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Some possible answers:

I Computability

I Algorithmic complexity

I Macro expressiveness
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Can function types encode product types?

Can positive iso-recursive types encode positive equi-recursive types?

Can existential types encode universal types?

Can simple-typed lambda calculus encode System F?

Can row polymorphism encode row subtyping?
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Part I

Products



Motivation

Alonzo Church

The standard Church encoding for a pair can only be ascribed a type in simply-typed
lambda calculus if both components of the pair have the same type.

Do alternative simply-typed encodings exist for heterogeneous pairs?
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Call-by-name CPS

Products are encodable via a curried global CPS translation

N JAK = (A? → R)→ R

X ? = X
(A× B)? = N JAK×N JBK
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Localising CPS
Untyped

UJpair M NK = λs.s UJMK UJNK
UJfst MK = UJMK (λx .λy .x)
UJsnd MK = UJMK (λx .λy .y)

Simply typed — homogeneous products

HJA× AK = (HJAK→ HJAK→ HJAK)→ HJAK
HJpair MA NAK = λsHJAK→HJAK→HJAK.s HJMK HJNK
HJfst MA×AK = HJMK (λxHJAK.λyHJAK.x)

HJsnd MA×AK = HJMK (λxHJAK.λyHJAK.y)

Polymorphic

FJA× BK = ∀Z .(FJAK→ FJBK→ Z )→ Z

FJpairA,B M NK = ΛZ .λsFJAK→FJBK→Z .s FJMK FJNK
FJfstA,B MK = FJMK FJAK (λxFJAK.λyFJBK.x)

FJsndA,B MK = FJMK FJBK (λxFJAK.λyFJBK.y)
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No local encoding of X × Y
We seek β-normal forms fstX ,Y and sndX ,Y such that:

Jp : X × Y ` fst p : X K = p : JX × Y K ` fstX ,Y : X
Jp : X × Y ` snd p : Y K = p : JX × Y K ` sndX ,Y : Y

So we must have m, n,M1, ...,Mm,N1, ...,Nn such that:

fstX ,Y = p M1 . . . Mm

sndX ,Y = p N1 . . . Nn

The typing rule for application means that we also have

A1 → · · · → Am → X = JX × Y K = B1 → · · · → Bn → Y

where
(p : JX × Y K ` Mi : Ai )1≤i≤m
(p : JX × Y K ` Nj : Bi )1≤j≤nj

But these equations could only hold if X and Y were the same type!
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Hang on a minute!

John Longley Dag Normann Oleg Kiselyov

Type-indexed local encodings of products are well-known in PCF and System T.
Examples:

I [Longley and Normann, 2015]

I [Kiselyov, 2021]
http://okmij.org/ftp/Computation/simple-encodings.html#product

How do we reconcile the existence of such encodings with the non-existence result?

http://okmij.org/ftp/Computation/simple-encodings.html#product


No local encoding of X × (X → X )

Consider X × (X → X ). We seek β-normal forms fstX ,X→X and sndX ,X→X such that:

Jp : X × (X → X ) ` fst p : X K = p : JX × (X → X )K ` fstX ,X→X : X
Jp : X × (X → X ) ` snd p : X → X K = p : JX × (X → X )K ` sndX ,X→X : X → X

As before, fstX ,X→X must be of the form

p M1 . . . Mm

and hence:
JX × (X → X )K = A1 → · · · → Am → X
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No local encoding of X × (X → X ) (continued)

Two choices for sndX ,X→X :

1. p N1 . . . Nm−1
=⇒ Am = X and Mm = p M ′1 . . . M

′
m

M ′m = p M ′′1 . . . M ′′m
...

No finite such snd can exist.

2. λz .N ′

=⇒ Jsnd (pair x y)K = λz .N ′[Jpair x yK/p]
No lambda abstraction can be β-converted to y .
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Local encoding of X × (X → X ) with η

EJX × (X → X )K = (X → (X → X )→ X )→ X

EJpair MX NX→X K = λf .f EJMK EJNK
EJfst MX×(X→X )K = EJMK (λx y .x)

EJsnd MX×(X→X )K = λz .EJMK (λx y .y z)

Now we have
EJfst (EJpair x yK)K ∼β x
EJsnd (EJpair x yK)K ∼β λz .y z ∼η y
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Local encoding of A× B with η and a single base type X

EJA× BK = (EJAK→ EJBK→ X )→ X

EJpair M NK = λf .f EJMK EJNK
EJfst MA1→...An→X ,BK = λz1 . . . zn.EJMK (λx y .x z1 . . . zn)
EJsnd MA,B1→...Bn→X K = λz1 . . . zn.EJMK (λx y .y z1 . . . zn)

This is a type-indexed local encoding.
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Can function types encode product types?

