
Effect handler oriented programming

Sam Lindley

The University of Edinburgh

Huawei Joint Lab Meeting, Xi’an, April 2025



Effect handlers



Effects

Programs as black boxes (Church-Turing model)?

Effects are pervasive

▶ input/output

user interaction

▶ concurrency

web applications

▶ distribution

cloud computing

▶ exceptions

fault tolerance

▶ choice

backtracking search

Typically ad hoc and hard-wired



Effects

Programs must interact with their environment

Effects are pervasive

▶ input/output

user interaction

▶ concurrency

web applications

▶ distribution

cloud computing

▶ exceptions

fault tolerance

▶ choice

backtracking search

Typically ad hoc and hard-wired



Effects

Programs must interact with their environment

Effects are pervasive

▶ input/output
user interaction

▶ concurrency
web applications

▶ distribution
cloud computing

▶ exceptions
fault tolerance

▶ choice
backtracking search

Typically ad hoc and hard-wired



Effects

Programs must interact with their environment Effects are pervasive

▶ input/output
user interaction

▶ concurrency
web applications

▶ distribution
cloud computing

▶ exceptions
fault tolerance

▶ choice
backtracking search

Typically ad hoc and hard-wired



Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), Wasm (WasmFX), ...



Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), Wasm (WasmFX), ...



Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), Wasm (WasmFX), ...



Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), Wasm (WasmFX), ...



Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009 (and ETAPS 2022 test of time award)

Monads −→ Algebraic Effects −→ Effect Handlers

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Effect handlers in practice:
OCaml 5, GitHub (Semantic), Meta (React), Uber (Pyro), Wasm (WasmFX), ...



Effect handlers as composable user-defined operating systems



Effect handlers as composable user-defined operating systems



Effect handlers for operating systems

EIO — effects-based direct-style concurrent I/O stack for OCaml
Recently launched into space!
https://github.com/ocaml-multicore/eio

Composing UNIX with effect handlers
Foundations for programming and implementing effect handlers, Chapter 2
Daniel Hillerström, PhD thesis, The University of Edinburgh, 2022
https://www.dhil.net/research/papers/thesis.pdf

https://github.com/ocaml-multicore/eio
https://www.dhil.net/research/papers/thesis.pdf


Effect handlers in space

▶ Parsimoni’s SpaceOS
deployed in SpaceX
Transporter-13 payload

▶ Unikernel operating system
built on OCaml 5

▶ Makes essential use of the
EIO library



Example: cooperative lightweight threads

Effect signature
Coop = {yield : 1 ↠ 1,

fork : Thread ↠ 1}
Thread = [Coop](1 → 1)

A single cooperative program

main : Thread
main () = print (“M1 ”); fork (fun () → print (“A1 ”); yield (); print (“A2 ”));

print (“M2 ”); fork (fun () → print (“B1 ”); yield (); print (“B2 ”));
print (“M3 ”)



Example: cooperative lightweight threads

Effect signature
Coop = {yield : 1 ↠ 1,

fork : Thread ↠ 1}
Thread = [Coop](1 → 1)

A single cooperative program

main : Thread
main () = print (“M1 ”); fork (fun () → print (“A1 ”); yield (); print (“A2 ”));

print (“M2 ”); fork (fun () → print (“B1 ”); yield (); print (“B2 ”));
print (“M3 ”)



Example: cooperative lightweight threads

Handler

cooperate : List (Thread) → 1
cooperate [] = ()
cooperate (t :: ts) =
handle t()with
return () 7→ cooperate (ts)
⟨yield () → t⟩ 7→ cooperate (ts ++ [t])
⟨fork t → r⟩ 7→ cooperate (ts ++ [t, r ])



