
Soundly Handling Linearity

Wenhao Tang
The University of Edinburgh

EHOP Workshop, 22th July 2023

(Joint work with Daniel Hillerström, Sam Lindley, and J. Garrett Morris)

Linear Types in LINKS

LINKS uses linear types for session types:

- !A.S : send a value of type A, then continue as S

- ?A.S : receive a value of type A, then continue as S

- End : no communication

Primitive operations on session-typed channels:

send : forall (a::Any) (b::Session) . (a, !a.b) -> b

receive : forall (a::Any) (b::Session) . (?a.b) -> (a, b)

fork : forall (b::Session) . (b -> ()) -> ~b

close : End -> ()

1

Linear Types in LINKS

LINKS uses linear types for session types:

- !A.S : send a value of type A, then continue as S

- ?A.S : receive a value of type A, then continue as S

- End : no communication

Primitive operations on session-typed channels:

send : forall (a::Any) (b::Session) . (a, !a.b) -> b

receive : forall (a::Any) (b::Session) . (?a.b) -> (a, b)

fork : forall (b::Session) . (b -> ()) -> ~b

close : End -> ()

1

Linear Types in LINKS

A sender sends an integer.

sig sender : (!Int.End) ~> ()

fun sender(ch) { var ch' = send(42, ch); close(ch') }

A receiver receives the integer and prints it.

sig receiver : (?Int.End) ~> ()

fun receiver(ch) { var (i, ch') = receive(ch); close(ch'); printInt(i) }

Fork the receiver and pass the dual channel to the sender.

links> { var ch = fork(receiver); sender(ch) };

42

2

Linear Types in LINKS

A sender sends an integer.

sig sender : (!Int.End) ~> ()

fun sender(ch) { var ch' = send(42, ch); close(ch') }

A receiver receives the integer and prints it.

sig receiver : (?Int.End) ~> ()

fun receiver(ch) { var (i, ch') = receive(ch); close(ch'); printInt(i) }

Fork the receiver and pass the dual channel to the sender.

links> { var ch = fork(receiver); sender(ch) };

42

2

Linear Types in LINKS

A sender sends an integer.

sig sender : (!Int.End) ~> ()

fun sender(ch) { var ch' = send(42, ch); close(ch') }

A receiver receives the integer and prints it.

sig receiver : (?Int.End) ~> ()

fun receiver(ch) { var (i, ch') = receive(ch); close(ch'); printInt(i) }

Fork the receiver and pass the dual channel to the sender.

links> { var ch = fork(receiver); sender(ch) };

42

2

Linear types in LINKS are sound ?

Linear channels cannot be used twice.
links> { var ch = fork(receiver); sender(ch); sender(ch); };

Type error: Variable ch has linear type `!Int.End'

but is used 2 times.

Unlimited functions cannot capture linear channels.
links> { var ch = fork(receiver);

var f = fun(){ sender(ch) }; f(); f() };

Type error: Variable ch of linear type `!Int.End'

is used in a non-linear function literal.

Linear functions cannot be used twice.
links> { var ch = fork(receiver);

var f = linfun(){ sender(ch) }; f(); f() };

Type error: Variable f has linear type `() -@ ()'

but is used 2 times.

3

Linear types in LINKS are sound ?

Linear channels cannot be used twice.
links> { var ch = fork(receiver); sender(ch); sender(ch); };

Type error: Variable ch has linear type `!Int.End'

but is used 2 times.

Unlimited functions cannot capture linear channels.
links> { var ch = fork(receiver);

var f = fun(){ sender(ch) }; f(); f() };

Type error: Variable ch of linear type `!Int.End'

is used in a non-linear function literal.

Linear functions cannot be used twice.
links> { var ch = fork(receiver);

var f = linfun(){ sender(ch) }; f(); f() };

Type error: Variable f has linear type `() -@ ()'

but is used 2 times.

3

Linear types in LINKS are sound ?

Linear channels cannot be used twice.
links> { var ch = fork(receiver); sender(ch); sender(ch); };

Type error: Variable ch has linear type `!Int.End'

but is used 2 times.

Unlimited functions cannot capture linear channels.
links> { var ch = fork(receiver);

var f = fun(){ sender(ch) }; f(); f() };

Type error: Variable ch of linear type `!Int.End'

is used in a non-linear function literal.

Linear functions cannot be used twice.
links> { var ch = fork(receiver);

var f = linfun(){ sender(ch) }; f(); f() };

Type error: Variable f has linear type `() -@ ()'

but is used 2 times. 3

No, well-typed programs in LINKS can go wrong ! 12

We can use the same channel twice by multi-shot handlers.

links> handle

({ var ch = fork(receiver); var _ = do Choose; sender(ch) })

{ case <Choose => r> -> r(true); r(false) }

***: Internal Error in evalir.ml (Please report as a bug): NotFound

chan_3 (in Hashtbl.find) while interpreting.

We fix this by extending the linear type system and effect system to track
control flow linearity, in addition to value linearity.

1https://github.com/links-lang/links/issues/544
2Emrich and Hillerström, “Broken Links (Presentation)”, 2020.

4

No, well-typed programs in LINKS can go wrong ! 12

We can use the same channel twice by multi-shot handlers.

links> handle

({ var ch = fork(receiver); var _ = do Choose; sender(ch) })

{ case <Choose => r> -> r(true); r(false) }

***: Internal Error in evalir.ml (Please report as a bug): NotFound

chan_3 (in Hashtbl.find) while interpreting.

We fix this by extending the linear type system and effect system to track
control flow linearity, in addition to value linearity.

1https://github.com/links-lang/links/issues/544
2Emrich and Hillerström, “Broken Links (Presentation)”, 2020.