It depends...

I Parametric global CPS encoding
I Parametric local Church encodings

I untyped
I simple types, but only homogeneous products
I polymorphic

I Multiple base types — no local encoding

I Single base type without η — no local encoding

I Single base type with η — type-indexed local encoding

Incidentally, none of these encodings preserves the η-rule for products.
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Part II

Recursive types



Motivation

Stephen Dolan Alan Mycroft

[Dolan and Mycroft, 2017, “Polymorphism, subtyping, and type inference in MLsub”]

MLsub relies on simulating general equi-recursive types by positive equi-recursive types.

General equi-recursive types can type non-terminating programs.

Positive iso-recursive types can be encoded in System F.

Why the discrepancy between equi and iso?
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Recursive types

Algebraic datatypes

data Nat = Z | S Nat
data List = Nil | Cons Int List

data Tree = Leaf | Node Tree Int Tree

Inline recursive types
Nat = µX .1 + X
List = µX .1 + Int× X

Tree = µX .1 + X × Int× X

Recursive type equations

Nat = 1 + Nat
List = 1 + Int× List

Tree = 1 + Tree× Int× Tree



Recursive types as regular trees

Nat µX .1 + X

+

1

List µX .1 + Int× X

+

1 ×

Int

Tree µX .1 + X × Int× X

+

1 ×

×

Int
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Equi-recursive types

Γ ` M : A ` A ≈ B

Γ ` M : B
` A ≈ B means

A and B are equivalent up to infinite unrolling

Example

µX .1 + X ≈ 1 + µX .1 + X ≈ µX .1 + (1 + X )

+

1 ≈

+

1 +

1 ≈

+

1 +

1
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Deciding equality by unrolling

+
a

1
b

+
c

1
d

+
e

1
f

Φ ` a ≈ b

Repeat

Φ, a ≈ b ` a ≈ b

Rec-Cons
label(a) = label(b)

Φ, a ≈ b ` children(a) ≈ children(b)

Φ ` a ≈ b

Φ a set — comma is disjoint extension
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Iso-recursive types

Roll
Γ ` M : A[µX .A/X ]

Γ ` roll M : µX .A

Unroll
Γ ` M : µX .A

Γ ` unroll M : A[µX .A/X ]

Example

µX .1 + X 6= 1 + µX .1 + X 6= µX .1 + (1 + X )

+

1 6=

+

1 +

1 6=

+

1 +

1
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Equi-recursive versus iso-recursive types

STLC Simply-Typed Lambda Calculus

FPC Fixed Point Calculus

FPC STLC + iso-recursive types

FPC= STLC + equi-recursive types

Interdefinability

I FPC= can simulate FPC
— just erase roll and unroll

I FPC can simulate FPC= up to observational equivalence
— coercion functions witness type equivalence
[Abadi and Fiore, 1996; Brandt and Henglein, 1998]
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Positive recursive types

Positive type variable: occurs on left of even number of arrows

Negative type variable: occurs on left of odd number of arrows

Strictly positive type variable: occurs on right of arrows

Examples — X occurs:

I strictly positively in X , 1 + Int× X , and Int→ X

I positively in (X → Int)→ Int

I negatively in X → Int

I both positively and negatively in X → X

A recursive type is positive if all occurrences of the bound variable are positive, e.g:

µX .1 + Int× X µX .(X → Int)→ Int



Positive equi- versus positive iso-
FPC+ STLC + positive iso-recursive types

FPC+
= STLC + positive equi-recursive types

FPC++ STLC + strictly positive iso-recursive types

FPC++
= STLC + strictly positive equi-recursive types

Interdefinability

I FPC+
= can simulate FPC+ — just erase roll and unroll

I FPC++
= can simulate FPC++ — just erase roll and unroll

I System F can simulate FPC+ (strong normalisation)

I FPC+
= can simulate FPC= (non-termination)

I FPC+
= is stricty more expressive than FPC+

I FPC+ + general recursion can simulate FPC up to observational equivalence

I FPC++ + fold can simulate FPC++
= up to observational equivalence
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Yeah, yeah

Universal type with a negative occurrence

U = U → U = µX .X → X

All untyped lambda terms can be typed with U

ω = λx .x x Ω = ω ω Ω β Ω

Universal type as mutually recursive positive type

P = Q → P = µX .(µY .X → Y )→ X
Q = P → Q = µX .(µY .X → Y )→ X

U,P,Q all represent infinite binary tree of → nodes

` U ≈ P ≈ Q

→
→

→

All untyped lambda terms can be typed with P!
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FPC= in FPC+
=