Example: cooperative lightweight threads

Handler

cooperate : List (Thread) → 1
cooperate [] = ()
cooperate (t :: ts) =
handle t()with
return () 7→ cooperate (ts)
⟨yield () → t⟩ 7→ cooperate (ts ++ [t])
⟨fork t → r⟩ 7→ cooperate (ts ++ [t, r ])

cooperate [main] =⇒ ()
M1 A1 M2 A2 B1 M3 B2



Example: cooperative lightweight threads

Handler

cooperate : List (Thread) → 1
cooperate [] = ()
cooperate (t :: ts) =
handle t()with
return () 7→ cooperate (ts)
⟨yield () → t⟩ 7→ cooperate (ts ++ [t])
⟨fork t → r⟩ 7→ cooperate (ts ++ [r , t])



Example: cooperative lightweight threads

Handler

cooperate : List (Thread) → 1
cooperate [] = ()
cooperate (t :: ts) =
handle t()with
return () 7→ cooperate (ts)
⟨yield () → t⟩ 7→ cooperate (ts ++ [t])
⟨fork t → r⟩ 7→ cooperate (ts ++ [r , t])

cooperate [main] =⇒ ()
M1 M2 M3 A1 B1 A2 B2



Resources

EHOP web page
https://effect-handlers.org/

Jeremy Yallop’s effects bibliography
https://github.com/yallop/effects-bibliography

Matija Pretnar’s tutorial
“An introduction to algebraic effects and handlers”, MFPS 2015

https://effect-handlers.org/
https://github.com/yallop/effects-bibliography


Libraries and languages



Effect handlers for C++

cpp-effects library
(with Dan Ghica, Maciej Piróg, Marcello Maroñas Bravo)
“High-level effect handlers in C++”, OOPSLA 2022

▶ single-shot handlers

▶ commands (operations) are classes

▶ handlers are classes parameterised by commands they handle

▶ both unnamed and named handlers

▶ flat handlers (identity return clause)

▶ plain handler clauses (tail-resumptive)

▶ ‘no resume’ handler clauses (exceptions)



Implementation

▶ backend — boost.context fibers

▶ nested stack (one stacklet / fiber per handler)

▶ pre-allocation of resumptions

▶ reference counting

▶ move constructors as a crude alternative to substructural types

▶ ‘no manage’ optimisation (when handler and resumptions do not escape)



Example: cooperative lightweight threads in C++

1 struct Yield : eff::command<> { };

2 struct Fork : eff::command<> {

3 std::function<void()> proc;

4 };

5

6 void yield() {

7 eff::invoke_command(Yield{});

8 }

9 void fork(std::function<void()> proc) {

10 eff::invoke_command(Fork{{}, proc});

11 }

12

13 void mainThread() {

14 std::cout << "M1 "; fork([=]() {std::cout << "A1 "; yield(); std::cout << "A2 "});

15 std::cout << "M2 "; fork([=]() {std::cout << "B1 "; yield(); std::cout << "B2 "});

16 std::cout << "M3 ";

17 }



Example: cooperative lightweight threads in C++

1 using Res = eff::resumption<void()>;

2 class Scheduler : public eff::handler<void, void, Yield, Fork> {

3 public:

4 static void Start(std::function<void()> f) {

5 queue.push_back(eff::wrap<Scheduler>(f));

6 while (!queue.empty()) {

7 Res resumption = std::move(queue.front());

8 queue.pop_front();

9 std::move(resumption).resume();

10 }

11 }

12 private:

13 static std::list<Res> queue;

14 void handle_command(Yield, Res r) override {

15 queue.push_back(std::move(r));

16 }

17 void handle_command(Fork f, Res r) override {

18 queue.push_back(eff::wrap<Scheduler>(f.proc));

19 queue.push_back(std::move(r));

20 }

21 void handle_return() override { }

22 };



Example: cooperative lightweight threads in C++

1 int main() {

2 Scheduler::Start(mainThread);

3 }

M1 A1 M2 A2 B1 M3 B2



Example: cooperative lightweight threads in C++

1 int main() {

2 Scheduler::Start(mainThread);

3 }

M1 A1 M2 A2 B1 M3 B2



Generating a number (in ns)

coroutines cpp-effects
0

20

40

60

80

2.8

75.8



Recursive tree traversal (ns per node)

