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Linear Types in Links

Links uses linear types for session types:

- !A.S : send a value of type A, then continue as S

- ?A.S : receive a value of type A, then continue as S

- End : no communication

Primitive operations on session-typed channels:

send : ∀ a (b::Session) . (a, !a.b) → b

receive : ∀ a (b::Session) . (?a.b) → (a, b)

fork : ∀ (a::Session) . (a → ()) → ~a

close : End → ()
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Linear Types in Links

A sender sends an integer.

sig sender : (!Int.End) → ()

fun sender(ch) { var ch' = send(42, ch); close(ch') }

A receiver receives the integer and prints it.

sig receiver : (?Int.End) → ()

fun receiver(ch) { var (i, ch') = receive(ch); close(ch'); printInt(i) }

Fork the receiver and pass the dual channel to the sender.

links> { var ch = fork(receiver); sender(ch) };

42
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Well-Typed Programs in Links Cannot Go Wrong

Linear types prevent us from using the same channel twice.
links> { var ch = fork(receiver); sender(ch); sender(ch); };

Type error: Variable ch has linear type `!Int.End'

but is used 2 times.

Even if it is wrapped in a function.
links> { var ch = fork(receiver);

var f = fun(){ sender(ch) }; f(); f() };

Type error: Variable ch of linear type `!Int.End'

is used in a non-linear function literal.

Or in a linear function.
links> { var ch = fork(receiver);

var f = linfun(){ sender(ch) }; f(); f() };

<stdin>:1: Type error: Variable f has linear type `() -@ ()'

but is used 2 times.
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Effect Handlers in Links

Algebraic effects and handlers provide programmers with advanced
control-flow mechanisms.

sig choose : ∀ (𝜌::Row) . () { Choose: () ⇒ Bool | 𝜌 }→ ()

fun choose() { var i = if (do Choose) 42 else 24; printInt(i) }

Handle by invoking the continuation once.
links> handle (choose())

{ case <Choose ⇒ r> → r(true) }

42

Handle by invoking the continuation twice.
links> handle (choose())

{ case <Choose ⇒ r> → r(true); r(false) }

4224
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Well-Typed Programs in Links CAN Go Wrong ! 12

We can use the same channel twice by invoking the continuation twice.

links> handle

({ var ch = fork(receiver); var _ = do Choose; sender(ch) })

{ case <Choose ⇒ r> → r(true); r(false) }

***: Internal Error in evalir.ml (Please report as a bug): NotFound

chan_3 (in Hashtbl.find) while interpreting.

The problem is that the continuation has an unlimited type r : Bool → (),
which does not reflect the usage of the linear channel ch.

1https://github.com/links-lang/links/issues/544
2Emrich and Hillerström, “Broken Links (Presentation)”, 2020.
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Our Solution

The previous type-and-effect system does not track linear continuations.
links> fun(){var ch = fork(receiver); var _ = do Choose; sender(ch)};

fun : ∀ (𝜌::Row) . () {Choose:() ⇒ Bool | 𝜌}→ ()

Use the operation signatures to track linear continuations.
links> fun(){var ch = fork(receiver); var _ = lindo Choose; sender(ch)};

fun : ∀ (𝜌::Row◦) . () {Choose:() =@ Bool | 𝜌}→ ()

Linear operations can only be handled by linear handlers.
links> handle

({ var ch = fork(receiver); var _ = lindo Choose; sender(ch) })

{ case <Choose =@ r> → r(true) }

Now we know the continuation has a linear type r : Bool -@ ().
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Core Ideas of Type Checking

Consider two sequenced computations

𝑀︸︷︷︸
𝐴 ! {𝑅1 }

; 𝑁︸︷︷︸
𝐵 ! {𝑅2 }

: 𝐵 ! {𝑅}

We make sure 𝑅1 is linear if 𝑁 uses any linear resources.

For instance,
do Choose︸       ︷︷       ︸

Bool ! {Choose:linear}

; sender(ch)︸       ︷︷       ︸
() ! {𝑅2 }

: 𝐵 ! {𝑅}
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▶ Row polymorphism: 𝑅1 = 𝑅2 = 𝑅

▶ Row subtyping: 𝑅1 ⩽ 𝑅, 𝑅2 ⩽ 𝑅

▶ Algebraic row subtyping: 𝑅 = 𝑅1 ⊔ 𝑅2

The conventional effect system based on row polymorphism is too coarse for
tracking linear continuations, because when 𝑁 uses linear resources we only
need to guarantee that operations in 𝑅1 are linear.
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Core Ideas of Type Inference

We make sure 𝑅1 is linear if 𝑁 uses any linear resources.

𝑀︸︷︷︸
𝐴 ! {𝑅1 }

; 𝑁︸︷︷︸
𝐵 ! {𝑅2 }

: 𝐵 ! {𝑅}

However, we do not always know whether 𝑁 uses any linear resources during
the type inference.

Add linearity annotations to sequencing (as well as operation invocations
and handler clauses).

We force 𝑅1 to be linear when

𝑀︸︷︷︸
𝐴 ! {𝑅1 }

;◦ 𝑁︸︷︷︸
𝐵 ! {𝑅2 }

: 𝐵 ! {𝑅}

We force free variables in 𝑁 to be unlimited when

𝑀︸︷︷︸
𝐴 ! {𝑅1 }

;• 𝑁︸︷︷︸
𝐵 ! {𝑅2 }

: 𝐵 ! {𝑅}
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Core Ideas of Type Inference

Writing linearity annotations is tedious and harmful.

Qualified types / type inference with constraints.

𝑀︸︷︷︸
𝐴 ! {𝑅1 }

; 𝑁︸︷︷︸
𝐵 ! {𝑅2 }

: 𝐵 ! {𝑅} | (𝑁 contains free linear vars⇒ 𝑅1 is linear)

We can also add the subtyping constraints.

𝐵 ! {𝑅} | (𝑁 contains free linear vars⇒ 𝑅1 is linear) ∧ (𝑅1 ⩽ 𝑅) ∧ (𝑅2 ⩽ 𝑅)
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Conclusion

Our main contributions:

- F◦eff: a fine-grained call-by-value variant of system F with correct
interaction between linear types and effect handlers.
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- F◦eff: a fine-grained call-by-value variant of system F with correct
interaction between linear types and effect handlers.

- An implementation of F◦eff in Links with ML-style type inference which
requires a fair amount of linearity annotations.

- Q◦⩽
eff : a ML-style calculus with linear types and effect subtyping based on

qualified types. It requires no syntactic overheads and has better
accuracy on tracking linear continuations.
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Thank you!
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