
Effect handler oriented programming

Sam Lindley

The University of Edinburgh

NTU Singapore, November 2024

What is an effect?

Effects

Programs as black boxes (Church-Turing model)?

Effects are pervasive

▶ input/output

user interaction

▶ concurrency

web applications

▶ distribution

cloud computing

▶ exceptions

fault tolerance

▶ choice

backtracking search

Typically ad hoc and hard-wired

Effects

Programs must interact with their environment

Effects are pervasive

▶ input/output

user interaction

▶ concurrency

web applications

▶ distribution

cloud computing

▶ exceptions

fault tolerance

▶ choice

backtracking search

Typically ad hoc and hard-wired

Effects

Programs must interact with their environment

Effects are pervasive

▶ input/output
user interaction

▶ concurrency
web applications

▶ distribution
cloud computing

▶ exceptions
fault tolerance

▶ choice
backtracking search

Typically ad hoc and hard-wired

Effects

Programs must interact with their environment Effects are pervasive

▶ input/output
user interaction

▶ concurrency
web applications

▶ distribution
cloud computing

▶ exceptions
fault tolerance

▶ choice
backtracking search

Typically ad hoc and hard-wired

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), Wasm (WasmFX), ...

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), Wasm (WasmFX), ...

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), Wasm (WasmFX), ...

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), Wasm (WasmFX), ...

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), Wasm (WasmFX), ...

Effect handlers as composable user-defined operating systems

Effect handlers as composable user-defined operating systems

Effect handlers for operating systems

EIO — effects-based direct-style concurrent I/O stack for OCaml
https://github.com/ocaml-multicore/eio

Composing UNIX with effect handlers
Foundations for programming and implementing effect handlers, Chapter 2
Daniel Hillerström, PhD thesis, The University of Edinburgh, 2022
https://www.dhil.net/research/papers/thesis.pdf

https://github.com/ocaml-multicore/eio
https://www.dhil.net/research/papers/thesis.pdf

Example 1: choice and failure
Effect signature

{choose : 1↠ Bool, fail : a.1↠ a}

Coin tossing

toss : 1 → Toss!(E ⊎ {choose : 1↠ Bool})
toss () = if choose () then Heads else Tails

drunkToss : 1 → Toss!(E ⊎ {choose : 1↠ Bool, fail : a.1↠ a})
drunkToss () = if choose () then

if choose () then Heads else Tails
else

fail ()

drunkTosses : Nat → List Toss!(E ⊎ {choose : 1↠ Bool, fail : a.1↠ a})
drunkTosses n = if n = 0 then []

else drunkToss () :: drunkTosses (n − 1)

Example 1: choice and failure
Effect signature

{choose : 1↠ Bool, fail : a.1↠ a}
Coin tossing

toss : 1 → Toss!(E ⊎ {choose : 1↠ Bool})
toss () = if choose () then Heads else Tails

drunkToss : 1 → Toss!(E ⊎ {choose : 1↠ Bool, fail : a.1↠ a})
drunkToss () = if choose () then

if choose () then Heads else Tails
else

fail ()

drunkTosses : Nat → List Toss!(E ⊎ {choose : 1↠ Bool, fail : a.1↠ a})
drunkTosses n = if n = 0 then []

else drunkToss () :: drunkTosses (n − 1)

Example 1: choice and failure
Effect signature

{choose : 1↠ Bool, fail : a.1↠ a}
Coin tossing

toss : 1 → Toss!(E ⊎ {choose : 1↠ Bool})
toss () = if choose () then Heads else Tails

drunkToss : 1 → Toss!(E ⊎ {choose : 1↠ Bool, fail : a.1↠ a})
drunkToss () = if choose () then

if choose () then Heads else Tails
else
fail ()

drunkTosses : Nat → List Toss!(E ⊎ {choose : 1↠ Bool, fail : a.1↠ a})
drunkTosses n = if n = 0 then []

else drunkToss () :: drunkTosses (n − 1)

Example 1: choice and failure
Effect signature

{choose : 1↠ Bool, fail : a.1↠ a}
Coin tossing

toss : 1 → Toss!(E ⊎ {choose : 1↠ Bool})
toss () = if choose () then Heads else Tails

drunkToss : 1 → Toss!(E ⊎ {choose : 1↠ Bool, fail : a.1↠ a})
drunkToss () = if choose () then

if choose () then Heads else Tails
else
fail ()

drunkTosses : Nat → List Toss!(E ⊎ {choose : 1↠ Bool, fail : a.1↠ a})
drunkTosses n = if n = 0 then []

else drunkToss () :: drunkTosses (n − 1)

