On the expressive power of types

Sam Lindley

The University of Edinburgh

TYPES 2022

What do we mean by expressive power?

What do we mean by expressive power?

Some possible answers:

- Computability

What do we mean by expressive power?

Some possible answers:

- Computability
- Algorithmic complexity

What do we mean by expressive power?

Some possible answers:

- Computability
- Algorithmic complexity
- Macro expressiveness

Matthias Felleisen
[Felleisen, 1990, "On the expressive power of programming languages"]

Quiz

Quiz

Can function types encode product types?

Quiz

Can function types encode product types?

Can positive iso-recursive types encode positive equi-recursive types?

Quiz

Can function types encode product types?

Can positive iso-recursive types encode positive equi-recursive types?

Can existential types encode universal types?

Quiz

Can function types encode product types?

Can positive iso-recursive types encode positive equi-recursive types?

Can existential types encode universal types?

Can simple-typed lambda calculus encode System F?

Quiz

Can function types encode product types?

Can positive iso-recursive types encode positive equi-recursive types?

Can existential types encode universal types?

Can simple-typed lambda calculus encode System F?

Can row polymorphism encode row subtyping?

Part I

Products

Motivation

The standard Church encoding for a pair can only be ascribed a type in simply-typed lambda calculus if both components of the pair have the same type.

Motivation

The standard Church encoding for a pair can only be ascribed a type in simply-typed lambda calculus if both components of the pair have the same type.

Do alternative simply-typed encodings exist for heterogeneous pairs?

Call-by-name CPS

$$
\begin{aligned}
\mathcal{N} \llbracket A \rrbracket & =\left(A^{\star} \rightarrow R\right) \rightarrow R \\
X^{\star} & =X \\
(A \times B)^{\star} & =\mathcal{N} \llbracket A \rrbracket \times \mathcal{N} \llbracket B \rrbracket \\
(A \rightarrow B)^{\star} & =\mathcal{N} \llbracket A \rrbracket \rightarrow \mathcal{N} \llbracket B \rrbracket
\end{aligned}
$$

Call-by-name CPS

$$
\begin{aligned}
\mathcal{N} \llbracket X \rrbracket & =(X \rightarrow R) \rightarrow R \\
\mathcal{N} \llbracket A \rightarrow B \rrbracket & =((\mathcal{N} \llbracket A \rrbracket \rightarrow \mathcal{N} \llbracket B \rrbracket) \rightarrow R) \rightarrow R \\
\mathcal{N} \llbracket A \times B \rrbracket & =((\mathcal{N} \llbracket A \rrbracket \times \mathcal{N} \llbracket B \rrbracket) \rightarrow R) \rightarrow R
\end{aligned}
$$

Call-by-name CPS

$$
\begin{aligned}
& \mathcal{N} \llbracket X \rrbracket=(X \rightarrow R) \rightarrow R \\
& \mathcal{N} \llbracket A \rightarrow B \rrbracket=((\mathcal{N} \llbracket A \rrbracket \rightarrow \mathcal{N} \llbracket B \rrbracket) \rightarrow R) \rightarrow R \\
& \mathcal{N} \llbracket A \times B \rrbracket=((\mathcal{N} \llbracket A \rrbracket \times \mathcal{N} \llbracket B \rrbracket) \rightarrow R) \rightarrow R \\
& \mathcal{N} \llbracket x \rrbracket=\lambda k . x k \\
& \mathcal{N} \llbracket \lambda x . M \rrbracket=\lambda k . k(\lambda x . \mathcal{N} \llbracket M \rrbracket) \\
& \mathcal{N} \llbracket M N \rrbracket=\lambda k . \mathcal{N} \llbracket M \rrbracket(\lambda f . f \mathcal{N} \llbracket N \rrbracket k) \\
& \mathcal{N} \llbracket \text { pair } M N \rrbracket=\lambda k . k(\text { pair } \mathcal{N} \llbracket M \rrbracket \mathcal{N} \llbracket N \rrbracket) \\
& \mathcal{N} \llbracket \text { fst } M \rrbracket=\lambda k . \mathcal{N} \llbracket M \rrbracket(\lambda p .(f s t p) k) \\
& \mathcal{N} \llbracket \text { snd } M \rrbracket=\lambda k . \mathcal{N} \llbracket M \rrbracket(\lambda p \text {.(snd } p) k)
\end{aligned}
$$

Call-by-name CPS

Products are encodable via a curried global CPS translation

$$
\begin{aligned}
\mathcal{C} \llbracket X \rrbracket & =(X \rightarrow R) \rightarrow R \\
\mathcal{C} \llbracket A \rightarrow B \rrbracket & =((\mathcal{C} \llbracket A \rrbracket \rightarrow \mathcal{C} \llbracket B \rrbracket) \rightarrow R) \rightarrow R \\
\mathcal{C} \llbracket A \times B \rrbracket & =(\mathcal{C} \llbracket A \rrbracket \rightarrow \mathcal{C} \llbracket B \rrbracket \rightarrow R) \rightarrow R \\
\mathcal{C} \llbracket x \rrbracket & =\lambda k \cdot x k \\
\mathcal{C} \llbracket \lambda x \cdot M \rrbracket & =\lambda k \cdot k(\lambda x \cdot \mathcal{C} \llbracket M \rrbracket) \\
\mathcal{C} \llbracket M N \rrbracket & =\lambda k \cdot \mathcal{C} \llbracket M \rrbracket(\lambda f . f \mathcal{C} \llbracket N \rrbracket k) \\
\mathcal{C} \llbracket \text { pair } M N \rrbracket & =\lambda k \cdot k \mathcal{C} \llbracket M \rrbracket \mathcal{C} \llbracket N \rrbracket \\
\mathcal{C} \llbracket \text { fst } M \rrbracket & =\lambda k \cdot \mathcal{C} \llbracket M \rrbracket(\lambda x \cdot \lambda y \cdot x k) \\
\mathcal{C} \llbracket \text { snd } M \rrbracket & =\lambda k \cdot \mathcal{C} \llbracket M \rrbracket(\lambda x \cdot \lambda y \cdot y k)
\end{aligned}
$$

