be β-converted to y .

No local encoding of X × (X → X) (continued)

Two choices for sndX ,X→X :

1. p N1 . . . Nm−1
=⇒ Am = X and Mm = p M ′1 . . . M

′
m

M ′m = p M ′′1 . . . M ′′m
...

No finite such snd can exist.

2. λz .N ′

=⇒ Jsnd (pair x y)K = λz .N ′[Jpair x yK/p]
No lambda abstraction can be β-converted to y .

No local encoding of X × (X → X) (continued)

Two choices for sndX ,X→X :

1. p N1 . . . Nm−1
=⇒ Am = X and Mm = p M ′1 . . . M

′
m

M ′m = p M ′′1 . . . M ′′m
...

No finite such snd can exist.

2. λz .N ′

=⇒ Jsnd (pair x y)K = λz .N ′[Jpair x yK/p]
No lambda abstraction can be β-converted to y .

No local encoding of X × (X → X) (continued)

Two choices for sndX ,X→X :

1. p N1 . . . Nm−1
=⇒ Am = X and Mm = p M ′1 . . . M

′
m

M ′m = p M ′′1 . . . M ′′m
...

No finite such snd can exist.

2. λz .N ′

=⇒ Jsnd (pair x y)K = λz .N ′[Jpair x yK/p]

No lambda abstraction can be β-converted to y .

No local encoding of X × (X → X) (continued)

Two choices for sndX ,X→X :

1. p N1 . . . Nm−1
=⇒ Am = X and Mm = p M ′1 . . . M

′
m

M ′m = p M ′′1 . . . M ′′m
...

No finite such snd can exist.

2. λz .N ′

=⇒ Jsnd (pair x y)K = λz .N ′[Jpair x yK/p]
No lambda abstraction can be β-converted to y .

Local encoding of X × (X → X) with η

EJX × (X → X)K = (X → (X → X)→ X)→ X

EJpair MX NX→X K = λf .f EJMK EJNK
EJfst MX×(X→X)K = EJMK (λx y .x)

EJsnd MX×(X→X)K = λz .EJMK (λx y .y z)

Now we have
EJfst (EJpair x yK)K ∼β x
EJsnd (EJpair x yK)K ∼β λz .y z ∼η y

Local encoding of X × (X → X) with η

EJX × (X → X)K = (X → (X → X)→ X)→ X

EJpair MX NX→X K = λf .f EJMK EJNK
EJfst MX×(X→X)K = EJMK (λx y .x)

EJsnd MX×(X→X)K = λz .EJMK (λx y .y z)

Now we have
EJfst (EJpair x yK)K ∼β x
EJsnd (EJpair x yK)K ∼β λz .y z ∼η y

Local encoding of A× B with η and a single base type X

EJA× BK = (EJAK→ EJBK→ X)→ X

EJpair M NK = λf .f EJMK EJNK
EJfst MA1→...An→X ,BK = λz1 . . . zn.EJMK (λx y .x z1 . . . zn)
EJsnd MA,B1→...Bn→X K = λz1 . . . zn.EJMK (λx y .y z1 . . . zn)

This is a type-indexed local encoding.

Local encoding of A× B with η and a single base type X

EJA× BK = (EJAK→ EJBK→ X)→ X

EJpair M NK = λf .f EJMK EJNK
EJfst MA1→...An→X ,BK = λz1 . . . zn.EJMK (λx y .x z1 . . . zn)
EJsnd MA,B1→...Bn→X K = λz1 . . . zn.EJMK (λx y .y z1 . . . zn)

This is a type-indexed local encoding.

Can function types encode product types?

It depends...

I Parametric global CPS encoding
I Parametric local Church encodings

I untyped
I simple types, but only homogeneous products
I polymorphic

I Multiple base types — no local encoding

I Single base type without η — no local encoding

I Single base type with η — type-indexed local encoding

Incidentally, none of these encodings preserves the η-rule for products.

Can function types encode product types?

It depends...

I Parametric global CPS encoding
I Parametric local Church encodings

I untyped
I simple types, but only homogeneous products
I polymorphic

I Multiple base types — no local encoding

I Single base type without η — no local encoding

I Single base type with η — type-indexed local encoding

Incidentally, none of these encodings preserves the η-rule for products.