Example 1: choice and failure

Handlers

maybeFail : A!(E ⊎ {fail : a.1↠ a}) ⇒ Maybe A!E
maybeFail = — exception handler
return x 7→ Just x
⟨fail ()⟩ 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice : A!(E ⊎ {choose : 1↠ Bool}) ⇒ A!E
trueChoice = — linear handler

return x 7→ x
⟨choose () → r⟩ 7→ r true

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices : A!(E ⊎ {choose : 1↠ Bool}) ⇒ List A!E
allChoices = — non-linear handler

return x 7→ [x]
⟨choose () → r⟩ 7→ r true ++ r false

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads,Tails]

Example 1: choice and failure

Handlers

maybeFail : A!(E ⊎ {fail : a.1↠ a}) ⇒ Maybe A!E
maybeFail = — exception handler
return x 7→ Just x
⟨fail ()⟩ 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice : A!(E ⊎ {choose : 1↠ Bool}) ⇒ A!E
trueChoice = — linear handler

return x 7→ x
⟨choose () → r⟩ 7→ r true

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices : A!(E ⊎ {choose : 1↠ Bool}) ⇒ List A!E
allChoices = — non-linear handler

return x 7→ [x]
⟨choose () → r⟩ 7→ r true ++ r false

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads,Tails]

Example 1: choice and failure

Handlers

maybeFail : A!(E ⊎ {fail : a.1↠ a}) ⇒ Maybe A!E
maybeFail = — exception handler
return x 7→ Just x
⟨fail ()⟩ 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice : A!(E ⊎ {choose : 1↠ Bool}) ⇒ A!E
trueChoice = — linear handler
return x 7→ x
⟨choose () → r⟩ 7→ r true

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices : A!(E ⊎ {choose : 1↠ Bool}) ⇒ List A!E
allChoices = — non-linear handler

return x 7→ [x]
⟨choose () → r⟩ 7→ r true ++ r false

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads,Tails]

Example 1: choice and failure

Handlers

maybeFail : A!(E ⊎ {fail : a.1↠ a}) ⇒ Maybe A!E
maybeFail = — exception handler
return x 7→ Just x
⟨fail ()⟩ 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice : A!(E ⊎ {choose : 1↠ Bool}) ⇒ A!E
trueChoice = — linear handler
return x 7→ x
⟨choose () → r⟩ 7→ r true

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices : A!(E ⊎ {choose : 1↠ Bool}) ⇒ List A!E
allChoices = — non-linear handler

return x 7→ [x]
⟨choose () → r⟩ 7→ r true ++ r false

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads,Tails]

Example 1: choice and failure

Handlers

maybeFail : A!(E ⊎ {fail : a.1↠ a}) ⇒ Maybe A!E
maybeFail = — exception handler
return x 7→ Just x
⟨fail ()⟩ 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice : A!(E ⊎ {choose : 1↠ Bool}) ⇒ A!E
trueChoice = — linear handler
return x 7→ x
⟨choose () → r⟩ 7→ r true

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices : A!(E ⊎ {choose : 1↠ Bool}) ⇒ List A!E
allChoices = — non-linear handler
return x 7→ [x]
⟨choose () → r⟩ 7→ r true ++ r false

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads,Tails]

Example 1: choice and failure

Handlers

maybeFail : A!(E ⊎ {fail : a.1↠ a}) ⇒ Maybe A!E
maybeFail = — exception handler
return x 7→ Just x
⟨fail ()⟩ 7→ Nothing

handle 42 with maybeFail =⇒ Just 42
handle fail () with maybeFail =⇒ Nothing

trueChoice : A!(E ⊎ {choose : 1↠ Bool}) ⇒ A!E
trueChoice = — linear handler
return x 7→ x
⟨choose () → r⟩ 7→ r true

handle 42 with trueChoice =⇒ 42
handle toss () with trueChoice =⇒ Heads

allChoices : A!(E ⊎ {choose : 1↠ Bool}) ⇒ List A!E
allChoices = — non-linear handler
return x 7→ [x]
⟨choose () → r⟩ 7→ r true ++ r false

handle 42 with allChoices =⇒ [42]
handle toss () with allChoices =⇒ [Heads,Tails]