Call-by-name CPS

Products are encodable via a curried global CPS translation

$$
\begin{aligned}
\mathcal{C} \llbracket X \rrbracket & =(X \rightarrow R) \rightarrow R \\
\mathcal{C} \llbracket A \rightarrow B \rrbracket & =((\mathcal{C} \llbracket A \rrbracket \rightarrow \mathcal{C} \llbracket B \rrbracket) \rightarrow R) \rightarrow R \\
\mathcal{C} \llbracket A \times B \rrbracket & =(\mathcal{C} \llbracket A \rrbracket \rightarrow \mathcal{C} \llbracket B \rrbracket \rightarrow R) \rightarrow R \\
\mathcal{C} \llbracket x \rrbracket & =\lambda k \cdot x k \\
\mathcal{C} \llbracket \lambda x \cdot M \rrbracket & =\lambda k \cdot k(\lambda x \cdot \mathcal{C} \llbracket M \rrbracket) \\
\mathcal{C} \llbracket M N \rrbracket & =\lambda k \cdot \mathcal{C} \llbracket M \rrbracket(\lambda f . f \mathcal{C} \llbracket N \rrbracket k) \\
\mathcal{C} \llbracket \text { pair } M N \rrbracket & =\lambda k \cdot k \mathcal{C} \llbracket M \rrbracket \mathcal{C} \llbracket N \rrbracket \\
\mathcal{C} \llbracket \text { fst } M \rrbracket & =\lambda k \cdot \mathcal{C} \llbracket M \rrbracket(\lambda x \cdot \lambda y \cdot x k) \\
\mathcal{C} \llbracket \text { snd } M \rrbracket & =\lambda k \cdot \mathcal{C} \llbracket M \rrbracket(\lambda x \cdot \lambda y \cdot y k)
\end{aligned}
$$

What about a local encoding?

Localising CPS

Untyped

$$
\begin{aligned}
\mathcal{U} \llbracket \text { pair } M N \rrbracket & =\lambda s . s \mathcal{U} \llbracket M \rrbracket \mathcal{U} \llbracket N \rrbracket \\
\mathcal{U} \llbracket \text { fst } M \rrbracket & =\mathcal{U} \llbracket M \rrbracket(\lambda x . \lambda y \cdot x) \\
\mathcal{U} \llbracket \text { snd } M \rrbracket & =\mathcal{U} \llbracket M \rrbracket(\lambda x . \lambda y . y)
\end{aligned}
$$

Localising CPS

Untyped

$$
\begin{aligned}
\mathcal{U} \llbracket \text { pair } M N \rrbracket & =\lambda s . s \mathcal{U} \llbracket M \rrbracket \mathcal{U} \llbracket N \rrbracket \\
\mathcal{U} \llbracket \text { fst } M \rrbracket & =\mathcal{U} \llbracket M \rrbracket(\lambda x . \lambda y \cdot x) \\
\mathcal{U} \llbracket \text { snd } M \rrbracket & =\mathcal{U} \llbracket M \rrbracket(\lambda x . \lambda y . y)
\end{aligned}
$$

Simply typed - homogeneous products

$$
\begin{aligned}
\mathcal{H} \llbracket A \times A \rrbracket & =(\mathcal{H} \llbracket A \rrbracket \rightarrow \mathcal{H} \llbracket A \rrbracket \rightarrow \mathcal{H} \llbracket A \rrbracket) \rightarrow \mathcal{H} \llbracket A \rrbracket \\
\mathcal{H} \llbracket \text { pair } M^{A} N^{A} \rrbracket & =\lambda s^{\mathcal{H} \llbracket A \rrbracket \rightarrow \mathcal{H} \llbracket A \rrbracket \rightarrow \mathcal{H} \llbracket A \rrbracket} . s \mathcal{H} \llbracket M \rrbracket \mathcal{H} \llbracket N \rrbracket \\
\mathcal{H} \llbracket \text { fst } M^{A \times A} & =\mathcal{H} \llbracket M \rrbracket\left(\lambda x^{\mathcal{H} \llbracket A \rrbracket} \cdot \lambda y^{\mathcal{H} \llbracket A \rrbracket} \cdot x\right) \\
\mathcal{H} \llbracket \text { snd } M^{A \times A} \rrbracket & =\mathcal{H} \llbracket M \rrbracket\left(\lambda x^{\mathcal{H} \llbracket A \rrbracket} \cdot \lambda y^{\mathcal{H} \llbracket A \rrbracket} . y\right)
\end{aligned}
$$

Localising CPS

Untyped

$$
\begin{aligned}
\mathcal{U} \llbracket \text { pair } M N \rrbracket & =\lambda s . s \mathcal{U} \llbracket M \rrbracket \mathcal{U} \llbracket N \rrbracket \\
\mathcal{U} \llbracket \text { fst } M \rrbracket & =\mathcal{U} \llbracket M \rrbracket(\lambda x . \lambda y . x) \\
\mathcal{U} \llbracket \text { snd } M \rrbracket & =\mathcal{U} \llbracket M \rrbracket(\lambda x . \lambda y . y)
\end{aligned}
$$

Simply typed - homogeneous products

$$
\begin{aligned}
\mathcal{H} \llbracket A \times A \rrbracket & =(\mathcal{H} \llbracket A \rrbracket \rightarrow \mathcal{H} \llbracket A \rrbracket \rightarrow \mathcal{H} \llbracket A \rrbracket) \rightarrow \mathcal{H} \llbracket A \rrbracket \\
\mathcal{H} \llbracket \text { pair } M^{A} N^{A} \rrbracket & =\lambda s^{\mathcal{H} \llbracket A \rrbracket \rightarrow \mathcal{H} \llbracket A \rrbracket \rightarrow \mathcal{H} \llbracket A \rrbracket} . s \mathcal{H} \llbracket M \rrbracket \mathcal{H} \llbracket N \rrbracket \\
\mathcal{H} \llbracket \text { fst } M^{A \times A} & =\mathcal{H} \llbracket M \rrbracket\left(\lambda x^{\mathcal{H} \llbracket A \rrbracket} \cdot \lambda y^{\mathcal{H} \llbracket A \rrbracket} \cdot x\right) \\
\mathcal{H} \llbracket \text { snd } M^{A \times A} \rrbracket & =\mathcal{H} \llbracket M \rrbracket\left(\lambda x^{\mathcal{H} \llbracket A \rrbracket} \cdot \lambda y^{\mathcal{H} \llbracket A \rrbracket} \cdot y\right)
\end{aligned}
$$