Idea: split the positive and negative occurrences

µX .F [X ,X ] ≈ µX .F [µY .F [X ,Y ],X ]

[Bekić, 1984]

Example: universal data type

F [X−,X+] = X− → X+

U = µX .F [X ,X ] = µX .X → X
P = µX .F [µY .F [X ,Y ],X ] = µX .(µY .X → Y )→ X



FPC in FPC+ + general recursion

Coercions for simulating FPC in FPC= use general recursion

FPC+ + general recursion −→ FPC+
= −→ FPC= −→ FPC

Example:

ωU→U = λxU .(unroll x) x
ΩU = ωU→U (roll ωU→U)

ωQ→P = λxQ .(unroll (VQP x)) (VQP x)
ΩP = ωQ→P (VPQ (roll ωQ→P))

where
VQP = rec f Q→P xQ .roll (f ◦ (unroll x) ◦ f )
VPQ = rec f P→Q xP .roll (f ◦ (unroll x) ◦ f )



Summary

FPC ' FPC= ' FPC+
= & FPC+ . System F

FPC++ ' FPC++
=



Can positive iso-recursive types encode positive equi-recursive types?

Not without general recursion

Intuitively the encoding requires the insertion of an infinite number of rolls and unrolls

Morally the notion of a “positive” equi-recursive type is rather misleading
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Part III

Existential types



Motivation

Well-known how universal types can encode existential types

What if we already have existential types, and want to encode universal types?

(I ran into this situation when trying to define a minimal effect handler calculus where
parametric algebraic operations provide existentials, but there are no universals.)
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Existentials as universals

De Morgan dual
∃X .A ≡ ¬∀X .¬A = (∀X .(A→ ⊥))→ ⊥

System F encoding generalises the de Morgan dual

∃X .A ≡ ∀Z .(∀X .(A→ Z ))→ Z

What about the other way round?

∀X .A ≡ ¬∃X .¬A = (∃X .(A→ ⊥))→ ⊥

The generalisation trick is no good as it depends on another universal quantifier

∀X .A ≡ ∀Z .(∃X .A→ Z )→ Z
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Minimal existential logic

Types
A,B ::= ⊥ | ¬A | A× B | ∃X .A | X

Terms
M,N ::= x

| λxA.M | M N
| (M,N) | let (x , y) = M in N
| (A,M) | let (X , y) = M in N



Universals as existentials [Fujita, 2010]

Judgements
(Γ ` M : A)∗ = ¬Γ∗ ` M∗ : ¬A∗

Types
X ∗ = X

(A→ B)∗ = ¬A∗ × B∗

(∀X .A)∗ = ∃X .A∗

Terms
(x : A)∗ = λkA

∗
.x k

(λx .M : A)∗ = λkA
∗
.let (x , k) = k in M∗ k

(M N : A)∗ = λkA
∗
.M∗ (N∗, k)

(ΛX .M : A)∗ = λkA
∗
.let (X , k) = k in M∗ k

(M B : A)∗ = λkA
∗
.M∗ (B∗, k)



Can existentials encode universals?

Yes, with a global CPS translation [Fujita, 2010]

Open question: can we prove that there is no local encoding?
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Part IV

Effectful anecdotes



Idioms are oblivious, arrows are meticulous, monads are meticulous

Philip Wadler Jeremy Yallop

[Lindley, Wadler, and Yallop, 2008]

Semantically: (monads < arrows) and (idioms < arrows)

As programs: idioms < arrows < monads



On the expressive power of user-defined effects

Yannick Forster Ohad Kammar Matija Pretnar

[Forster, Kammar, Lindley, and Pretnar, 2019]

Eff = effect handlers Mon = monadic reflection Del = delimited continuations

Untyped Eff ←→ Mon←→ Del←→ Eff

I Translations Mon −→ Eff and Del −→ Eff simulate reduction on the nose

I Others translations don’t

Simply-typed Eff 6←→ Del

Polymorphic Eff ←→ Del
[Piróg, Polesiuk, Sieczkowski, 2019] Novel form of answer-type polymorphism
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Asymptotic improvement with control operators

Daniel Hillerström John Longley

[Hillerström, Lindley, and Longley, 2020]

Generic search algorithm is:

I Ω(n2n) in PCF

I O(2n) in PCF + effect handlers

Key constraint: no change of types

Higher-order computability [Longley and Normann, 2015]



Part V

Wrapping up



Closing remarks

The range of notions of expressiveness is broad

Expressiveness results are fragile

Types enable richer notions of expressiveness
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