Example 1: choice and failure

Handler composition

handle (handle drunkTosses 2withmaybeFail)with allChoices

: List (Maybe (List Toss)) =⇒
[Just [Heads,Heads], Just [Heads,Tails], Nothing,
Just [Tails,Heads], Just [Tails,Tails], Nothing,
Nothing]

handle (handle drunkTosses 2with allChoices)withmaybeFail : Maybe (List (List Toss))=⇒
Nothing

Example 1: choice and failure

Handler composition

handle (handle drunkTosses 2withmaybeFail)with allChoices : List (Maybe (List Toss)) =⇒

[Just [Heads,Heads], Just [Heads,Tails], Nothing,
Just [Tails,Heads], Just [Tails,Tails], Nothing,
Nothing]

handle (handle drunkTosses 2with allChoices)withmaybeFail : Maybe (List (List Toss))=⇒
Nothing

Example 1: choice and failure

Handler composition

handle (handle drunkTosses 2withmaybeFail)with allChoices : List (Maybe (List Toss)) =⇒
[Just [Heads,Heads], Just [Heads,Tails], Nothing,
Just [Tails,Heads], Just [Tails,Tails], Nothing,
Nothing]

handle (handle drunkTosses 2with allChoices)withmaybeFail : Maybe (List (List Toss))=⇒
Nothing

Example 1: choice and failure

Handler composition

handle (handle drunkTosses 2withmaybeFail)with allChoices : List (Maybe (List Toss)) =⇒
[Just [Heads,Heads], Just [Heads,Tails], Nothing,
Just [Tails,Heads], Just [Tails,Tails], Nothing,
Nothing]

handle (handle drunkTosses 2with allChoices)withmaybeFail

: Maybe (List (List Toss))=⇒
Nothing

Example 1: choice and failure

Handler composition

handle (handle drunkTosses 2withmaybeFail)with allChoices : List (Maybe (List Toss)) =⇒
[Just [Heads,Heads], Just [Heads,Tails], Nothing,
Just [Tails,Heads], Just [Tails,Tails], Nothing,
Nothing]

handle (handle drunkTosses 2with allChoices)withmaybeFail : Maybe (List (List Toss))=⇒

Nothing

Example 1: choice and failure

Handler composition

handle (handle drunkTosses 2withmaybeFail)with allChoices : List (Maybe (List Toss)) =⇒
[Just [Heads,Heads], Just [Heads,Tails], Nothing,
Just [Tails,Heads], Just [Tails,Tails], Nothing,
Nothing]

handle (handle drunkTosses 2with allChoices)withmaybeFail : Maybe (List (List Toss))=⇒
Nothing

Operational semantics (deep handlers)

Reduction rules

let x = V in N ⇝ N[V /x]
handle V with H ⇝ N[V /x]

handle E [op V] with H ⇝ Nop[V /p, (λx .handle E [x] with H)/r], op # E

where
where H = return x 7→ N

⟨op1 p → r⟩ 7→ Nop1

· · ·
⟨opk p → r⟩ 7→ Nopk

Evaluation contexts

E ::= [] | let x = E in N | handle E with H

Typing rules (deep handlers)
Effects

E ::= ∅ | E ⊎ {op : A↠ B}

Computations
C ,D ::= A!E

Operations
Γ ⊢ V : A

Γ ⊢ opV : B!(E ⊎ {op : A↠ B})

Handlers Γ ⊢ M : C Γ ⊢ H : C ⇒ D

Γ ⊢ handle M with H : D

Γ, x : A ⊢ N : D [opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → D ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒ D

Exercise: Adapt the typing rules to accommodate parametric operations

Typing rules (deep handlers)
Effects

E ::= ∅ | E ⊎ {op : A↠ B}

Computations
C ,D ::= A!E

Operations
Γ ⊢ V : A

Γ ⊢ opV : B!(E ⊎ {op : A↠ B})

Handlers Γ ⊢ M : C Γ ⊢ H : C ⇒ D

Γ ⊢ handle M with H : D

Γ, x : A ⊢ N : D [opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → D ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒ D

Exercise: Adapt the typing rules to accommodate parametric operations

What is an effect handler?

