
Effect handler oriented programming

Sam Lindley

The University of Edinburgh

Huawei Strategy & Technology Workshop, September 2022

Effects

Programs as black boxes (Church-Turing model)?

Effects are pervasive

▶ input/output

user interaction

▶ concurrency

web applications

▶ distribution

cloud computing

▶ exceptions

fault tolerance

▶ choice

backtracking search

Typically ad hoc and hard-wired

Effects

Programs must interact with their context

Effects are pervasive

▶ input/output

user interaction

▶ concurrency

web applications

▶ distribution

cloud computing

▶ exceptions

fault tolerance

▶ choice

backtracking search

Typically ad hoc and hard-wired

Effects

Programs must interact with their context

Effects are pervasive

▶ input/output
user interaction

▶ concurrency
web applications

▶ distribution
cloud computing

▶ exceptions
fault tolerance

▶ choice
backtracking search

Typically ad hoc and hard-wired

Effects

Programs must interact with their context Effects are pervasive

▶ input/output
user interaction

▶ concurrency
web applications

▶ distribution
cloud computing

▶ exceptions
fault tolerance

▶ choice
backtracking search

Typically ad hoc and hard-wired

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Growing industrial interest

semantic Code analysis library (> 25 million repositories)

React
JavaScript UI library (> 2 million websites)

Pyro
Statistical inference (10% ad spend saving)

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Growing industrial interest

semantic Code analysis library (> 25 million repositories)

React
JavaScript UI library (> 2 million websites)

Pyro
Statistical inference (10% ad spend saving)

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Growing industrial interest

semantic Code analysis library (> 25 million repositories)

React
JavaScript UI library (> 2 million websites)

Pyro
Statistical inference (10% ad spend saving)

Effect handlers

Gordon Plotkin Matija Pretnar

Handlers of algebraic effects, ESOP 2009

Composable and customisable user-defined interpretation of effects in general

Give programmer direct access to context
(c.f. resumable exceptions, monads, delimited control)

Growing industrial interest

semantic Code analysis library (> 25 million repositories)

React
JavaScript UI library (> 2 million websites)

Pyro
Statistical inference (10% ad spend saving)

Effect handlers as composable user-defined operating systems

Effect handlers as composable user-defined operating systems

Example 1: generators
Effect signature

{send : Nat ↠ 1}

A simple generator

nats : Nat → 1!(e & {send : Nat ↠ 1})
nats n = send n; nats (n + 1)

Handler
sumUntil : Nat → (1 → 1!(e & {send : Nat ↠ 1})) → Nat!e
sumUntil stop t =

handle t () with
return () 7→ 0
⟨send n → r⟩ 7→ if n ≤ stop then n + sumUntil stop r

else 0

sumUntil 5 (λ().nats 0) =⇒ 15

Example 1: generators
Effect signature

{send : Nat ↠ 1}

A simple generator

nats : Nat → 1!(e & {send : Nat ↠ 1})
nats n = send n; nats (n + 1)

Handler
sumUntil : Nat → (1 → 1!(e & {send : Nat ↠ 1})) → Nat!e
sumUntil stop t =

handle t () with
return () 7→ 0
⟨send n → r⟩ 7→ if n ≤ stop then n + sumUntil stop r

else 0

sumUntil 5 (λ().nats 0) =⇒ 15

Example 1: generators
Effect signature

{send : Nat ↠ 1}

A simple generator

nats : Nat → 1!(e & {send : Nat ↠ 1})
nats n = send n; nats (n + 1)

Handler
sumUntil : Nat → (1 → 1!(e & {send : Nat ↠ 1})) → Nat!e
sumUntil stop t =
handle t () with

return () 7→ 0
⟨send n → r⟩ 7→ if n ≤ stop then n + sumUntil stop r

else 0

sumUntil 5 (λ().nats 0) =⇒ 15

Example 1: generators
Effect signature

{send : Nat ↠ 1}

A simple generator

nats : Nat → 1!(e & {send : Nat ↠ 1})
nats n = send n; nats (n + 1)

Handler
sumUntil : Nat → (1 → 1!(e & {send : Nat ↠ 1})) → Nat!e
sumUntil stop t =
handle t () with

return () 7→ 0
⟨send n → r⟩ 7→ if n ≤ stop then n + sumUntil stop r

else 0

sumUntil 5 (λ().nats 0) =⇒ 15

Example 2: lightweight threads

Effect signature
{yield : 1 ↠ 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Example 2: lightweight threads

Effect signature
{yield : 1 ↠ 1}

Two cooperative lightweight threads

tA () = print (“A1 ”); yield (); print (“A2 ”)
tB () = print (“B1 ”); yield (); print (“B2 ”)

Example 2: lightweight threads

Types
Thread e = 1 → 1!(e & {yield : 1 ↠ 1})

Handler
cooperate : List (Thread e) → 1!e
cooperate [] = ()
cooperate (r :: rs) =
handle r()with
return () 7→ cooperate (rs)
⟨yield () → s⟩ 7→ cooperate (rs ++ [s])

