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Effects

Programs as black boxes (Church-Turing model)?

Effects are pervasive

▶ input/output

user interaction

▶ concurrency

web applications

▶ distribution

cloud computing

▶ exceptions

fault tolerance

▶ choice

backtracking search

Typically ad hoc and hard-wired
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Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), Wasm (WasmFX), ...
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Effect handlers as composable user-defined operating systems
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Effect handlers for operating systems

EIO — effects-based direct-style concurrent I/O stack for OCaml
Recently launched into space!
https://github.com/ocaml-multicore/eio

Composing UNIX with effect handlers
Foundations for programming and implementing effect handlers, Chapter 2
Daniel Hillerström, PhD thesis, The University of Edinburgh, 2022
https://www.dhil.net/research/papers/thesis.pdf

https://github.com/ocaml-multicore/eio
https://www.dhil.net/research/papers/thesis.pdf


Effect handlers in space

▶ Parsimoni’s SpaceOS
deployed in SpaceX
Transporter-13 payload

▶ Unikernel operating system
built on OCaml 5

▶ Makes essential use of the
EIO library



Example: cooperative lightweight threads

Effect signature
Coop = {yield : 1 ↠ 1,

fork : Thread ↠ 1}
Thread = [Coop](1 → 1)

A single cooperative program

main : Thread
main () = print (“M1 ”); fork (fun () → print (“A1 ”); yield (); print (“A2 ”));

print (“M2 ”); fork (fun () → print (“B1 ”); yield (); print (“B2 ”));
print (“M3 ”)
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Example: cooperative lightweight threads

Handler

cooperate : List (Thread) → 1
cooperate [] = ()
cooperate (t :: ts) =
handle t()with
return () 7→ cooperate (ts)
⟨yield () → t⟩ 7→ cooperate (ts ++ [t])
⟨fork t → r⟩ 7→ cooperate (ts ++ [t, r ])
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Resources

EHOP web page
https://effect-handlers.org/

Jeremy Yallop’s effects bibliography
https://github.com/yallop/effects-bibliography

Matija Pretnar’s tutorial
“An introduction to algebraic effects and handlers”, MFPS 2015

https://effect-handlers.org/
https://github.com/yallop/effects-bibliography


Libraries and languages



Effect handlers for C++

cpp-effects library
(with Dan Ghica, Maciej Piróg, Marcello Maroñas Bravo)
“High-level effect handlers in C++”, OOPSLA 2022

▶ single-shot handlers

▶ commands (operations) are classes

▶ handlers are classes parameterised by commands they handle

▶ both unnamed and named handlers

▶ flat handlers (identity return clause)

▶ plain handler clauses (tail-resumptive)

▶ ‘no resume’ handler clauses (exceptions)



Implementation

▶ backend — boost.context fibers

▶ nested stack (one stacklet / fiber per handler)

▶ pre-allocation of resumptions

▶ reference counting

▶ move constructors as a crude alternative to substructural types

▶ ‘no manage’ optimisation (when handler and resumptions do not escape)



Example: cooperative lightweight threads in C++

1 struct Yield : eff::command<> { };

2 struct Fork : eff::command<> {

3 std::function<void()> proc;

4 };

5

6 void yield() {

7 eff::invoke_command(Yield{});

8 }

9 void fork(std::function<void()> proc) {

10 eff::invoke_command(Fork{{}, proc});

11 }

12

13 void mainThread() {

14 std::cout << "M1 "; fork([=]() {std::cout << "A1 "; yield(); std::cout << "A2 "});

15 std::cout << "M2 "; fork([=]() {std::cout << "B1 "; yield(); std::cout << "B2 "});

16 std::cout << "M3 ";

17 }



Example: cooperative lightweight threads in C++

1 using Res = eff::resumption<void()>;

2 class Scheduler : public eff::handler<void, void, Yield, Fork> {

3 public:

4 static void Start(std::function<void()> f) {

5 queue.push_back(eff::wrap<Scheduler>(f));