▶ A modular interpreter for effectful computations
▶ A generalisation of an exception handler

▶ based on exceptional syntax [Benton and Kennedy, 2001]

let x = (try M with H) in N conventional exception handlers
⇓

try M as x in N otherwise H exceptional syntax
⇓

handle M with {return x 7→ N;H} effect handlers

success continuations aid composition, optimisation, and reasoning
▶ resumable

▶ A morphism between (free) algebras

▶ A fold (catamorphism) over a command-response tree

▶ A structured delimited control operator

▶ A composable user-defined operating system

What is an effect handler?

▶ A modular interpreter for effectful computations

▶ A generalisation of an exception handler
▶ based on exceptional syntax [Benton and Kennedy, 2001]

let x = (try M with H) in N conventional exception handlers
⇓

try M as x in N otherwise H exceptional syntax
⇓

handle M with {return x 7→ N;H} effect handlers

success continuations aid composition, optimisation, and reasoning
▶ resumable

▶ A morphism between (free) algebras

▶ A fold (catamorphism) over a command-response tree

▶ A structured delimited control operator

▶ A composable user-defined operating system

What is an effect handler?

▶ A modular interpreter for effectful computations
▶ A generalisation of an exception handler

▶ based on exceptional syntax [Benton and Kennedy, 2001]

let x = (try M with H) in N conventional exception handlers
⇓

try M as x in N otherwise H exceptional syntax
⇓

handle M with {return x 7→ N;H} effect handlers

success continuations aid composition, optimisation, and reasoning
▶ resumable

▶ A morphism between (free) algebras

▶ A fold (catamorphism) over a command-response tree

▶ A structured delimited control operator

▶ A composable user-defined operating system

What is an effect handler?

▶ A modular interpreter for effectful computations
▶ A generalisation of an exception handler

▶ based on exceptional syntax [Benton and Kennedy, 2001]

let x = (try M with H) in N conventional exception handlers
⇓

try M as x in N otherwise H exceptional syntax
⇓

handle M with {return x 7→ N;H} effect handlers

success continuations aid composition, optimisation, and reasoning
▶ resumable

▶ A morphism between (free) algebras

▶ A fold (catamorphism) over a command-response tree

▶ A structured delimited control operator

▶ A composable user-defined operating system

What is an effect handler?

▶ A modular interpreter for effectful computations
▶ A generalisation of an exception handler

▶ based on exceptional syntax [Benton and Kennedy, 2001]

let x = (try M with H) in N conventional exception handlers
⇓

try M as x in N otherwise H exceptional syntax
⇓

handle M with {return x 7→ N;H} effect handlers

success continuations aid composition, optimisation, and reasoning
▶ resumable

▶ A morphism between (free) algebras

▶ A fold (catamorphism) over a command-response tree

▶ A structured delimited control operator

▶ A composable user-defined operating system

What is an effect handler?

▶ A modular interpreter for effectful computations
▶ A generalisation of an exception handler

▶ based on exceptional syntax [Benton and Kennedy, 2001]

let x = (try M with H) in N conventional exception handlers
⇓

try M as x in N otherwise H exceptional syntax
⇓

handle M with {return x 7→ N;H} effect handlers

success continuations aid composition, optimisation, and reasoning
▶ resumable

▶ A morphism between (free) algebras

▶ A fold (catamorphism) over a command-response tree

▶ A structured delimited control operator

▶ A composable user-defined operating system

What is an effect handler?

▶ A modular interpreter for effectful computations
▶ A generalisation of an exception handler

▶ based on exceptional syntax [Benton and Kennedy, 2001]

let x = (try M with H) in N conventional exception handlers
⇓

try M as x in N otherwise H exceptional syntax
⇓

handle M with {return x 7→ N;H} effect handlers

success continuations aid composition, optimisation, and reasoning
▶ resumable

▶ A morphism between (free) algebras

▶ A fold (catamorphism) over a command-response tree

▶ A structured delimited control operator

▶ A composable user-defined operating system

Example 2: generators
Effect signature

{send : Nat↠ 1}

A simple generator

nats : Nat → 1!(E ⊎ {send : Nat↠ 1})
nats n = send n; nats (n + 1)