Can function types encode product types?

It depends...

I Parametric global CPS encoding
I Parametric local Church encodings

I untyped
I simple types, but only homogeneous products
I polymorphic

I Multiple base types — no local encoding

I Single base type without η — no local encoding

I Single base type with η — type-indexed local encoding

Incidentally, none of these encodings preserves the η-rule for products.

Can function types encode product types?

It depends...

I Parametric global CPS encoding
I Parametric local Church encodings

I untyped
I simple types, but only homogeneous products
I polymorphic

I Multiple base types — no local encoding

I Single base type without η — no local encoding

I Single base type with η — type-indexed local encoding

Incidentally, none of these encodings preserves the η-rule for products.

Part II

Recursive types

Motivation

Stephen Dolan Alan Mycroft

[Dolan and Mycroft, 2017, “Polymorphism, subtyping, and type inference in MLsub”]

MLsub relies on simulating general equi-recursive types by positive equi-recursive types.

General equi-recursive types can type non-terminating programs.

Positive iso-recursive types can be encoded in System F.

Why the discrepancy between equi and iso?

Motivation

Stephen Dolan Alan Mycroft

[Dolan and Mycroft, 2017, “Polymorphism, subtyping, and type inference in MLsub”]

MLsub relies on simulating general equi-recursive types by positive equi-recursive types.

General equi-recursive types can type non-terminating programs.

Positive iso-recursive types can be encoded in System F.

Why the discrepancy between equi and iso?

Motivation

Stephen Dolan Alan Mycroft

[Dolan and Mycroft, 2017, “Polymorphism, subtyping, and type inference in MLsub”]

MLsub relies on simulating general equi-recursive types by positive equi-recursive types.

General equi-recursive types can type non-terminating programs.

Positive iso-recursive types can be encoded in System F.

Why the discrepancy between equi and iso?

Motivation

Stephen Dolan Alan Mycroft

[Dolan and Mycroft, 2017, “Polymorphism, subtyping, and type inference in MLsub”]

MLsub relies on simulating general equi-recursive types by positive equi-recursive types.

General equi-recursive types can type non-terminating programs.

Positive iso-recursive types can be encoded in System F.

Why the discrepancy between equi and iso?

Motivation

Stephen Dolan Alan Mycroft

[Dolan and Mycroft, 2017, “Polymorphism, subtyping, and type inference in MLsub”]

MLsub relies on simulating general equi-recursive types by positive equi-recursive types.

General equi-recursive types can type non-terminating programs.

Positive iso-recursive types can be encoded in System F.

Why the discrepancy between equi and iso?

Recursive types

Algebraic datatypes

data Nat = Z | S Nat
data List = Nil | Cons Int List

data Tree = Leaf | Node Tree Int Tree

Inline recursive types
Nat = µX .1 + X
List = µX .1 + Int× X

Tree = µX .1 + X × Int× X

Recursive type equations

Nat = 1 + Nat
List = 1 + Int× List

Tree = 1 + Tree× Int× Tree

Recursive types as regular trees

Nat µX .1 + X

+

1

List µX .1 + Int× X

+

1 ×

Int

Tree µX .1 + X × Int× X

+

1 ×

×

Int

Recursive types as regular trees

Nat µX .1 + X

+

1

List µX .1 + Int× X

+

1 ×

Int

Tree µX .1 + X × Int× X

+

1 ×

×

Int

Recursive types as regular trees

Nat µX .1 + X

+

1

List µX .1 + Int× X

+

1 ×

Int

Tree µX .1 + X × Int× X

+

1 ×

×

Int

Equi-recursive types

Γ ` M : A ` A ≈ B

Γ ` M : B
` A ≈ B means

A and B are equivalent up to infinite unrolling

Example

µX .1 + X ≈ 1 + µX .1 + X ≈ µX .1 + (1 + X)

+

1 ≈

+

1 +

1 ≈

+

1 +

1

Equi-recursive types

Γ ` M : A ` A ≈ B

Γ ` M : B
` A ≈ B means

A and B are equivalent up to infinite unrolling

Example

µX .1 + X ≈ 1 + µX .1 + X ≈ µX .1 + (1 + X)