Polymorphic

$$
\begin{aligned}
\mathcal{F} \llbracket A \times B \rrbracket & =\forall Z .(\mathcal{F} \llbracket A \rrbracket \rightarrow \mathcal{F} \llbracket B \rrbracket \rightarrow Z) \rightarrow Z \\
\mathcal{F} \llbracket \operatorname{pair}_{A, B} M N \rrbracket & =\wedge Z . \lambda s^{\mathcal{F} \llbracket A \rrbracket \rightarrow \mathcal{F} \llbracket B \rrbracket \rightarrow Z . s \mathcal{F} \llbracket M \rrbracket \mathcal{F} \llbracket N \rrbracket} \\
\mathcal{F} \llbracket \mathrm{fst}_{A, B} M \rrbracket & =\mathcal{F} \llbracket M \rrbracket \mathcal{F} \llbracket A \rrbracket\left(\lambda x^{\mathcal{F} \llbracket A \rrbracket} \cdot \lambda y^{\mathcal{F} \llbracket B \rrbracket} \cdot x\right) \\
\mathcal{F} \llbracket \text { snd }_{A, B} M \rrbracket & =\mathcal{F} \llbracket M \rrbracket \mathcal{F} \llbracket B \rrbracket\left(\lambda x^{\mathcal{F} \llbracket A \rrbracket} \cdot \lambda y^{\mathcal{F} \llbracket B \rrbracket} \cdot y\right)
\end{aligned}
$$

No local encoding of $X \times Y$

We seek β-normal forms $\mathrm{fst}_{X, Y}$ and snd $_{X, Y}$ such that:

$$
\begin{aligned}
\llbracket p: X \times Y \vdash \text { fst } p: X \rrbracket & =p: \llbracket X \times Y \rrbracket \vdash \text { fst }_{X, Y}: X \\
\llbracket p: X \times Y \vdash \text { snd } p: Y \rrbracket & =p: \llbracket X \times Y \rrbracket \vdash \text { snd }_{X, Y}: Y
\end{aligned}
$$

No local encoding of $X \times Y$

We seek β-normal forms fst $_{X, Y}$ and snd $X_{X, Y}$ such that:

$$
\begin{aligned}
\llbracket p: X \times Y \vdash \mathrm{fst} p: X \rrbracket & =p: \llbracket X \times Y \rrbracket \vdash \text { fst }_{X, Y}: X \\
\llbracket p: X \times Y \vdash \text { snd } p: Y \rrbracket & =p: \llbracket X \times Y \rrbracket \vdash \text { snd }_{X, Y}: Y
\end{aligned}
$$

So we must have $m, n, M_{1}, \ldots, M_{m}, N_{1}, \ldots, N_{n}$ such that:

$$
\begin{aligned}
\operatorname{fst}_{X, Y} & =p M_{1} \ldots M_{m} \\
\operatorname{snd}_{X, Y} & =p N_{1} \ldots N_{n}
\end{aligned}
$$

No local encoding of $X \times Y$

We seek β-normal forms $\mathrm{fst}_{X, Y}$ and snd $_{X, Y}$ such that:

$$
\begin{aligned}
\llbracket p: X \times Y \vdash \mathrm{fst} p: X \rrbracket & =p: \llbracket X \times Y \rrbracket \vdash \mathrm{fst}_{X, Y}: X \\
\llbracket p: X \times Y \vdash \text { snd } p: Y \rrbracket & =p: \llbracket X \times Y \rrbracket \vdash \text { snd }_{X, Y}: Y
\end{aligned}
$$

So we must have $m, n, M_{1}, \ldots, M_{m}, N_{1}, \ldots, N_{n}$ such that:

$$
\begin{aligned}
\operatorname{fst}_{X, Y} & =p M_{1} \ldots M_{m} \\
\operatorname{snd}_{X, Y} & =p N_{1} \ldots N_{n}
\end{aligned}
$$

The typing rule for application means that we also have

$$
A_{1} \rightarrow \cdots \rightarrow A_{m} \rightarrow X=\llbracket X \times Y \rrbracket=B_{1} \rightarrow \cdots \rightarrow B_{n} \rightarrow Y
$$

where

$$
\begin{aligned}
& \left(p: \llbracket X \times Y \rrbracket \vdash M_{i}: A_{i}\right)_{1 \leq i \leq m} \\
& \left(p: \llbracket X \times Y \rrbracket \vdash N_{j}: B_{i}\right)_{1 \leq j \leq n}
\end{aligned}
$$

No local encoding of $X \times Y$

We seek β-normal forms $\mathrm{fst}_{X, Y}$ and snd $_{X, Y}$ such that:

$$
\begin{aligned}
\llbracket p: X \times Y \vdash \text { fst } p: X \rrbracket & =p: \llbracket X \times Y \rrbracket \vdash \text { fst }_{X, Y}: X \\
\llbracket p: X \times Y \vdash \text { snd } p: Y \rrbracket & =p: \llbracket X \times Y \rrbracket \vdash \text { snd }_{X, Y}: Y
\end{aligned}
$$

So we must have $m, n, M_{1}, \ldots, M_{m}, N_{1}, \ldots, N_{n}$ such that:

$$
\begin{aligned}
\operatorname{fst}_{X, Y} & =p M_{1} \ldots M_{m} \\
\operatorname{snd}_{X, Y} & =p N_{1} \ldots N_{n}
\end{aligned}
$$

The typing rule for application means that we also have

$$
A_{1} \rightarrow \cdots \rightarrow A_{m} \rightarrow X=\llbracket X \times Y \rrbracket=B_{1} \rightarrow \cdots \rightarrow B_{n} \rightarrow Y
$$

where

$$
\begin{aligned}
& \left(p: \llbracket X \times Y \rrbracket \vdash M_{i}: A_{i}\right)_{1 \leq i \leq m} \\
& \left(p: \llbracket X \times Y \rrbracket \vdash N_{j}: B_{i}\right)_{1 \leq j \leq n} j
\end{aligned}
$$

But these equations could only hold if X and Y were the same type!