Handler — function that returns a handler

until : Nat → 1!(E ⊎ {send : Nat↠ 1}) ⇒ List Nat!E
until stop =
return () 7→ []
⟨send n → r⟩ 7→ if n < stop then n :: r ()

else []

handle nats 0 with until 8 =⇒ [0, 1, 2, 3, 4, 5, 6, 7]

Example 2: generators
Effect signature

{send : Nat↠ 1}

A simple generator

nats : Nat → 1!(E ⊎ {send : Nat↠ 1})
nats n = send n; nats (n + 1)

Handler — function that returns a handler

until : Nat → 1!(E ⊎ {send : Nat↠ 1}) ⇒ List Nat!E
until stop =
return () 7→ []
⟨send n → r⟩ 7→ if n < stop then n :: r ()

else []

handle nats 0 with until 8 =⇒ [0, 1, 2, 3, 4, 5, 6, 7]

Example 2: generators
Effect signature

{send : Nat↠ 1}

A simple generator

nats : Nat → 1!(E ⊎ {send : Nat↠ 1})
nats n = send n; nats (n + 1)

Handler — function that returns a handler

until : Nat → 1!(E ⊎ {send : Nat↠ 1}) ⇒ List Nat!E
until stop =
return () 7→ []
⟨send n → r⟩ 7→ if n < stop then n :: r ()

else []

handle nats 0 with until 8 =⇒ [0, 1, 2, 3, 4, 5, 6, 7]

Example 2: generators
Effect signature

{send : Nat↠ 1}

A simple generator

nats : Nat → 1!(E ⊎ {send : Nat↠ 1})
nats n = send n; nats (n + 1)

Handler — function that returns a handler

until : Nat → 1!(E ⊎ {send : Nat↠ 1}) ⇒ List Nat!E
until stop =
return () 7→ []
⟨send n → r⟩ 7→ if n < stop then n :: r ()

else []

handle nats 0 with until 8 =⇒ [0, 1, 2, 3, 4, 5, 6, 7]

Example 3: cooperative concurrency

Effect signature
{yield : 1↠ 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Example 3: cooperative concurrency

Effect signature
{yield : 1↠ 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Example 3: cooperative concurrency

Types
Thread E = 1 → 1!(E ⊎ {yield : 1↠ 1})

Handler — recursive function containing a shallow handler

cooperate : List (Thread E) → 1!E
cooperate [] = ()
cooperate (t :: ts) =

handle† t()with
return () 7→ cooperate (ts)
⟨yield () → t⟩ 7→ cooperate (ts ++ [t])

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Example 3: cooperative concurrency

Types
Thread E = 1 → 1!(E ⊎ {yield : 1↠ 1})

Handler — recursive function containing a shallow handler

cooperate : List (Thread E) → 1!E
cooperate [] = ()
cooperate (t :: ts) =

handle† t()with
return () 7→ cooperate (ts)
⟨yield () → t⟩ 7→ cooperate (ts ++ [t])

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Operational semantics (shallow handlers)

Reduction rules

let x = V in N ⇝ N[V /x]

handle† V with H ⇝ N[V /x]

handle† E [opV] with H ⇝ Nop[V /p, (λx .E [x])/r], op # E

where H = return x 7→ N
⟨op1 p → r⟩ 7→ Nop1

· · ·
⟨opk p → r⟩ 7→ Nopk

Evaluation contexts

E ::= [] | let x = E in N | handle† E with H

Typing rules (shallow handlers)

Effects
E ::= ∅ | E ⊎ {op : A↠ B}

Computations
C ,D ::= A!E

Operations
Γ ⊢ V : A

Γ ⊢ opV : B!(E ⊎ {op : A↠ B})

Handlers
Γ ⊢ M : C Γ ⊢ H : C ⇒† D

Γ ⊢ handle† M with H : D

Γ, x : A ⊢ N : D [opi : Ai ↠ Bi ∈ E]i [Γ, p : Ai , r : Bi → A!E ⊢ Ni : D]i

Γ ⊢ return x 7→ N
(⟨opi p → r⟩ 7→ Ni)i

: A!E ⇒† D

Example 4: cooperative concurrency with higher-order fork

Effect signature — recursive effect signature

Coop E = E ⊎ {yield : 1↠ 1, fork : (1 → 1!Coop E)↠ 1}

A single cooperative program

main : 1 → 1!Coop E
main () = print “M1 ”; fork (λ().print “A1 ”; yield (); print “A2 ”);

print “M2 ”; fork (λ().print “B1 ”; yield (); print “B2 ”);
print “M3 ”