3 5 7 9 11 13 15 17 19 21 23 25
0

50

100

150

200

250

300

350

400
coroutines
cpp-effects



Effect handlers for C

libseff library
(with Mario Alvarez-Picallo, Teodoro Freund, Dan Ghica)
“Effect handlers for C via coroutines”, OOPSLA 2024

▶ Based on mutable coroutines rather than immutable continuations

▶ Stack resizing via segmented stacks (or overcommitting virtual memory)

▶ No special dispatch mechanism for effects (request objects + switch instead)

▶ x64 and ARM backends



Example: cooperative lightweight threads in C

1 DEFINE_EFFECT(fork, 2, void, { void *(*fn)(void *); void *arg; });

2 DEFINE_EFFECT(yield, 3, void, {});

3

4 void *ta(void* param) {

5 printf("%s", "A1 "); yield(); printf("%s", "A2 ")

6 }

7

8 void *tb(void* param) {

9 printf("%s", "B1 "); yield(); printf("%s", "B2 ")

10 }

11

12 void *mainThread(void* param) {

13 printf("%s", "M1 "); PERFORM(fork, ta, null);

14 printf("%s", "M2 "); PERFORM(fork, tb, null);

15 printf("%s", "M3 ");

16 }



Example: cooperative lightweight threads in C

1 void with_scheduler(seff_coroutine_t *initial_coroutine) {

2 effect_set handles_scheduler = HANDLES(yield) | HANDLES(fork);

3 tl_queue_t queue;

4 tl_queue_init(&queue, 5);

5 tl_queue_push(&queue, initial_coroutine);

6 while (!tl_queue_empty(&queue)) {

7 seff_coroutine_t *next = (seff_coroutine_t *)tl_queue_steal(&queue);

8 seff_request_t req = seff_resume(next, NULL, handles_scheduler);

9 switch (req.effect) {

10 CASE_EFFECT(req, yield, { tl_queue_push(&queue, (struct task_t *)next); break; })

11 CASE_EFFECT(req, fork, {

12 seff_coroutine_t *new = seff_coroutine_new(payload.fn, payload.arg);

13 tl_queue_push(&queue, (struct task_t *)new);

14 tl_queue_push(&queue, (struct task_t *)next);

15 break; })

16 CASE_RETURN(req, { seff_coroutine_delete(next); break; })

17 }

18 }

19 }



Example: cooperative lightweight threads in C

1 int main(void) {

2 with_scheduler(seff_coroutine_new(mainThread, (void*)0)); return 0;

3 }

M1 A1 M2 A2 B1 M3 B2



Example: cooperative lightweight threads in C

1 int main(void) {

2 with_scheduler(seff_coroutine_new(mainThread, (void*)0)); return 0;

3 }

M1 A1 M2 A2 B1 M3 B2



Web server benchmark (1 OS thread)



Web server benchmark (8 OS thread)



Web server benchmark (16 OS thread)



Effect handlers in Cangjie

Cangjie is a new general-purpose programming language developed at Huawei

From the documentation: “Cangjie embraces a multi-paradigm approach, supporting
functional, imperative, and object-oriented programming styles”

Exploits OO interfaces much like the cpp-effects C++ library does

Effect handlers implemented on top of existing pre-emptive concurrency features

Potential applications include dependency injection and reactive programming

Presented at PLDI 2024 and recent coffee house tech talks by Magnus Morton and
Mario Alvarez-Picallo



Example: cooperative lightweight threads in Cangjie

1 class Yield <: Command<Unit> {}

2 class Fork <: Command<Unit> {

3 Fork(let fn: () -> Unit) {}

4 }

5

6 func mainThread() {

7 println("M1")

8 perform Fork({ =>

9 println("A1"); perform Yield(); println("A2")

10 })