6 while (!queue.empty()) {

7 Res resumption = std::move(queue.front());

8 queue.pop_front();

9 std::move(resumption).resume();

10 }

11 }

12 private:

13 static std::list<Res> queue;

14 void handle_command(Yield, Res r) override {

15 queue.push_back(std::move(r));

16 }

17 void handle_command(Fork f, Res r) override {

18 queue.push_back(eff::wrap<Scheduler>(f.proc));

19 queue.push_back(std::move(r));

20 }

21 void handle_return() override { }

22 };



Example: cooperative lightweight threads in C++

1 int main() {

2 Scheduler::Start(mainThread);

3 }

M1 A1 M2 A2 B1 M3 B2
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Generating a number (in ns)
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Recursive tree traversal (ns per node)
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Effect handlers for C

libseff library
(with Mario Alvarez-Picallo, Teodoro Freund, Dan Ghica)
“Effect handlers for C via coroutines”, OOPSLA 2024

▶ Based on mutable coroutines rather than immutable continuations

▶ Stack resizing via segmented stacks (or overcommitting virtual memory)

▶ No special dispatch mechanism for effects (request objects + switch instead)

▶ x64 and ARM backends



Example: cooperative lightweight threads in C

1 DEFINE_EFFECT(fork, 2, void, { void *(*fn)(void *); void *arg; });

2 DEFINE_EFFECT(yield, 3, void, {});

3

4 void *ta(void* param) {

5 printf("%s", "A1 "); yield(); printf("%s", "A2 ")

6 }

7

8 void *tb(void* param) {

9 printf("%s", "B1 "); yield(); printf("%s", "B2 ")

10 }

11

12 void *mainThread(void* param) {

13 printf("%s", "M1 "); PERFORM(fork, ta, null);

14 printf("%s", "M2 "); PERFORM(fork, tb, null);

15 printf("%s", "M3 ");

16 }



Example: cooperative lightweight threads in C

1 void with_scheduler(seff_coroutine_t *initial_coroutine) {

2 effect_set handles_scheduler = HANDLES(yield) | HANDLES(fork);

3 tl_queue_t queue;

4 tl_queue_init(&queue, 5);

5 tl_queue_push(&queue, initial_coroutine);

6 while (!tl_queue_empty(&queue)) {

7 seff_coroutine_t *next = (seff_coroutine_t *)tl_queue_steal(&queue);

8 seff_request_t req = seff_resume(next, NULL, handles_scheduler);

9 switch (req.effect) {

10 CASE_EFFECT(req, yield, { tl_queue_push(&queue, (struct task_t *)next); break; })

11 CASE_EFFECT(req, fork, {

12 seff_coroutine_t *new = seff_coroutine_new(payload.fn, payload.arg);

13 tl_queue_push(&queue, (struct task_t *)new);

14 tl_queue_push(&queue, (struct task_t *)next);

15 break; })

16 CASE_RETURN(req, { seff_coroutine_delete(next); break; })

17 }

18 }

19 }



Example: cooperative lightweight threads in C

1 int main(void) {

2 with_scheduler(seff_coroutine_new(mainThread, (void*)0)); return 0;

3 }

M1 A1 M2 A2 B1 M3 B2
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Web server benchmark (1 OS thread)



Web server benchmark (8 OS thread)



Web server benchmark (16 OS thread)



Effect handlers in Cangjie

Cangjie is a new general-purpose programming language developed at Huawei

From the documentation: “Cangjie embraces a multi-paradigm approach, supporting
functional, imperative, and object-oriented programming styles”

Exploits OO interfaces much like the cpp-effects C++ library does

Effect handlers implemented on top of existing pre-emptive concurrency features

Potential applications include dependency injection and reactive programming

Presented at PLDI 2024 and recent coffee house tech talks by Magnus Morton and
Mario Alvarez-Picallo