Example 4: cooperative concurrency with higher-order fork

Effect signature — recursive effect signature

Coop E = E ⊎ {yield : 1↠ 1, fork : (1 → 1!Coop E)↠ 1}

A single cooperative program

main : 1 → 1!Coop E
main () = print “M1 ”; fork (λ().print “A1 ”; yield (); print “A2 ”);

print “M2 ”; fork (λ().print “B1 ”; yield (); print “B2 ”);
print “M3 ”

Example 4: cooperative concurrency with higher-order fork

Types
Thread E = 1 → 1!Coop E

Handler

cooperate : List (Thread E) → 1!E
cooperate [] = ()
cooperate (t :: ts) =

handle† t()with
return () 7→ cooperate (ts)
⟨yield () → t⟩ 7→ cooperate (ts ++ [t])
⟨fork t → r⟩ 7→ cooperate (t :: ts ++ [r])

Example 4: cooperative concurrency with higher-order fork

Types
Thread E = 1 → 1!Coop E

Handler

cooperate : List (Thread E) → 1!E
cooperate [] = ()
cooperate (t :: ts) =

handle† t()with
return () 7→ cooperate (ts)
⟨yield () → t⟩ 7→ cooperate (ts ++ [t])
⟨fork t → r⟩ 7→ cooperate (t :: ts ++ [r])

cooperate [main] =⇒ ()
M1 A1 M2 B1 A2 M3 B2

Example 4: cooperative concurrency with higher-order fork

Types
Thread E = 1 → 1!Coop E

Handler

cooperate : List (Thread E) → 1!E
cooperate [] = ()
cooperate (t :: ts) =

handle† t()with
return () 7→ cooperate (ts)
⟨yield () → t⟩ 7→ cooperate (ts ++ [t])
⟨fork t → r⟩ 7→ cooperate (r :: ts ++ [t])

Example 4: cooperative concurrency with higher-order fork

Types
Thread E = 1 → 1!Coop E

Handler

cooperate : List (Thread E) → 1!E
cooperate [] = ()
cooperate (t :: ts) =

handle† t()with
return () 7→ cooperate (ts)
⟨yield () → t⟩ 7→ cooperate (ts ++ [t])
⟨fork t → r⟩ 7→ cooperate (r :: ts ++ [t])

cooperate [main] =⇒ ()
M1 M2 M3 A1 B1 A2 B2

Built-in effects

Output
Output = {print : String ↠ 1}

Generative state
GenState = {new : a. a ↠ Ref a,

write : a. (Ref a× a) ↠ 1,
read : a. Ref a ↠ a}

Example 5: actors
Process ids

Pid a = Ref (List a)

Effect signature

Actor a = {self : 1 ↠ Pid a,
spawn : b. (1 → 1!Actor b) ↠ Pid b,
send : b. (b × Pid b) ↠ 1,
recv : 1 ↠ a}

An actor chain

spawnMany : Pid String → Int → 1!(E ⊎ Actor String)
spawnMany p 0 = send (“ping!”, p)
spawnMany p n = spawnMany (spawn (λ().let s = recv () in print “.”; send (s, p))) (n − 1)

chain : Int → 1!(E ⊎ Actor String ⊎ Output)
chain n = spawnMany (self ()) n; let s = recv () in print s

Example 5: actors
Process ids

Pid a = Ref (List a)

Effect signature

Actor a = {self : 1 ↠ Pid a,
spawn : b. (1 → 1!Actor b) ↠ Pid b,
send : b. (b × Pid b) ↠ 1,
recv : 1 ↠ a}

An actor chain

spawnMany : Pid String → Int → 1!(E ⊎ Actor String)
spawnMany p 0 = send (“ping!”, p)
spawnMany p n = spawnMany (spawn (λ().let s = recv () in print “.”; send (s, p))) (n − 1)

chain : Int → 1!(E ⊎ Actor String ⊎ Output)
chain n = spawnMany (self ()) n; let s = recv () in print s