Hang on a minute!

Type-indexed local encodings of products are well-known in PCF and System T.
Examples:

- [Longley and Normann, 2015]
- [Kiselyov, 2021]
http://okmij.org/ftp/Computation/simple-encodings.html\#product

How do we reconcile the existence of such encodings with the non-existence result?

No local encoding of $X \times(X \rightarrow X)$

Consider $X \times(X \rightarrow X)$. We seek β-normal forms fst $X, X \rightarrow X$ and snd $_{X, X \rightarrow X}$ such that:

$$
\begin{aligned}
\llbracket p: X \times(X \rightarrow X) \vdash \mathrm{fst} p: X \rrbracket & =p: \llbracket X \times(X \rightarrow X) \rrbracket \vdash \mathrm{fst}_{X, X \rightarrow X}: X \\
\llbracket p: X \times(X \rightarrow X) \vdash \text { snd } p: X \rightarrow X \rrbracket & =p: \llbracket X \times(X \rightarrow X) \rrbracket \vdash \operatorname{snd}_{X, X \rightarrow X}: X \rightarrow X
\end{aligned}
$$

No local encoding of $X \times(X \rightarrow X)$

Consider $X \times(X \rightarrow X)$. We seek β-normal forms fst $_{X, X \rightarrow X}$ and snd $_{X, X \rightarrow X}$ such that:

$$
\begin{aligned}
\llbracket p: X \times(X \rightarrow X) \vdash \text { fst } p: X \rrbracket & =p: \llbracket X \times(X \rightarrow X) \rrbracket \vdash \mathrm{fst}_{X, X \rightarrow X}: X \\
\llbracket p: X \times(X \rightarrow X) \vdash \text { snd } p: X \rightarrow X \rrbracket & =p: \llbracket X \times(X \rightarrow X) \rrbracket \vdash \operatorname{snd}_{X, X \rightarrow X}: X \rightarrow X
\end{aligned}
$$

As before, fst ${ }_{X, X \rightarrow X}$ must be of the form

$$
p M_{1} \ldots M_{m}
$$

and hence:

$$
\llbracket X \times(X \rightarrow X) \rrbracket=A_{1} \rightarrow \cdots \rightarrow A_{m} \rightarrow X
$$

No local encoding of $X \times(X \rightarrow X)$ (continued)

Two choices for snd $x, X \rightarrow X$:

No local encoding of $X \times(X \rightarrow X)$ (continued)

Two choices for snd $_{X, X \rightarrow X}$:

1. $p N_{1} \ldots N_{m-1}$

No local encoding of $X \times(X \rightarrow X)$ (continued)

Two choices for snd $x, x \rightarrow X$:

1. $p N_{1} \ldots N_{m-1}$

$$
\begin{aligned}
\Longrightarrow A_{m}=X \text { and } M_{m} & =p M_{1}^{\prime} \ldots M_{m}^{\prime} \\
M_{m}^{\prime} & =p M_{1}^{\prime \prime} \ldots M_{m}^{\prime \prime}
\end{aligned}
$$

No local encoding of $X \times(X \rightarrow X)$ (continued)

Two choices for snd $_{X, X \rightarrow X}$:

1. $p N_{1} \ldots N_{m-1}$

$$
\begin{aligned}
\Longrightarrow A_{m}=X \text { and } M_{m} & =p M_{1}^{\prime} \ldots M_{m}^{\prime} \\
M_{m}^{\prime} & =p M_{1}^{\prime \prime} \ldots M_{m}^{\prime \prime}
\end{aligned}
$$

No finite such snd can exist.

No local encoding of $X \times(X \rightarrow X)$ (continued)

Two choices for snd $_{X, X \rightarrow X}$:

1. $p N_{1} \ldots N_{m-1}$

$$
\begin{aligned}
\Longrightarrow A_{m}=X \text { and } M_{m} & =p M_{1}^{\prime} \ldots M_{m}^{\prime} \\
M_{m}^{\prime} & =p M_{1}^{\prime \prime} \ldots M_{m}^{\prime \prime}
\end{aligned}
$$

No finite such snd can exist.
2. $\lambda z . N^{\prime}$

No local encoding of $X \times(X \rightarrow X)$ (continued)

Two choices for snd $X, X \rightarrow X$:

1. $p N_{1} \ldots N_{m-1}$

$$
\begin{aligned}
\Longrightarrow A_{m}=X \text { and } M_{m} & =p M_{1}^{\prime} \ldots M_{m}^{\prime} \\
M_{m}^{\prime} & =p M_{1}^{\prime \prime} \ldots M_{m}^{\prime \prime}
\end{aligned}
$$

No finite such snd can exist.
2. $\lambda z . N^{\prime}$

$$
\Longrightarrow \llbracket \text { snd }(\text { pair } \times y) \rrbracket=\lambda z \cdot N^{\prime}[\llbracket \text { pair } \times y \rrbracket / p]
$$

No local encoding of $X \times(X \rightarrow X)$ (continued)

Two choices for snd $X, X \rightarrow X$:

1. $p N_{1} \ldots N_{m-1}$

$$
\begin{aligned}
\Longrightarrow A_{m}=X \text { and } M_{m} & =p M_{1}^{\prime} \ldots M_{m}^{\prime} \\
M_{m}^{\prime} & =p M_{1}^{\prime \prime} \ldots M_{m}^{\prime \prime}
\end{aligned}
$$

No finite such snd can exist.
2. $\lambda z . N^{\prime}$

$$
\Longrightarrow \llbracket \text { snd }(\text { pair } \times y) \rrbracket=\lambda z \cdot N^{\prime}[\llbracket \text { pair } \times y \rrbracket / p]
$$

No lambda abstraction can be β-converted to y.