+

1 ≈

+

1 +

1 ≈

+

1 +

1

Deciding equality by unrolling

+
a

1
b

+
c

1
d

+
e

1
f

Φ ` a ≈ b

Repeat

Φ, a ≈ b ` a ≈ b

Rec-Cons
label(a) = label(b)

Φ, a ≈ b ` children(a) ≈ children(b)

Φ ` a ≈ b

Φ a set — comma is disjoint extension

Deciding equality by unrolling

+
a

1
b

+
c

1
d

+
e

1
f

Φ ` a ≈ b

Repeat

Φ, a ≈ b ` a ≈ b

Rec-Cons
label(a) = label(b)

Φ, a ≈ b ` children(a) ≈ children(b)

Φ ` a ≈ b

Φ a set — comma is disjoint extension

Deciding equality by unrolling

+
a

1
b

+
c

1
d

+
e

1
f

a ≈ c

Φ ` a ≈ b

Repeat

Φ, a ≈ b ` a ≈ b

Rec-Cons
label(a) = label(b)

Φ, a ≈ b ` children(a) ≈ children(b)

Φ ` a ≈ b

Φ a set — comma is disjoint extension

Deciding equality by unrolling

+
a

1
b

+
c

1
d

+
e

1
f

a ≈ c

Φ ` a ≈ b

Repeat

Φ, a ≈ b ` a ≈ b

Rec-Cons
label(a) = label(b)

Φ, a ≈ b ` children(a) ≈ children(b)

Φ ` a ≈ b

Φ a set — comma is disjoint extension

Deciding equality by unrolling

+
a

1
b

+
c

1
d

+
e

1
f

a ≈ c , a ≈ e

Φ ` a ≈ b

Repeat

Φ, a ≈ b ` a ≈ b

Rec-Cons
label(a) = label(b)

Φ, a ≈ b ` children(a) ≈ children(b)

Φ ` a ≈ b

Φ a set — comma is disjoint extension

Deciding equality by unrolling

+
a

1
b

+
c

1
d

+
e

1
f

a ≈ c , a ≈ e

Φ ` a ≈ b

Repeat

Φ, a ≈ b ` a ≈ b

Rec-Cons
label(a) = label(b)

Φ, a ≈ b ` children(a) ≈ children(b)

Φ ` a ≈ b

Φ a set — comma is disjoint extension

Deciding equality by unrolling

+
a

1
b

+
c

1
d

+
e

1
f

a ≈ c , a ≈ e

Φ ` a ≈ b

Repeat

Φ, a ≈ b ` a ≈ b

Rec-Cons
label(a) = label(b)

Φ, a ≈ b ` children(a) ≈ children(b)

Φ ` a ≈ b

Φ a set — comma is disjoint extension

Iso-recursive types

Roll
Γ ` M : A[µX .A/X]

Γ ` roll M : µX .A

Unroll
Γ ` M : µX .A

Γ ` unroll M : A[µX .A/X]

Example

µX .1 + X 6= 1 + µX .1 + X 6= µX .1 + (1 + X)

+

1 6=

+

1 +

1 6=

+

1 +

1

Iso-recursive types

Roll
Γ ` M : A[µX .A/X]

Γ ` roll M : µX .A

Unroll
Γ ` M : µX .A

Γ ` unroll M : A[µX .A/X]

Example

µX .1 + X 6= 1 + µX .1 + X 6= µX .1 + (1 + X)

+

1 6=

+

1 +

1 6=

+

1 +

1

Equi-recursive versus iso-recursive types

STLC Simply-Typed Lambda Calculus

FPC Fixed Point Calculus

FPC STLC + iso-recursive types

FPC= STLC + equi-recursive types

Interdefinability

I FPC= can simulate FPC
— just erase roll and unroll

I FPC can simulate FPC= up to observational equivalence
— coercion functions witness type equivalence
[Abadi and Fiore, 1996; Brandt and Henglein, 1998]

Equi-recursive versus iso-recursive types

STLC Simply-Typed Lambda Calculus

FPC Fixed Point Calculus

FPC STLC + iso-recursive types

FPC= STLC + equi-recursive types

Interdefinability

I FPC= can simulate FPC
— just erase roll and unroll

I FPC can simulate FPC= up to observational equivalence
— coercion functions witness type equivalence
[Abadi and Fiore, 1996; Brandt and Henglein, 1998]

