Effect handler oriented programming

Sam Lindley

The University of Edinburgh

Huawei Joint Lab Meeting, Xi’an, April 2025

Effect handlers

Effects

Programs as black boxes (Church-Turing model)?

—l-

Effects

Programs must interact with their environment

[
\ /

7

2 W*

4

Effects

Programs must interact with their environment

Effects

Programs must interact with their environment

Effects are pervasive
> input/output
user interaction

» concurrency
web applications

» distribution
cloud computing

» exceptions
fault tolerance

» choice
backtracking search

Typically ad hoc and hard-wired

Effect handlers

s Gordon Plotkin i Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Effect handlers

s Gordon Plotkin i Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads — Algebraic Effects — Effect Handlers

Effect handlers

.
s Gordon Plotkin ‘ Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads — Algebraic Effects — Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Effect handlers

o
s Gordon Plotkin ‘ Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads — Algebraic Effects — Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers

&
s; Gordon Plotkin ‘ Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads — Algebraic Effects — Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), Wasm (WasmFX), ...

Effect handlers as composable user-defined operating systems

\

Effect handlers as composable user-defined operating systems

=

ﬂb‘ébﬂo«jo

NS
ﬁ*

a7

Effect handlers for operating systems

EIO — effects-based direct-style concurrent 1/O stack for OCaml
Recently launched into space!
https://github.com/ocaml-multicore/eio

Composing UNIX with effect handlers
Foundations for programming and implementing effect handlers, Chapter 2
Daniel Hillerstrom, PhD thesis, The University of Edinburgh, 2022
https://www.dhil .net/research/papers/thesis.pdf

https://github.com/ocaml-multicore/eio
https://www.dhil.net/research/papers/thesis.pdf

Effect handlers in space

» Parsimoni's SpaceQOS
deployed in SpaceX
Transporter-13 payload

» Unikernel operating system
built on OCaml 5

» Makes essential use of the
EIO library

Example: cooperative lightweight threads

Effect signature
Coop = {yield : 1 — 1,
fork : Thread — 1}
Thread = [Coop](1 — 1)

Example: cooperative lightweight threads

Effect signature
Coop = {yield : 1 — 1,
fork : Thread — 1}
Thread = [Coop](1 — 1)

A single cooperative program

main : Thread

main () = print (“M1 "); fork (fun () — print ("A1 ");yield (); print (“A2 "));
print (“M2 "); fork (fun () — print (“B1 "); yield (); print (“B2 "));
print (“M3 ")

Example: cooperative lightweight threads

Handler

cooperate : List (Thread) — 1
cooperate [= ()
cooperate (t :: ts) =
handle t() with
return () — cooperate (ts)
(yield () — t) — cooperate (ts +- [t])
(forkt — r) > cooperate (ts +[t, r])

Example: cooperative lightweight threads

Handler

cooperate : List (Thread) — 1
cooperate [= ()
cooperate (t :: ts) =
handle t() with
return () — cooperate (ts)
(yield () — t) — cooperate (ts +- [t])
(forkt — r) > cooperate (ts +[t, r])

cooperate [main] = ()
M1 A1 M2 A2 B1 M3 B2

Example: cooperative lightweight threads

Handler

cooperate : List (Thread) — 1
cooperate [= ()
cooperate (t :: ts) =
handle t() with
return () — cooperate (ts)
(yield () — t) — cooperate (ts +- [t])
(forkt — r) > cooperate (ts +[r, t])

Example: cooperative lightweight threads

Handler

cooperate : List (Thread) — 1
cooperate [= ()
cooperate (t :: ts) =
handle t() with
return () — cooperate (ts)
(yield () — t) — cooperate (ts +- [t])
(forkt — r) > cooperate (ts +[r, t])

cooperate [main] = ()
M1 M2 M3 Al B1 A2 B2

Resources

EHOP web page
https://effect-handlers.org/

Jeremy Yallop's effects bibliography
https://github.com /yallop/effects-bibliography

Matija Pretnar's tutorial
“An introduction to algebraic effects and handlers”, MFPS 2015

https://effect-handlers.org/
https://github.com/yallop/effects-bibliography

Libraries and languages

Effect handlers for C++

cpp-effects library
(with Dan Ghica, Maciej Pirég, Marcello Marofias Bravo)
“High-level effect handlers in C++", OOPSLA 2022

» single-shot handlers

» commands (operations) are classes

» handlers are classes parameterised by commands they handle
» both unnamed and named handlers

» flat handlers (identity return clause)

» plain handler clauses (tail-resumptive)

» ‘no resume’ handler clauses (exceptions)

Implementation

» backend — boost.context fibers

> nested stack (one stacklet / fiber per handler)

» pre-allocation of resumptions

» reference counting

> move constructors as a crude alternative to substructural types

» ‘no manage’ optimisation (when handler and resumptions do not escape)

Example: cooperative lightweight threads in C++

struct Yield : eff::command<> { };
struct Fork : eff::command<> {
std: :function<void()> proc;

};

void yield() {
eff::invoke_command(Yield{});

}

void fork(std::function<void()> proc) {
eff::invoke_command (Fork{{}, procl});