Local encoding of $X \times(X \rightarrow X)$ with η

$$
\begin{aligned}
\mathcal{E} \llbracket X \times(X \rightarrow X) \rrbracket & =(X \rightarrow(X \rightarrow X) \rightarrow X) \rightarrow X \\
\mathcal{E} \llbracket \text { pair } M^{X} N^{X \rightarrow X} \rrbracket & =\lambda f . f \mathcal{E} \llbracket M \rrbracket \mathcal{E} \llbracket N \rrbracket \\
\mathcal{E} \llbracket \text { fst } M^{X \times(X \rightarrow X) \rrbracket} & =\mathcal{E} \llbracket M \rrbracket(\lambda \times y . x) \\
\mathcal{E} \llbracket \text { snd } M^{X \times(X \rightarrow X) \rrbracket} & =\lambda z . \mathcal{E} \llbracket M \rrbracket(\lambda \times y . y z)
\end{aligned}
$$

Local encoding of $X \times(X \rightarrow X)$ with η

$$
\begin{aligned}
\mathcal{E} \llbracket X \times(X \rightarrow X) \rrbracket & =(X \rightarrow(X \rightarrow X) \rightarrow X) \rightarrow X \\
\mathcal{E} \llbracket \text { pair } M^{X} N^{X \rightarrow X} \rrbracket & =\lambda f . f \mathcal{E} \llbracket M \rrbracket \mathcal{E} \llbracket N \rrbracket \\
\mathcal{E} \llbracket \text { fst } M^{X \times(X \rightarrow X) \rrbracket} & =\mathcal{E} \llbracket M \rrbracket(\lambda \times y . x) \\
\mathcal{E} \llbracket \text { snd } M^{X \times(X \rightarrow X) \rrbracket} & =\lambda z . \mathcal{E} \llbracket M \rrbracket(\lambda \times y . y z)
\end{aligned}
$$

Now we have

$$
\begin{aligned}
& \mathcal{E} \llbracket \text { fst }(\mathcal{E} \llbracket \text { pair } x y \rrbracket) \rrbracket \sim_{\beta} x \\
& \mathcal{E} \llbracket \text { snd }(\mathcal{E} \llbracket \text { pair } x y \rrbracket) \rrbracket \sim_{\beta} \lambda z . y z \sim_{\eta} y
\end{aligned}
$$

Local encoding of $A \times B$ with η and a single base type X

$$
\begin{aligned}
\mathcal{E} \llbracket A \times B \rrbracket & =(\mathcal{E} \llbracket A \rrbracket \rightarrow \mathcal{E} \llbracket B \rrbracket \rightarrow X) \rightarrow X \\
\mathcal{E} \llbracket \text { pair } M N \rrbracket & =\lambda f . f \mathcal{E} \llbracket M \rrbracket \mathcal{E} \llbracket N \rrbracket \\
\mathcal{E} \llbracket \text { fst } M^{A_{1} \rightarrow \ldots A_{n} \rightarrow X, B \rrbracket} & =\lambda z_{1} \ldots z_{n} \cdot \mathcal{E} \llbracket M \rrbracket\left(\lambda x y . x z_{1} \ldots z_{n}\right) \\
\mathcal{E} \llbracket \text { snd } M^{A, B_{1} \rightarrow \ldots B_{n} \rightarrow X \rrbracket} & =\lambda z_{1} \ldots z_{n} \cdot \mathcal{E} \llbracket M \rrbracket\left(\lambda x y \cdot y z_{1} \ldots z_{n}\right)
\end{aligned}
$$

Local encoding of $A \times B$ with η and a single base type X

$$
\begin{aligned}
\mathcal{E} \llbracket A \times B \rrbracket & =(\mathcal{E} \llbracket A \rrbracket \rightarrow \mathcal{E} \llbracket B \rrbracket \rightarrow X) \rightarrow X \\
\mathcal{E} \llbracket \text { pair } M N \rrbracket & =\lambda f . f \mathcal{E} \llbracket M \rrbracket \mathcal{E} \llbracket N \rrbracket \\
\mathcal{E} \llbracket \text { fst } M^{A_{1} \rightarrow \ldots A_{n} \rightarrow X, B \rrbracket} & =\lambda z_{1} \ldots z_{n} \cdot \mathcal{E} \llbracket M \rrbracket\left(\lambda x y . x z_{1} \ldots z_{n}\right) \\
\mathcal{E} \llbracket \text { snd } M^{A, B_{1} \rightarrow \ldots B_{n} \rightarrow X \rrbracket} & =\lambda z_{1} \ldots z_{n} \cdot \mathcal{E} \llbracket M \rrbracket\left(\lambda x y . y z_{1} \ldots . z_{n}\right)
\end{aligned}
$$

This is a type-indexed local encoding.

Can function types encode product types?

Can function types encode product types?

It depends...

Can function types encode product types?

It depends...

- Parametric global CPS encoding
- Parametric local Church encodings
- untyped
- simple types, but only homogeneous products
- polymorphic
- Multiple base types - no local encoding
- Single base type without η - no local encoding
- Single base type with η - type-indexed local encoding

Can function types encode product types?

It depends...

- Parametric global CPS encoding
- Parametric local Church encodings
- untyped
- simple types, but only homogeneous products
- polymorphic
- Multiple base types - no local encoding
- Single base type without η - no local encoding
- Single base type with η - type-indexed local encoding

Incidentally, none of these encodings preserves the η-rule for products.

Part II

Recursive types

Motivation

Stephen Dolan

Alan Mycroft
[Dolan and Mycroft, 2017, "Polymorphism, subtyping, and type inference in MLsub"]

Motivation

Stephen Dolan

Alan Mycroft
[Dolan and Mycroft, 2017, "Polymorphism, subtyping, and type inference in MLsub"]
MLsub relies on simulating general equi-recursive types by positive equi-recursive types.

Motivation

Stephen Dolan

Alan Mycroft
[Dolan and Mycroft, 2017, "Polymorphism, subtyping, and type inference in MLsub"]
MLsub relies on simulating general equi-recursive types by positive equi-recursive types.
General equi-recursive types can type non-terminating programs.