Positive recursive types

Positive type variable: occurs on left of even number of arrows

Negative type variable: occurs on left of odd number of arrows

Strictly positive type variable: occurs on right of arrows

Examples — X occurs:

I strictly positively in X , 1 + Int× X , and Int→ X

I positively in (X → Int)→ Int

I negatively in X → Int

I both positively and negatively in X → X

A recursive type is positive if all occurrences of the bound variable are positive, e.g:

µX .1 + Int× X µX .(X → Int)→ Int

Positive equi- versus positive iso-
FPC+ STLC + positive iso-recursive types

FPC+
= STLC + positive equi-recursive types

FPC++ STLC + strictly positive iso-recursive types

FPC++
= STLC + strictly positive equi-recursive types

Interdefinability

I FPC+
= can simulate FPC+ — just erase roll and unroll

I FPC++
= can simulate FPC++ — just erase roll and unroll

I System F can simulate FPC+ (strong normalisation)

I FPC+
= can simulate FPC= (non-termination)

I FPC+
= is stricty more expressive than FPC+

I FPC+ + general recursion can simulate FPC up to observational equivalence

I FPC++ + fold can simulate FPC++
= up to observational equivalence

Positive equi- versus positive iso-
FPC+ STLC + positive iso-recursive types

FPC+
= STLC + positive equi-recursive types

FPC++ STLC + strictly positive iso-recursive types

FPC++
= STLC + strictly positive equi-recursive types

Interdefinability

I FPC+
= can simulate FPC+ — just erase roll and unroll

I FPC++
= can simulate FPC++ — just erase roll and unroll

I System F can simulate FPC+ (strong normalisation)

I FPC+
= can simulate FPC= (non-termination)

I FPC+
= is stricty more expressive than FPC+

I FPC+ + general recursion can simulate FPC up to observational equivalence

I FPC++ + fold can simulate FPC++
= up to observational equivalence

Yeah, yeah

Universal type with a negative occurrence

U = U → U = µX .X → X

All untyped lambda terms can be typed with U

ω = λx .x x Ω = ω ω Ω β Ω

Universal type as mutually recursive positive type

P = Q → P = µX .(µY .X → Y)→ X
Q = P → Q = µX .(µY .X → Y)→ X

U,P,Q all represent infinite binary tree of → nodes

` U ≈ P ≈ Q

→
→

→

All untyped lambda terms can be typed with P!

Yeah, yeah

Universal type with a negative occurrence

U = U → U = µX .X → X

All untyped lambda terms can be typed with U

ω = λx .x x Ω = ω ω Ω β Ω

Universal type as mutually recursive positive type

P = Q → P = µX .(µY .X → Y)→ X
Q = P → Q = µX .(µY .X → Y)→ X

U,P,Q all represent infinite binary tree of → nodes

` U ≈ P ≈ Q

→
→

→

All untyped lambda terms can be typed with P!

Yeah, yeah

Universal type with a negative occurrence

U = U → U = µX .X → X

All untyped lambda terms can be typed with U

ω = λx .x x Ω = ω ω Ω β Ω

Universal type as mutually recursive positive type

P = Q → P = µX .(µY .X → Y)→ X
Q = P → Q = µX .(µY .X → Y)→ X

U,P,Q all represent infinite binary tree of → nodes

` U ≈ P ≈ Q

→
→

→

All untyped lambda terms can be typed with P!

FPC= in FPC+
=

Idea: split the positive and negative occurrences

µX .F [X ,X] ≈ µX .F [µY .F [X ,Y],X]

[Bekić, 1984]

Example: universal data type

F [X−,X+] = X− → X+

U = µX .F [X ,X] = µX .X → X
P = µX .F [µY .F [X ,Y],X] = µX .(µY .X → Y)→ X

FPC in FPC+ + general recursion

Coercions for simulating FPC in FPC= use general recursion

FPC+ + general recursion −→ FPC+
= −→ FPC= −→ FPC

Example:

ωU→U = λxU .(unroll x) x
ΩU = ωU→U (roll ωU→U)

ωQ→P = λxQ .(unroll (VQP x)) (VQP x)
ΩP = ωQ→P (VPQ (roll ωQ→P))

where
VQP = rec f Q→P xQ .roll (f ◦ (unroll x) ◦ f)
VPQ = rec f P→Q xP .roll (f ◦ (unroll x) ◦ f)

Summary

FPC ' FPC= ' FPC+
= & FPC+ . System F

FPC++ ' FPC++
=

Can positive iso-recursive types encode positive equi-recursive types?