11 println("M2")

12 perform Fork({ =>

13 println("B1"); perform Yield(); println("B2")

14 })

15 println("M3")

16 }



Example: cooperative lightweight threads in Cangjie

1 func cooperate(threads: List<() -> Unit>) {

2 match (threads) {

3 case Nil => ()

4 case Cons(head, rest) =>

5 try {

6 head ()

7 } handle (_: Yield, next: Resumption<Unit, Unit>) {

8 cooperate(rest.append({ => resume next }))

9 } handle (f: Fork, next: Resumption<Unit, Unit>) {

10 cooperate(rest.append(f.fn).append({ => resume next }))

11 } finally {

12 cooperate(rest)

13 }

14 }

15 }



Example: cooperative lightweight threads in Cangjie

1 func main() {

2 cooperate(Cons(mainThread, Nil))

3 }

M1 A1 M2 A2 B1 M3 B2



Example: cooperative lightweight threads in Cangjie

1 func main() {

2 cooperate(Cons(mainThread, Nil))

3 }

M1 A1 M2 A2 B1 M3 B2



EPOCH



EPOCH: effectful programming on capability hardware

Sam Lindley Ian Stark Brian Campbell Wilmer Ricciotti

▶ Effect Handlers: powerful high-level programming abstraction with strong
properties

▶ Implementation: through libraries, program transformation, compilation

▶ Challenge: all those good properties get translated away

▶ Opportunity: advances in CHERI CPU architecture with hardware capabilities

▶ Goal: use capability hardware to directly express effect handlers

Two strands of work: implementations and foundations



Capability implementation

Ported existing C/C++ effect handler libraries to use CHERI

▶ libmpeff/libmprompt

▶ cpp-effects [Ghica et al, OOPSLA 2022], C++ library based on boost.context

▶ libseff [Alvarez-Picallo et al, OOPSLA 2024], C library

Added CHERI support to Koka

All run on CHERI hardware with capabilities for all pointers demonstrating:

▶ memory protection

▶ control flow integration



Handlers as compartment boundaries

Can we use capabilities with handlers to

▶ constrain effects?

▶ recover from failure?

Investigating the use of capabilities to restrict external calls to libraries and OS, where

▶ handlers control the effects available

▶ handlers can use this to recover from crashes

Plan: experiment with an old version of a common library (e.g. for image decoding) to
ensure safe recovery from a known bug



AsmFX

▶ Typical implementations of effect handlers:
▶ first-class functions
▶ closures
▶ continuations
▶ prompts

▶ These need to be translated further for real compilation to CPU architectures

▶ What is the simplest abstraction over an instruction set we need to implement
effect handlers?

▶ Can we actually implement some of those abstractions on top of effect handlers?



Source language: a first-order functional language with handlers



AsmFX: assembly language with effect context manipulating instructions



Compilation soundness

A source language configuration s = (M, γ, κ)

▶ Computation M to evaluate

▶ Environment γ

▶ Continuation κ

An AsmFX configuration a = (Ξ,Θ,C )

▶ Memory Ξ (holding the code, read only)

▶ Register file Θ (holding the data)

▶ Effect context C (stack of handlers)

A validity relation a ⊨ s encodes the correspondence between source code and its
compiled memory image.



ReactFX



ReactFX: reactive programming with effects and handlers

Project due to start in September 2025 and will fund one PhD student for 3.5 years

▶ Foundations: unify synchronous effects from the programming language with
asynchronous events from the environment

▶ Implementations: experiment with research languages, e.g., Links, Koka, OCaml

▶ Case studies: ReactJS-style web applications, spreadsheets, etc.

▶ Effect typing: exploit for optimisation and modularity

▶ Incremental updates: use effect handlers to abstract over incremental updates to
virtual DOM

▶ Pre-emptive concurrency: synergy with Cangjie implementation of effect handlers


	Effect handlers
	Libraries and languages
	EPOCH
	ReactFX