Motivation

Stephen Dolan

Alan Mycroft
[Dolan and Mycroft, 2017, "Polymorphism, subtyping, and type inference in MLsub"]
MLsub relies on simulating general equi-recursive types by positive equi-recursive types.
General equi-recursive types can type non-terminating programs.
Positive iso-recursive types can be encoded in System F.

Motivation

Stephen Dolan

Alan Mycroft
[Dolan and Mycroft, 2017, "Polymorphism, subtyping, and type inference in MLsub"]
MLsub relies on simulating general equi-recursive types by positive equi-recursive types.
General equi-recursive types can type non-terminating programs.
Positive iso-recursive types can be encoded in System F.
Why the discrepancy between equi and iso?

Recursive types

Algebraic datatypes

$$
\begin{aligned}
\text { data Nat } & =\text { Z } \mid \text { S Nat } \\
\text { data List } & =\text { Nil | Cons Int List } \\
\text { data Tree } & =\text { Leaf } \mid \text { Node Tree Int Tree }
\end{aligned}
$$

Inline recursive types

$$
\begin{aligned}
\text { Nat } & =\mu X .1+X \\
\text { List } & =\mu X .1+\operatorname{lnt} \times X \\
\text { Tree } & =\mu X .1+X \times \operatorname{lnt} \times X
\end{aligned}
$$

Recursive type equations

$$
\begin{aligned}
\text { Nat } & =1+\text { Nat } \\
\text { List } & =1+\text { Int } \times \text { List } \\
\text { Tree } & =1+\text { Tree } \times \text { Int } \times \text { Tree }
\end{aligned}
$$

Recursive types as regular trees

Nat

$$
\mu X .1+X
$$

Recursive types as regular trees

Nat

$$
\mu X .1+X
$$

List $\quad \mu X .1+\operatorname{lnt} \times X$

Recursive types as regular trees

Nat

$$
\mu X .1+X
$$

List $\quad \mu X .1+\operatorname{lnt} \times X$

Tree $\quad \mu X .1+X \times \operatorname{lnt} \times X$

Equi-recursive types

$$
\frac{\Gamma \vdash M: A \vdash A \approx B}{\Gamma \vdash M: B}
$$

$\vdash A \approx B$ means
A and B are equivalent up to infinite unrolling

Equi-recursive types

$$
\frac{\Gamma \vdash M: A \quad \vdash A \approx B}{\Gamma \vdash M: B}
$$

$\vdash A \approx B$ means
A and B are equivalent up to infinite unrolling

Example

$$
\mu X .1+X \quad \approx \quad 1+\mu X .1+X \quad \approx \quad \mu X .1+(1+X)
$$

Deciding equality by unrolling

$$
a \approx c, a \approx e
$$

Deciding equality by unrolling

$$
a \approx c, a \approx e
$$

Deciding equality by unrolling

$$
a \approx c, a \approx e
$$

$$
\phi \vdash a \approx b
$$

Repeat

$$
\begin{aligned}
& \text { REC-Cons } \\
& \quad \text { label }(a)=\text { label }(b) \\
& \frac{\Phi, a \approx b \vdash \operatorname{children}(a) \approx \operatorname{children}(b)}{\Phi \vdash a \approx b}
\end{aligned}
$$

Φ a set - comma is disjoint extension

Iso-recursive types

$$
\begin{aligned}
& \text { RoLl } \\
& \frac{\Gamma \vdash M: A[\mu X . A / X]}{\Gamma \vdash \operatorname{roll} M: \mu X . A}
\end{aligned}
$$

Unroll
$\Gamma \vdash M: \mu X . A$
$\overline{\Gamma \vdash \text { unroll } M: A[\mu X . A / X]}$

Iso-recursive types

Roll

$$
\frac{\Gamma \vdash M: A[\mu X . A / X]}{\Gamma \vdash \operatorname{roll} M: \mu X . A}
$$

UnRoll
$\Gamma \vdash M: \mu X . A$
$\overline{\Gamma \vdash \text { unroll } M: A[\mu X . A / X]}$

Example

$$
\mu X .1+X \quad \neq \quad 1+\mu X .1+X \quad \neq \quad \mu X .1+(1+X)
$$

Equi-recursive versus iso-recursive types

STLC Simply-Typed Lambda Calculus
FPC Fixed Point Calculus
FPC STLC + iso-recursive types
FPC $=\quad$ STLC + equi-recursive types

Equi-recursive versus iso-recursive types

STLC Simply-Typed Lambda Calculus
FPC Fixed Point Calculus
FPC STLC + iso-recursive types
FPC $=\quad$ STLC + equi-recursive types
Interdefinability

- $\mathrm{FPC}_{=}$can simulate FPC
- just erase roll and unroll
- FPC can simulate $\mathrm{FPC}=$ up to observational equivalence
- coercion functions witness type equivalence
[Abadi and Fiore, 1996; Brandt and Henglein, 1998]

Positive recursive types

Positive type variable: occurs on left of even number of arrows
Negative type variable: occurs on left of odd number of arrows
Strictly positive type variable: occurs on right of arrows
Examples - X occurs:

- strictly positively in $X, 1+\operatorname{Int} \times X$, and $\operatorname{Int} \rightarrow X$
- positively in $(X \rightarrow$ Int $) \rightarrow$ Int
- negatively in $X \rightarrow$ Int
- both positively and negatively in $X \rightarrow X$

A recursive type is positive if all occurrences of the bound variable are positive, e.g:

$$
\mu X .1+\operatorname{Int} \times X \quad \quad \mu X .(X \rightarrow \operatorname{Int}) \rightarrow \operatorname{Int}
$$

Positive equi- versus positive iso-

FPC ${ }^{+} \quad$ STLC + positive iso-recursive types
FPC $+\quad$ STLC + positive equi-recursive types
FPC ${ }^{++} \quad$ STLC + strictly positive iso-recursive types
FPC ${ }_{=}^{++} \quad$ STLC + strictly positive equi-recursive types