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Example 2: lightweight threads

Types
Thread e = 1 → 1!(e & {yield : 1 ↠ 1})

Handler
cooperate : List (Thread e) → 1!e
cooperate [] = ()
cooperate (r :: rs) =
handle r()with
return () 7→ cooperate (rs)
⟨yield () → s⟩ 7→ cooperate (rs ++ [s])

cooperate [tA, tB] =⇒ ()
A1 B1 A2 B2

Example 3: lightweight threads with fork

Effect signature — recursive effect signature

Co e = e & {yield : 1 ↠ 1, fork : (1 → 1!Co e) ↠ 1}

A single cooperative program

main : 1 → 1!Co e
main () = print “M1 ”; fork (λ().print “A1 ”; yield (); print “A2 ”);

print “M2 ”; fork (λ().print “B1 ”; yield (); print “B2 ”); print “M3 ”

Example 3: lightweight threads with fork

Effect signature — recursive effect signature

Co e = e & {yield : 1 ↠ 1, fork : (1 → 1!Co e) ↠ 1}

A single cooperative program

main : 1 → 1!Co e
main () = print “M1 ”; fork (λ().print “A1 ”; yield (); print “A2 ”);

print “M2 ”; fork (λ().print “B1 ”; yield (); print “B2 ”); print “M3 ”

Example 3: lightweight threads with fork

Types
Thread e = 1 → 1!(e & {yield : 1 ↠ 1})

Handler
cooperate : List (Thread e) → 1!e
cooperate [] = ()
cooperate (r :: rs) =
handle r()with

return () 7→ cooperate (rs)
⟨yield () → s⟩ 7→ cooperate (rs ++ [s])
⟨fork t → s⟩ 7→ cooperate (t :: rs ++ [s])

Example 3: lightweight threads with fork

Types
Thread e = 1 → 1!(e & {yield : 1 ↠ 1})

Handler
cooperate : List (Thread e) → 1!e
cooperate [] = ()
cooperate (r :: rs) =
handle r()with

return () 7→ cooperate (rs)
⟨yield () → s⟩ 7→ cooperate (rs ++ [s])
⟨fork t → s⟩ 7→ cooperate (t :: rs ++ [s])

cooperate [main] =⇒ ()
M1 A1 M2 B1 A2 M3 B2

Example 3: lightweight threads with fork

Types
Thread e = 1 → 1!(e & {yield : 1 ↠ 1})

Handler
cooperate : List (Thread e) → 1!e
cooperate [] = ()
cooperate (r :: rs) =
handle r()with

return () 7→ cooperate (rs)
⟨yield () → s⟩ 7→ cooperate (rs ++ [s])
⟨fork t → s⟩ 7→ cooperate (s :: rs ++ [t])

Example 3: lightweight threads with fork

Types
Thread e = 1 → 1!(e & {yield : 1 ↠ 1})

Handler
cooperate : List (Thread e) → 1!e
cooperate [] = ()
cooperate (r :: rs) =
handle r()with

return () 7→ cooperate (rs)
⟨yield () → s⟩ 7→ cooperate (rs ++ [s])
⟨fork t → s⟩ 7→ cooperate (s :: rs ++ [t])

cooperate [main] =⇒ ()
M1 M2 M3 A1 B1 A2 B2

Built-in effects

Generative state
GenState = {new : a. a ↠ Ref a,

write : a. (Ref a× a) ↠ 1,
read : a. Ref a ↠ a}

Example 4: actors
Process ids

Pid a = Ref (List a)

Effect signature

Actor a = {self : 1 ↠ Pid a,
spawn : b. (1 → 1!Actor b) ↠ Pid b,
send : b. (b × Pid b) ↠ 1,
recv : 1 ↠ a}

An actor chain

spawnMany : Pid String → Int → 1!(e & Actor String)
spawnMany p 0 = send (“ping!”, p)
spawnMany p n = spawnMany (spawn (λ().let s = recv () in print “.”; send (s, p))) (n − 1)

chain : Int → 1!(e & Actor String & Console)
chain n = spawnMany (self ()) n; let s = recv () in print s

Example 4: actors
Process ids

Pid a = Ref (List a)

Effect signature

Actor a = {self : 1 ↠ Pid a,
spawn : b. (1 → 1!Actor b) ↠ Pid b,
send : b. (b × Pid b) ↠ 1,
recv : 1 ↠ a}

An actor chain

spawnMany : Pid String → Int → 1!(e & Actor String)
spawnMany p 0 = send (“ping!”, p)
spawnMany p n = spawnMany (spawn (λ().let s = recv () in print “.”; send (s, p))) (n − 1)

chain : Int → 1!(e & Actor String & Console)
chain n = spawnMany (self ()) n; let s = recv () in print s

Example 4: actors — via lightweight threads

act : Pid a → (1 → 1!(e & Actor a)) → 1!Co (e & GenState)
actmine t =

handle t() with
return () 7→ ()
⟨self () → r⟩ 7→ actmine (λ().r mine)
⟨spawn you → r⟩ 7→ let yours = new [] in

fork (λ().act yours (you ())); actmine (λ().r yours)
r mine yours

⟨send (m, yours) → r⟩ 7→ let ms = read yours in
write (yours,ms ++ [m]); actmine r

⟨recv () → r⟩ 7→ case readmine of
[] 7→ yield (); actmine (λ().r (recv ()))
(m ::ms) 7→ write (mine,ms); actmine (λ().r m)

cooperate [λ().act (new []) (λ().chain 64)] =⇒ ()
..ping!