Example: cooperative lightweight threads in Cangjie

1 class Yield <: Command<Unit> {}

2 class Fork <: Command<Unit> {

3 Fork(let fn: () -> Unit) {}

4 }

5

6 func mainThread() {

7 println("M1")

8 perform Fork({ =>

9 println("A1"); perform Yield(); println("A2")

10 })

11 println("M2")

12 perform Fork({ =>

13 println("B1"); perform Yield(); println("B2")

14 })

15 println("M3")

16 }



Example: cooperative lightweight threads in Cangjie

1 func cooperate(threads: List<() -> Unit>) {

2 match (threads) {

3 case Nil => ()

4 case Cons(head, rest) =>

5 try {

6 head ()

7 } handle (_: Yield, next: Resumption<Unit, Unit>) {

8 cooperate(rest.append({ => resume next }))

9 } handle (f: Fork, next: Resumption<Unit, Unit>) {

10 cooperate(rest.append(f.fn).append({ => resume next }))

11 } finally {

12 cooperate(rest)

13 }

14 }

15 }



Example: cooperative lightweight threads in Cangjie

1 func main() {

2 cooperate(Cons(mainThread, Nil))

3 }

M1 A1 M2 A2 B1 M3 B2



Example: cooperative lightweight threads in Cangjie
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EPOCH: effectful programming on capability hardware

Sam Lindley Ian Stark Brian Campbell Wilmer Ricciotti

▶ Effect Handlers: powerful high-level programming abstraction with strong
properties

▶ Implementation: through libraries, program transformation, compilation

▶ Challenge: all those good properties get translated away

▶ Opportunity: advances in CHERI CPU architecture with hardware capabilities

▶ Goal: use capability hardware to directly express effect handlers

Two strands of work: implementations and foundations



Capability implementation

Ported existing C/C++ effect handler libraries to use CHERI

▶ libmpeff/libmprompt

▶ cpp-effects [Ghica et al, OOPSLA 2022], C++ library based on boost.context

▶ libseff [Alvarez-Picallo et al, OOPSLA 2024], C library

Added CHERI support to Koka

All run on CHERI hardware with capabilities for all pointers demonstrating:

▶ memory protection

▶ control flow integration



Handlers as compartment boundaries

Can we use capabilities with handlers to

▶ constrain effects?

▶ recover from failure?

Investigating the use of capabilities to restrict external calls to libraries and OS, where

▶ handlers control the effects available

▶ handlers can use this to recover from crashes

Plan: experiment with an old version of a common library (e.g. for image decoding) to
ensure safe recovery from a known bug



AsmFX

▶ Typical implementations of effect handlers:
▶ first-class functions
▶ closures
▶ continuations
▶ prompts

▶ These need to be translated further for real compilation to CPU architectures

▶ What is the simplest abstraction over an instruction set we need to implement
effect handlers?

▶ Can we actually implement some of those abstractions on top of effect handlers?



Source language: a first-order functional language with handlers



AsmFX: assembly language with effect context manipulating instructions



Compilation soundness

A source language configuration s = (M, γ, κ)

▶ Computation M to evaluate

▶ Environment γ

▶ Continuation κ

An AsmFX configuration a = (Ξ,Θ,C )

▶ Memory Ξ (holding the code, read only)

▶ Register file Θ (holding the data)

▶ Effect context C (stack of handlers)

A validity relation a ⊨ s encodes the correspondence between source code and its
compiled memory image.



ReactFX



ReactFX: reactive programming with effects and handlers

Project due to start in September 2025 and will fund one PhD student for 3.5 years

▶ Foundations: unify synchronous effects from the programming language with
asynchronous events from the environment

▶ Implementations: experiment with research languages, e.g., Links, Koka, OCaml

▶ Case studies: ReactJS-style web applications, spreadsheets, etc.

▶ Effect typing: exploit for optimisation and modularity

▶ Incremental updates: use effect handlers to abstract over incremental updates to
virtual DOM

▶ Pre-emptive concurrency: synergy with Cangjie implementation of effect handlers
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