Positive equi- versus positive iso-

FPC ${ }^{+} \quad$ STLC + positive iso-recursive types
FPC $+\quad$ STLC + positive equi-recursive types
FPC ${ }^{++} \quad$ STLC + strictly positive iso-recursive types
FPC $\xlongequal[=]{++} \quad$ STLC + strictly positive equi-recursive types
Interdefinability

- $\mathrm{FPC}_{=}^{++}$can simulate FPC^{++}- just erase roll and unroll
- System F can simulate FPC^{+}(strong normalisation)
- $\mathrm{FPC}_{=}^{+}$can simulate $\mathrm{FPC}_{=}$(non-termination)
- $\mathrm{FPC}_{=}^{+}$is stricty more expressive than FPC^{+}
- $\mathrm{FPC}^{+}+$general recursion can simulate FPC up to observational equivalence
- $\mathrm{FPC}^{++}+$fold can simulate $\mathrm{FPC}_{=}^{++}$up to observational equivalence

Yeah, yeah

Universal type with a negative occurrence

$$
U=U \rightarrow U=\mu X \cdot X \rightarrow X
$$

All untyped lambda terms can be typed with U

$$
\omega=\lambda x \cdot x x \quad \Omega=\omega \omega \quad \Omega \rightsquigarrow_{\beta} \Omega
$$

Yeah, yeah

Universal type with a negative occurrence

$$
U=U \rightarrow U=\mu X \cdot X \rightarrow X
$$

All untyped lambda terms can be typed with U

$$
\omega=\lambda x . x x \quad \Omega=\omega \omega \quad \Omega \rightsquigarrow_{\beta} \Omega
$$

Universal type as mutually recursive positive type

$$
\begin{aligned}
& P=Q \rightarrow P=\mu X .(\mu Y . X \rightarrow Y) \rightarrow X \\
& Q=P \rightarrow Q=\mu X .(\mu Y . X \rightarrow Y) \rightarrow X
\end{aligned}
$$

U, P, Q all represent infinite binary tree of \rightarrow nodes

$$
\vdash U \approx P \approx Q
$$

Yeah, yeah

Universal type with a negative occurrence

$$
U=U \rightarrow U=\mu X \cdot X \rightarrow X
$$

All untyped lambda terms can be typed with U

$$
\omega=\lambda x \cdot x \times \quad \Omega=\omega \omega \quad \Omega \rightsquigarrow_{\beta} \Omega
$$

Universal type as mutually recursive positive type

$$
\begin{aligned}
& P=Q \rightarrow P=\mu X .(\mu Y . X \rightarrow Y) \rightarrow X \\
& Q=P \rightarrow Q=\mu X .(\mu Y . X \rightarrow Y) \rightarrow X
\end{aligned}
$$

U, P, Q all represent infinite binary tree of \rightarrow nodes

$$
\vdash U \approx P \approx Q
$$

All untyped lambda terms can be typed with P !

$\mathrm{FPC}=$ in FPC^{+}

Idea: split the positive and negative occurrences

$$
\mu X . F[X, X] \approx \mu X . F[\mu Y . F[X, Y], X]
$$

[Bekić, 1984]
Example: universal data type

$$
\begin{aligned}
F\left[X^{-}, X^{+}\right] & =X^{-} \rightarrow X^{+} \\
U & =\mu X \cdot F[X, X]=\mu X \cdot X \rightarrow X \\
P & =\mu X \cdot F[\mu Y \cdot F[X, Y], X]=\mu X \cdot(\mu Y \cdot X \rightarrow Y) \rightarrow X
\end{aligned}
$$

FPC in $\mathrm{FPC}^{+}+$general recursion

Coercions for simulating FPC in $\mathrm{FPC}=$ use general recursion

$$
\mathrm{FPC}^{+}+\text {general recursion } \longrightarrow \mathrm{FPC}_{\underset{ }{+} \longrightarrow \mathrm{FPC}_{=} \longrightarrow \mathrm{FPC}}
$$

Example:

$$
\begin{aligned}
\omega^{U \rightarrow U}= & \lambda x^{U} .(\text { unroll } x) x \\
\Omega^{U}= & \omega^{U \rightarrow U}\left(\text { roll } \omega^{U \rightarrow U}\right) \\
\omega^{Q \rightarrow P}= & \lambda x^{Q} .\left(\text { unroll }\left(V_{Q P} x\right)\right)\left(V_{Q P} x\right) \\
\Omega^{P}= & \omega^{Q \rightarrow P}\left(V_{P Q}\left(\text { roll } \omega^{Q \rightarrow P}\right)\right) \\
& \text { where } \\
& \quad V_{Q P}=\operatorname{rec} f^{Q \rightarrow P} x^{Q} . \text { roll }(f \circ(\text { unroll } x) \circ f) \\
& V_{P Q}=\operatorname{rec} f^{P \rightarrow Q} x^{P} . \text { roll }(f \circ(\text { unroll } x) \circ f)
\end{aligned}
$$

Summary

$\mathrm{FPC} \simeq \mathrm{FPC}_{=} \simeq \mathrm{FPC}_{=}^{+} \gtrsim \mathrm{FPC}^{+} \lesssim$ System F

$$
\mathrm{FPC}^{++} \simeq \mathrm{FPC}_{=}^{++}
$$

Can positive iso-recursive types encode positive equi-recursive types?

Can positive iso-recursive types encode positive equi-recursive types?

Not without general recursion

Can positive iso-recursive types encode positive equi-recursive types?

Not without general recursion

Intuitively the encoding requires the insertion of an infinite number of rolls and unrolls

Can positive iso-recursive types encode positive equi-recursive types?

Not without general recursion

Intuitively the encoding requires the insertion of an infinite number of rolls and unrolls

Morally the notion of a "positive" equi-recursive type is rather misleading

Part III

Existential types

Motivation

Well-known how universal types can encode existential types

Motivation

Well-known how universal types can encode existential types

What if we already have existential types, and want to encode universal types?
(I ran into this situation when trying to define a minimal effect handler calculus where parametric algebraic operations provide existentials, but there are no universals.)