Example 4: actors — via lightweight threads

act : Pid a → (1 → 1!(e & Actor a)) → 1!Co (e & GenState)
actmine t =

handle t() with
return () 7→ ()
⟨self () → r⟩ 7→ actmine (λ().r mine)
⟨spawn you → r⟩ 7→ let yours = new [] in

fork (λ().act yours (you ())); actmine (λ().r yours)
r mine yours

⟨send (m, yours) → r⟩ 7→ let ms = read yours in
write (yours,ms ++ [m]); actmine r

⟨recv () → r⟩ 7→ case readmine of
[] 7→ yield (); actmine (λ().r (recv ()))
(m ::ms) 7→ write (mine,ms); actmine (λ().r m)

cooperate [λ().act (new []) (λ().chain 64)] =⇒ ()
..ping!

Other use-cases

▶ reactive programming

▶ dependency injection

▶ mocking

▶ fuzzing

▶ automatic differentiation

▶ probabilistic programming

▶ backtracking

Example 5: lightweight threads in C++

struct Yield : eff::command<> { };

struct Fork : eff::command<> {

std::function<void()> proc;

};

void yield() {

eff::invoke_command(Yield{});

}

void fork(std::function<void()> proc) {

eff::invoke_command(Fork{{}, proc});

}

void mainThread() {

std::cout << "M1 "; fork([=]() {std::cout << "A1 "; yield(); std::cout << "A2 "});

std::cout << "M2 "; fork([=]() {std::cout << "B1 "; yield(); std::cout << "B2 "});

std::cout << "M3 ";

}

Example 5: lightweight threads in C++

using Res = eff::resumption<void()>;

class Scheduler : public eff::handler<void, void, Yield, Fork> {

public:

static void Start(std::function<void()> f) {

queue.push_back(eff::wrap<Scheduler>(f));

while (!queue.empty()) {

Res resumption = std::move(queue.front());

queue.pop_front();

std::move(resumption).resume();

}

}

private:

static std::list<Res> queue;

void handle_command(Yield, Res r) override {

queue.push_back(std::move(r));

}

void handle_command(Fork f, Res r) override {

queue.push_back(std::move(r));

queue.push_back(eff::wrap<Scheduler>(f.proc));

}

void handle_return() override { }

};

Example 5: lightweight threads in C++

int main() {

Scheduler::Start(mainThread);

}

M1 A1 M2 B1 A2 M3 B2

Example 5: lightweight threads in C++

int main() {

Scheduler::Start(mainThread);

}

M1 A1 M2 B1 A2 M3 B2

Effect handler oriented programming languages

Eff https://www.eff-lang.org/

Effekt https://effekt-lang.org/

Frank https://github.com/frank-lang/frank

Helium https://bitbucket.org/pl-uwr/helium

Links https://www.links-lang.org/

Koka https://github.com/koka-lang/koka

OCaml 5 https://github.com/ocamllabs/ocaml-multicore/wiki

https://www.eff-lang.org/
https://effekt-lang.org/
https://github.com/frank-lang/frank
https://bitbucket.org/pl-uwr/helium
https://www.links-lang.org/
https://github.com/koka-lang/koka
https://github.com/ocamllabs/ocaml-multicore/wiki

Timeline

Short term

▶ One-shot effect handlers / delimited continuations without effect types (OCaml 5,
Java 19, Wasm stack switching)

▶ Primary users: compiler engineers, low-level library developers

▶ Largely hidden from application developers (e.g. Java 19’s virtual threads, OCaml
5’s EIO library, Daan Leijen’s Node.C library)

Longer term

▶ Effect type systems to support more robust programming in the large

▶ Potential compromises for legacy systems based on capability-passing style and
modal types

▶ Efficient compilation of deeply-nested handlers

▶ Multishot effect handlers for backtracking, probabilistic programming, etc.

▶ Combination with linear/affine type systems (e.g. languages like Rust)

Resources

The EHOP project website
https://effect-handlers.org/

Jeremy Yallop’s effects bibliography
https://github.com/yallop/effects-bibliography

Daniel Hillerström’s PhD thesis
Foundations for programming and implementing effect handlers
Hillerström (The University of Edinburgh, 2022)

OCaml 5 effect handlers
Retrofitting effect handlers to OCaml
Sivaramakrishnan, Dolan, White, Jaffer, Kelly, Madhavapeddy (PLDI 2021)

C++ effects library
High-level effect handlers in C++
Ghica, Lindley, Bravo, Piróg (OOPSLA 2022)

https://effect-handlers.org/
https://github.com/yallop/effects-bibliography