Not without general recursion

Intuitively the encoding requires the insertion of an infinite number of rolls and unrolls

Morally the notion of a “positive” equi-recursive type is rather misleading

Can positive iso-recursive types encode positive equi-recursive types?

Not without general recursion

Intuitively the encoding requires the insertion of an infinite number of rolls and unrolls

Morally the notion of a “positive” equi-recursive type is rather misleading

Can positive iso-recursive types encode positive equi-recursive types?

Not without general recursion

Intuitively the encoding requires the insertion of an infinite number of rolls and unrolls

Morally the notion of a “positive” equi-recursive type is rather misleading

Can positive iso-recursive types encode positive equi-recursive types?

Not without general recursion

Intuitively the encoding requires the insertion of an infinite number of rolls and unrolls

Morally the notion of a “positive” equi-recursive type is rather misleading

Part III

Existential types

Motivation

Well-known how universal types can encode existential types

What if we already have existential types, and want to encode universal types?

(I ran into this situation when trying to define a minimal effect handler calculus where
parametric algebraic operations provide existentials, but there are no universals.)

Motivation

Well-known how universal types can encode existential types

What if we already have existential types, and want to encode universal types?

(I ran into this situation when trying to define a minimal effect handler calculus where
parametric algebraic operations provide existentials, but there are no universals.)

Existentials as universals

De Morgan dual
∃X .A ≡ ¬∀X .¬A = (∀X .(A→ ⊥))→ ⊥

System F encoding generalises the de Morgan dual

∃X .A ≡ ∀Z .(∀X .(A→ Z))→ Z

What about the other way round?

∀X .A ≡ ¬∃X .¬A = (∃X .(A→ ⊥))→ ⊥

The generalisation trick is no good as it depends on another universal quantifier

∀X .A ≡ ∀Z .(∃X .A→ Z)→ Z

Existentials as universals

De Morgan dual
∃X .A ≡ ¬∀X .¬A = (∀X .(A→ ⊥))→ ⊥

System F encoding generalises the de Morgan dual

∃X .A ≡ ∀Z .(∀X .(A→ Z))→ Z

What about the other way round?

∀X .A ≡ ¬∃X .¬A = (∃X .(A→ ⊥))→ ⊥

The generalisation trick is no good as it depends on another universal quantifier

∀X .A ≡ ∀Z .(∃X .A→ Z)→ Z

Existentials as universals

De Morgan dual
∃X .A ≡ ¬∀X .¬A = (∀X .(A→ ⊥))→ ⊥

System F encoding generalises the de Morgan dual

∃X .A ≡ ∀Z .(∀X .(A→ Z))→ Z

What about the other way round?

∀X .A ≡ ¬∃X .¬A = (∃X .(A→ ⊥))→ ⊥

The generalisation trick is no good as it depends on another universal quantifier

∀X .A ≡ ∀Z .(∃X .A→ Z)→ Z

Existentials as universals

De Morgan dual
∃X .A ≡ ¬∀X .¬A = (∀X .(A→ ⊥))→ ⊥

System F encoding generalises the de Morgan dual

∃X .A ≡ ∀Z .(∀X .(A→ Z))→ Z

What about the other way round?