Example 5: actors — via cooperative concurrency

act : Pid a → (1 → 1!(E ⊎ Actor a)) → 1!Coop (E ⊎ GenState)

actmine t = handle† t () with
return () 7→ ()
⟨self () → r⟩ 7→ actmine (λ().r mine)
⟨spawn you → r⟩ 7→ let yours = new [] in

fork (λ().act yours (you ())); actmine (λ().r yours)
⟨send (m, yours) → r⟩ 7→ let ms = read yours in

write (yours,ms ++ [m]); actmine r
⟨recv () → r⟩ 7→ letrec recvWhenReady () =

case readmine of
[] 7→ yield (); recvWhenReady ()
(m ::ms) 7→ write (mine,ms); actmine (λ().r m)

in recvWhenReady ()

Example 5: actors — via cooperative concurrency

cooperate [act (new []) (λ().chain 64)] =⇒

()
..ping!

Example 5: actors — via cooperative concurrency

cooperate [act (new []) (λ().chain 64)] =⇒ ()
..ping!

Effect handler oriented programming languages

Eff https://www.eff-lang.org/

Effekt https://effekt-lang.org/

Frank https://github.com/frank-lang/frank

Helium https://bitbucket.org/pl-uwr/helium

Links https://www.links-lang.org/

Koka https://github.com/koka-lang/koka

OCaml 5 https://github.com/ocamllabs/ocaml-multicore/wiki

Unison https://www.unison-lang.org/

https://www.eff-lang.org/
https://effekt-lang.org/
https://github.com/frank-lang/frank
https://bitbucket.org/pl-uwr/helium
https://www.links-lang.org/
https://github.com/koka-lang/koka
https://github.com/ocamllabs/ocaml-multicore/wiki
https://www.unison-lang.org/

Expressiveness

Local transformations
(with Yannick Forster, Ohad Kammar, Matija Pretnar)
“On the expressive power of user-defined effects:

effect handlers, monadic reflection, delimited control”, JFP 2019

Asymptotic complexity
(with Daniel Hillerström, John Longley)
“Asymptotic speedup via effect handlers”, JFP 2024

Higher-order effects
(with Cristina Matache, Sean Moss, Sam Staton, Nicolas Wu, Zhixuan Yang)
“Scoped effects as parameterised algebraic theories”, ESOP 2024

Effect handlers for imperative languages

C++
(with Dan Ghica, Maciej Piróg, Marcello Maroñas Bravo)
“High-level effect handlers in C++”, OOPSLA 2022

WebAssembly
(with Arjun Guha, Daniel Hillerström, Daan Leijen, Luna Phipps-Costin, Matija

Pretnar, Andreas Rossberg, KC Sivaramakrishnan)
“Continuing WebAssembly with effect handlers”, OOPSLA 2023

C
(with Mario Alvarez-Picallo, Teodoro Freund, Dan Ghica)
“Effect handlers for C via coroutines”, OOPSLA 2024

Effect type systems

Frank
(with Lukas Convent, Conor McBride, Craig McLaughlin)
“Doo Bee Doo Bee Doo”, JFP 2020

Combining linear resources with effect handlers
(with Daniel Hillerström, J. Garrett Morris, Wenhao Tang)
“Soundly handling linearity”, POPL 2024

Modal effect types
(with Stephen Dolan, Daniel Hillerström, Anton Lorenzen, Wenhao Tang, Leo White)
“Modal effect types”, arXiv 2024

Related projects

EPOCH: Effectful Programming on Capability Hardware
(with Ian Stark, Brian Campbell, Wilmer Ricciotti)
funded by Edinburgh-Huawei joint lab

UCFX: Universal Composability with Effects and Handlers
(with Markulf Kohlweiss, Danel Ahman, Pooya Farshim, Sabine Oeschner, Jesse Sigal)
funded by Input Output Research Hub

Resources

Jeremy Yallop’s effects bibliography
https://github.com/yallop/effects-bibliography

Matija Pretnar’s tutorial
“An introduction to algebraic effects and handlers”, MFPS 2015

Andrej Bauer’s tutorial
“What is algebraic about algebraic effects and handlers?”, OPLSS 2018

Daniel Hillerström’s PhD thesis
“Foundations for programming and implementing effect handlers”, 2022

https://github.com/yallop/effects-bibliography