}

© N AW N

=
= o

12

13 void mainThread() {

14 std::cout << "M1 "; fork([=]() {std::cout << "Al "; yield(); std::cout << "A2 "});
15 std::cout << "M2 "; fork([=]() {std::cout << "Bl "; yield(); std::cout << "B2 "});
16 std::cout << "M3 ";

17}

Example: cooperative lightweight threads in C++

1 using Res = eff::resumption<void()>;

2 class Scheduler : public eff::handler<void, void, Yield, Fork> {
3 public:

4 static void Start(std::function<void()> f£) {

5 queue.push_back(eff: :wrap<Scheduler>(f));

6 while (!queue.empty()) {

7 Res resumption = std::move(queue.front());
8 queue.pop_front () ;

9 std: :move(resumption) .resume() ;

10 }

11X

12 private:

13 static std::list<Res> queue;

14 void handle_command(Yield, Res r) override {

15 queue.push_back(std: :move(r)) ;

16 }

17 void handle_command(Fork f, Res r) override {

18 queue.push_back(eff: :wrap<Scheduler>(f.proc));
19 queue.push_back(std: :move(r));

20 }

21 void handle_return() override { }
22 };

Example: cooperative lightweight threads in C++

1 int main() {
2 Scheduler::Start(mainThread);
3}

Example: cooperative lightweight threads in C++

1 int main() {
2 Scheduler::Start(mainThread);
3}

M1 A1 M2 A2 B1 M3 B2

Generating a number (in ns)

80 |- 75.8

60

40|

20|

2.8
oL — -——
coroutines cpp-effects

Recursive tree traversal (ns per node)

400
T coroutines
350 x

5 cpp-effects

300 |

250 \

200 |-

150 M .

100 \S\S\S\B\%W .
5 I

50
0

]
1]
1]
]
1]
]
1|
i}
0
0

T

3 5 7 9 11 13 15 17 19 21 23 25

Effect handlers for C

libseff library
(with Mario Alvarez-Picallo, Teodoro Freund, Dan Ghica)
“Effect handlers for C via coroutines”, OOPSLA 2024

» Based on mutable coroutines rather than immutable continuations
» Stack resizing via segmented stacks (or overcommitting virtual memory)
» No special dispatch mechanism for effects (request objects + switch instead)

» x64 and ARM backends

Example: cooperative lightweight threads in C

© N oA W N

DEFINE_EFFECT (fork, 2, void, { void *(*fn)(void *); void *arg; 1});
DEFINE_EFFECT (yield, 3, void, {});

void *ta(void* param) {
printf("%s", "A1 "); yield(); printf("}s", "A2 ")
}

void *tb(void* param) {
printf("%s", "B1 "); yield(); printf("}s", "B2 ")
}

void *mainThread(void* param) {
printf("%s", "M1 "); PERFORM(fork, ta, null);
printf("%s", "M2 "); PERFORM(fork, tb, null);
printf("%s", "M3 u);

}

Example: cooperative lightweight threads in C

1 void with_scheduler(seff_coroutine_t *initial_coroutine) {

2 effect_set handles_scheduler = HANDLES(yield) | HANDLES(fork);

3 tl_queue_t queue;

4 tl_queue_init (&queue, 5);

5 tl_queue_push(&queue, initial_coroutine);

6 while (!'tl_queue_empty(&queue)) {

7 seff_coroutine_t *next = (seff_coroutine_t *)tl_queue_steal(&queue);
8 seff_request_t req = seff_resume(next, NULL, handles_scheduler);

9 switch (req.effect) {

10 CASE_EFFECT(req, yield, { tl_queue_push(&queue, (struct task_t *)next); break; })
11 CASE_EFFECT (req, fork, {

12 seff_coroutine_t *new = seff_coroutine_new(payload.fn, payload.arg);

13 tl_queue_push(&queue, (struct task_t *)new);

14 tl_queue_push(&queue, (struct task_t *)next);

15 break; })

16 CASE_RETURN(req, { seff_coroutine_delete(next); break; })

17 }

18 }

Example: cooperative lightweight threads in C

1 int main(void) {
2 with_scheduler(seff_coroutine_new(mainThread, (void*)0)); return O;

3}

Example: cooperative lightweight threads in C

1 int main(void) {
2 with_scheduler(seff_coroutine_new(mainThread, (void*)0)); return O;

3}
M1 A1 M2 A2 B1 M3 B2

Web server benchmark (1 OS thread)

Requests served per second

100000 -

80000

60000

40000 -

20000

cohttp_eio
nethttp_go
nginx_te
rust_hyper
libseff

0.5 1.0 15
Requests offered per second

2.0
le6

Web server benchmark (8 OS thread)

Requests served per second

700000

«~— cohttp_eio .