Existentials as universals

$$
\begin{array}{ll}
\text { De Morgan dual } & \exists X . A \equiv \neg \forall X . \neg A=(\forall X .(A \rightarrow \perp)) \rightarrow \perp
\end{array}
$$

Existentials as universals

De Morgan dual

$$
\exists X . A \equiv \neg \forall X . \neg A=(\forall X .(A \rightarrow \perp)) \rightarrow \perp
$$

System F encoding generalises the de Morgan dual

$$
\exists X . A \equiv \forall Z .(\forall X .(A \rightarrow Z)) \rightarrow Z
$$

Existentials as universals

De Morgan dual

$$
\exists X . A \equiv \neg \forall X . \neg A=(\forall X .(A \rightarrow \perp)) \rightarrow \perp
$$

System F encoding generalises the de Morgan dual

$$
\exists X . A \equiv \forall Z .(\forall X .(A \rightarrow Z)) \rightarrow Z
$$

What about the other way round?

$$
\forall X . A \equiv \neg \exists X . \neg A=(\exists X .(A \rightarrow \perp)) \rightarrow \perp
$$

Existentials as universals

De Morgan dual

$$
\exists X . A \equiv \neg \forall X . \neg A=(\forall X .(A \rightarrow \perp)) \rightarrow \perp
$$

System F encoding generalises the de Morgan dual

$$
\exists X . A \equiv \forall Z .(\forall X .(A \rightarrow Z)) \rightarrow Z
$$

What about the other way round?

$$
\forall X . A \equiv \neg \exists X . \neg A=(\exists X .(A \rightarrow \perp)) \rightarrow \perp
$$

The generalisation trick is no good as it depends on another universal quantifier

$$
\forall X . A \equiv \forall Z .(\exists X . A \rightarrow Z) \rightarrow Z
$$

Minimal existential logic

Types

$$
A, B::=\perp|\neg A| A \times B|\exists X . A| X
$$

Terms

$$
\begin{aligned}
M, N::= & x \\
\mid & \lambda x^{A} \cdot M \mid M N \\
& (M, N) \mid \operatorname{let}(x, y)=M \text { in } N \\
\mid & (A, M) \mid \operatorname{let}(X, y)=M \text { in } N
\end{aligned}
$$

Universals as existentials [Fujita, 2010]

Judgements

$$
(\Gamma \vdash M: A)^{*}=\neg \Gamma^{*} \vdash M^{*}: \neg A^{*}
$$

Types

$$
\begin{aligned}
X^{*} & =X \\
(A \rightarrow B)^{*} & =\neg A^{*} \times B^{*} \\
(\forall X . A)^{*} & =\exists X . A^{*}
\end{aligned}
$$

Terms

$$
\begin{aligned}
(x: A)^{*} & =\lambda k^{A^{*}} \cdot x k \\
(\lambda x \cdot M: A)^{*} & =\lambda k^{A^{*}} \cdot \operatorname{let}(x, k)=k \text { in } M^{*} k \\
(M N: A)^{*} & =\lambda k^{A^{*}} \cdot M^{*}\left(N^{*}, k\right) \\
(\Lambda X \cdot M: A)^{*} & =\lambda k^{A^{*}} \cdot \operatorname{let}(X, k)=k \text { in } M^{*} k \\
(M B: A)^{*} & =\lambda k^{A^{*}} \cdot M^{*}\left(B^{*}, k\right)
\end{aligned}
$$

Can existentials encode universals?

Can existentials encode universals?

Yes, with a global CPS translation [Fujita, 2010]

Can existentials encode universals?

Yes, with a global CPS translation [Fujita, 2010]

Open question: can we prove that there is no local encoding?

Part IV

Effectful anecdotes

Idioms are oblivious, arrows are meticulous, monads are meticulous

Philip Wadler

Jeremy Yallop
[Lindley, Wadler, and Yallop, 2008]

Semantically: (monads $<$ arrows) and (idioms $<$ arrows)

As programs: idioms $<$ arrows $<$ monads

On the expressive power of user-defined effects

Ohad Kammar
[Forster, Kammar, Lindley, and Pretnar, 2019]
Eff $=$ effect handlers \quad Mon $=$ monadic reflection \quad Del $=$ delimited continuations

On the expressive power of user-defined effects

[Forster, Kammar, Lindley, and Pretnar, 2019]
Eff $=$ effect handlers \quad Mon $=$ monadic reflection \quad Del $=$ delimited continuations
Untyped \quad Eff \longleftrightarrow Mon \longleftrightarrow Del \longleftrightarrow Eff

- Translations Mon \longrightarrow Eff and Del \longrightarrow Eff simulate reduction on the nose
- Others translations don't

On the expressive power of user-defined effects

[Forster, Kammar, Lindley, and Pretnar, 2019]
Eff $=$ effect handlers \quad Mon $=$ monadic reflection \quad Del $=$ delimited continuations
Untyped \quad Eff \longleftrightarrow Mon \longleftrightarrow Del \longleftrightarrow Eff

- Translations Mon \longrightarrow Eff and Del \longrightarrow Eff simulate reduction on the nose
- Others translations don't

Simply-typed Eff \longleftrightarrow Del

On the expressive power of user-defined effects

[Forster, Kammar, Lindley, and Pretnar, 2019]
Eff $=$ effect handlers \quad Mon $=$ monadic reflection \quad Del $=$ delimited continuations
Untyped \quad Eff \longleftrightarrow Mon \longleftrightarrow Del \longleftrightarrow Eff

- Translations Mon \longrightarrow Eff and Del \longrightarrow Eff simulate reduction on the nose
- Others translations don't

Simply-typed Eff \longleftrightarrow Del
Polymorphic Eff \longleftrightarrow Del
[Piróg, Polesiuk, Sieczkowski, 2019] Novel form of answer-type polymorphism

Asymptotic improvement with control operators

John Longley
[Hillerström, Lindley, and Longley, 2020]
Generic search algorithm is:

- $\Omega\left(n 2^{n}\right)$ in PCF
- $O\left(2^{n}\right)$ in PCF + effect handlers

Key constraint: no change of types
Higher-order computability [Longley and Normann, 2015]

Part V
Wrapping up

Closing remarks

The range of notions of expressiveness is broad

Expressiveness results are fragile

Types enable richer notions of expressiveness