∀X .A ≡ ¬∃X .¬A = (∃X .(A→ ⊥))→ ⊥

The generalisation trick is no good as it depends on another universal quantifier

∀X .A ≡ ∀Z .(∃X .A→ Z)→ Z

Minimal existential logic

Types
A,B ::= ⊥ | ¬A | A× B | ∃X .A | X

Terms
M,N ::= x

| λxA.M | M N
| (M,N) | let (x , y) = M in N
| (A,M) | let (X , y) = M in N

Universals as existentials [Fujita, 2010]

Judgements
(Γ ` M : A)∗ = ¬Γ∗ ` M∗ : ¬A∗

Types
X ∗ = X

(A→ B)∗ = ¬A∗ × B∗

(∀X .A)∗ = ∃X .A∗

Terms
(x : A)∗ = λkA

∗
.x k

(λx .M : A)∗ = λkA
∗
.let (x , k) = k in M∗ k

(M N : A)∗ = λkA
∗
.M∗ (N∗, k)

(ΛX .M : A)∗ = λkA
∗
.let (X , k) = k in M∗ k

(M B : A)∗ = λkA
∗
.M∗ (B∗, k)

Can existentials encode universals?

Yes, with a global CPS translation [Fujita, 2010]

Open question: can we prove that there is no local encoding?

Can existentials encode universals?

Yes, with a global CPS translation [Fujita, 2010]

Open question: can we prove that there is no local encoding?

Can existentials encode universals?

Yes, with a global CPS translation [Fujita, 2010]

Open question: can we prove that there is no local encoding?

Part IV

Effectful anecdotes

Idioms are oblivious, arrows are meticulous, monads are meticulous

Philip Wadler Jeremy Yallop

[Lindley, Wadler, and Yallop, 2008]

Semantically: (monads < arrows) and (idioms < arrows)

As programs: idioms < arrows < monads

On the expressive power of user-defined effects

Yannick Forster Ohad Kammar Matija Pretnar

[Forster, Kammar, Lindley, and Pretnar, 2019]

Eff = effect handlers Mon = monadic reflection Del = delimited continuations

Untyped Eff ←→ Mon←→ Del←→ Eff

I Translations Mon −→ Eff and Del −→ Eff simulate reduction on the nose

I Others translations don’t

Simply-typed Eff 6←→ Del

Polymorphic Eff ←→ Del
[Piróg, Polesiuk, Sieczkowski, 2019] Novel form of answer-type polymorphism

On the expressive power of user-defined effects

Yannick Forster Ohad Kammar Matija Pretnar

[Forster, Kammar, Lindley, and Pretnar, 2019]

Eff = effect handlers Mon = monadic reflection Del = delimited continuations

Untyped Eff ←→ Mon←→ Del←→ Eff

I Translations Mon −→ Eff and Del −→ Eff simulate reduction on the nose

I Others translations don’t

Simply-typed Eff 6←→ Del

Polymorphic Eff ←→ Del
[Piróg, Polesiuk, Sieczkowski, 2019] Novel form of answer-type polymorphism

On the expressive power of user-defined effects

Yannick Forster Ohad Kammar Matija Pretnar

[Forster, Kammar, Lindley, and Pretnar, 2019]

Eff = effect handlers Mon = monadic reflection Del = delimited continuations

Untyped Eff ←→ Mon←→ Del←→ Eff

I Translations Mon −→ Eff and Del −→ Eff simulate reduction on the nose

I Others translations don’t

Simply-typed Eff 6←→ Del

Polymorphic Eff ←→ Del
[Piróg, Polesiuk, Sieczkowski, 2019] Novel form of answer-type polymorphism

On the expressive power of user-defined effects

Yannick Forster Ohad Kammar Matija Pretnar

[Forster, Kammar, Lindley, and Pretnar, 2019]

Eff = effect handlers Mon = monadic reflection Del = delimited continuations

Untyped Eff ←→ Mon←→ Del←→ Eff

I Translations Mon −→ Eff and Del −→ Eff simulate reduction on the nose

I Others translations don’t

Simply-typed Eff 6←→ Del

Polymorphic Eff ←→ Del
[Piróg, Polesiuk, Sieczkowski, 2019] Novel form of answer-type polymorphism

Asymptotic improvement with control operators

Daniel Hillerström John Longley

[Hillerström, Lindley, and Longley, 2020]

Generic search algorithm is:

I Ω(n2n) in PCF

I O(2n) in PCF + effect handlers

Key constraint: no change of types

Higher-order computability [Longley and Normann, 2015]

Part V

Wrapping up

Closing remarks

The range of notions of expressiveness is broad

Expressiveness results are fragile

Types enable richer notions of expressiveness

	Products
	Recursive types
	Existential types
	Effectful anecdotes
	Wrapping up