600000 { —* libseff

500000

400000

300000

200000 1

100000 -

*
L L
&

[V
0.0

0.5 1.0 15 20
Requests offered per second le6

Web server benchmark (16 OS thread)

leb

1.24 —=— nethttp_go
—e— libseff

1.0 —=— cohttp_eio
—¥— rust_hyper
nginx_te

0.8 1

Requests served per second

0.6 |

0.4 R

0.2 |

000 0.5 1.0 15 2.0

Requests offered per second le6

Effect handlers in Cangjie

Cangjie is a new general-purpose programming language developed at Huawei

From the documentation: “Cangjie embraces a multi-paradigm approach, supporting
functional, imperative, and object-oriented programming styles”

Exploits OO interfaces much like the cpp-effects C++ library does
Effect handlers implemented on top of existing pre-emptive concurrency features
Potential applications include dependency injection and reactive programming

Presented at PLDI 2024 and recent coffee house tech talks by Magnus Morton and
Mario Alvarez-Picallo

Example: cooperative lightweight threads in Cangjie

1 class Yield <: Command<Unit> {}
> class Fork <: Command<Unit> {

3 Fork(let fn: () -> Unit) {}

}

func mainThread() {
println("M1")
perform Fork({ =>
println("A1"); perform Yield(); println("A2")

© o N o u &

0 3

11 println("M2")

12 perform Fork({ =>

13 println("B1"); perform Yield(); println("B2")
w1

15 println("M3")

Example: cooperative lightweight threads in Cangjie

1 func cooperate(threads: List<() -> Unit>) {
> match (threads) {

3 case Nil => ()

4 case Cons(head, rest) =>

5 try {

6 head ()

7 } handle (_: Yield, next: Resumption<Unit, Unit>) {
8 cooperate(rest.append({ => resume next }))

9 } handle (f: Fork, next: Resumption<Unit, Unit>) {
10 cooperate(rest.append(f.fn).append({ => resume next 1}))
11 } finally {

12 cooperate(rest)

13 }

14 }

Example: cooperative lightweight threads in Cangjie

1 func main() {
> cooperate(Cons(mainThread, Nil))

3 }

Example: cooperative lightweight threads in Cangjie

1 func main() {
> cooperate(Cons(mainThread, Nil))

3 }
M1 Al M2 A2 B1 M3 B2

EPOCH

EPOCH: effectful programming on capability hardware

4

=" a
—_—

Sam Lindley lan Stark Brian Campbell Wilmer Ricciotti

v

Effect Handlers: powerful high-level programming abstraction with strong
properties

Implementation: through libraries, program transformation, compilation
Challenge: all those good properties get translated away
Opportunity: advances in CHERI CPU architecture with hardware capabilities

vvyyy

Goal: use capability hardware to directly express effect handlers

Two strands of work: implementations and foundations

Capability implementation

Ported existing C/C++ effect handler libraries to use CHERI
» libmpeff /libmprompt
» cpp-effects [Ghica et al, OOPSLA 2022], C++ library based on boost.context
» libseff [Alvarez-Picallo et al, OOPSLA 2024], C library

Added CHERI support to Koka

All run on CHERI hardware with capabilities for all pointers demonstrating:
» memory protection

» control flow integration

Handlers as compartment boundaries

Can we use capabilities with handlers to
» constrain effects?

» recover from failure?

Investigating the use of capabilities to restrict external calls to libraries and OS, where
» handlers control the effects available

» handlers can use this to recover from crashes

Plan: experiment with an old version of a common library (e.g. for image decoding) to
ensure safe recovery from a known bug

AsmFX

» Typical implementations of effect handlers:

» first-class functions
» closures

» continuations

> prompts

» These need to be translated further for real compilation to CPU architectures

» What is the simplest abstraction over an instruction set we need to implement
effect handlers?

» Can we actually implement some of those abstractions on top of effect handlers?

Source language: a first-order functional language with handlers

Get res = handle %f J
{

‘L External code
/T
op(n) Ll
(/)/ \‘L Client code]
}

L
‘L Handler (return) code]

op(n) k when n >= 0 ->

restIJn.1é kO
op(n) k when n < 0 —>

e
/] ‘L Handler (operation) code J
42

AsmFX: assembly language with effect context manipulating instructions

ext:
enter cli, H

cli:

do #op

HE
return

H.op:

HE.
reenter k

R
exit

Compilation soundness

A source language configuration s = (M, v, k)

» Computation M to evaluate

» Environment y 1step

» Continuation &

An AsmFX configuration a = (=,0, C)
» Memory = (holding the code, read only) (0 - i —
» Register file © (holding the data)
» Effect context C (stack of handlers)

A validity relation a F s encodes the correspondence between source code and its
compiled memory image.

ReactFX

ReactFX: reactive programming with effects and handlers

Project due to start in September 2025 and will fund one PhD student for 3.5 years

| 2

vvyyy

v

Foundations: unify synchronous effects from the programming language with
asynchronous events from the environment

Implementations: experiment with research languages, e.g., Links, Koka, OCaml
Case studies: ReactJS-style web applications, spreadsheets, etc.
Effect typing: exploit for optimisation and modularity

Incremental updates: use effect handlers to abstract over incremental updates to
virtual DOM

Pre-emptive concurrency: synergy with Cangjie implementation of effect handlers

	Effect handlers
	Libraries and languages
	EPOCH
	ReactFX