4

No, well-typed programs in LINKS can go wrong ! 12

We can use the same channel twice by multi-shot handlers.

links> handle

({ var ch = fork(receiver); var _ = do Choose; sender(ch) })

{ case <Choose => r> -> r(true); r(false) }

***: Internal Error in evalir.ml (Please report as a bug): NotFound

chan_3 (in Hashtbl.find) while interpreting.

We fix this by extending the linear type system and effect system to track
control flow linearity, in addition to value linearity.

1https://github.com/links-lang/links/issues/544
2Emrich and Hillerström, “Broken Links (Presentation)”, 2020.

4

Value Linearity in F◦eff

Value linearity restricts the use of values.

Value linearity characterises whether values contain linear resources.

F◦eff tracks the value linearity with kinds.

Int : Type•

File : Type◦

(File, Int) : Type◦

𝐴→◦ 𝐶 : Type◦

Functions are annotated with their value linearity.

𝜆• 𝑓 . (𝜆◦𝑠 . let 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′) : File→• (String→◦ ())

It is always safe to use unlimited values just once. We have the subkinding
relation ⊢ Type• ≤ Type◦.

5

Value Linearity in F◦eff

Value linearity restricts the use of values.

Value linearity characterises whether values contain linear resources.

F◦eff tracks the value linearity with kinds.

Int : Type•

File : Type◦

(File, Int) : Type◦

𝐴→◦ 𝐶 : Type◦

Functions are annotated with their value linearity.

𝜆• 𝑓 . (𝜆◦𝑠 . let 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′) : File→• (String→◦ ())

It is always safe to use unlimited values just once. We have the subkinding
relation ⊢ Type• ≤ Type◦.

5

Value Linearity in F◦eff

Value linearity restricts the use of values.

Value linearity characterises whether values contain linear resources.

F◦eff tracks the value linearity with kinds.

Int : Type•

File : Type◦

(File, Int) : Type◦

𝐴→◦ 𝐶 : Type◦

Functions are annotated with their value linearity.

𝜆• 𝑓 . (𝜆◦𝑠 . let 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′) : File→• (String→◦ ())

It is always safe to use unlimited values just once. We have the subkinding
relation ⊢ Type• ≤ Type◦.

5

Value Linearity in F◦eff

Value linearity restricts the use of values.

Value linearity characterises whether values contain linear resources.

F◦eff tracks the value linearity with kinds.

Int : Type•

File : Type◦

(File, Int) : Type◦

𝐴→◦ 𝐶 : Type◦

Functions are annotated with their value linearity.

𝜆• 𝑓 . (𝜆◦𝑠 . let 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′) : File→• (String→◦ ())

It is always safe to use unlimited values just once. We have the subkinding
relation ⊢ Type• ≤ Type◦.

5

Multi-shot handlers abuse linear resources

We get the same problem as LINKS if we only track value linearity in the
presence of multi-shot handlers.

dubiousWrite7 : File→• () ! {Choose : () ↠ Bool}
dubiousWrite7 = 𝜆• 𝑓 .

let 𝑏 ← (do Choose ()) {Choose:()↠Bool} in
let 𝑠 ← if 𝑏 then "A" else "B" in
let 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′

}
continuation of Choose

let 𝑓 ← open "C.txt" in
handle (dubiousWrite7 𝑓) with {Choose _ 𝑟 ↦→ 𝑟 true ; 𝑟 false}

6

Control Flow Linearity in F◦eff

Ctrl flow linearity restricts how many times control may enter a local context.

Ctrl flow linearity characterises whether a local context captures linear
resources.

The continuation (context) of Choose is control flow linear.

dubiousWrite7 : File→• () ! {Choose : () ↠ Bool}
dubiousWrite7 = 𝜆• 𝑓 .

let 𝑏 ← (do Choose ()) {Choose:()↠Bool} in
let 𝑠 ← if 𝑏 then "A" else "B" in
let 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′

}
continuation of Choose

7

Control Flow Linearity in F◦eff

Ctrl flow linearity restricts how many times control may enter a local context.

Ctrl flow linearity characterises whether a local context captures linear
resources.

The continuation (context) of Choose is control flow linear.

dubiousWrite7 : File→• () ! {Choose : () ↠ Bool}
dubiousWrite7 = 𝜆• 𝑓 .

let 𝑏 ← (do Choose ()) {Choose:()↠Bool} in
let 𝑠 ← if 𝑏 then "A" else "B" in
let 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′

}
continuation of Choose

7

Control Flow Linearity in F◦eff

F◦eff tracks the control flow linearity at the granularity of operations
(Choose : () ↠𝑌 Bool), which represents the control flow linearity of their
continuations.

Let-bindings (let𝑌 𝑥 ← 𝑀 in 𝑁) are annotated with the control flow linearity
of the local context (i.e., let𝑌 𝑥 ← _ in 𝑁).

dubiousWrite3 : File→• () ! {Choose : () ↠◦ Bool}
dubiousWrite3 = 𝜆• 𝑓 .

let◦𝑏 ← (do Choose ()) {Choose:()↠◦Bool} in
let◦𝑠 ← if 𝑏 then "A" else "B" in
let• 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′

}
continuation of Choose

let 𝑓 ← open "C.txt" in
handle (dubiousWrite3 𝑓) with {Choose _ 𝑟 ↦→ 𝑟 true ; 𝑟 false}

Ill-typed!

8

Control Flow Linearity in F◦eff

F◦eff tracks the control flow linearity at the granularity of operations
(Choose : () ↠𝑌 Bool), which represents the control flow linearity of their
continuations.

Let-bindings (let𝑌 𝑥 ← 𝑀 in 𝑁) are annotated with the control flow linearity
of the local context (i.e., let𝑌 𝑥 ← _ in 𝑁).

dubiousWrite3 : File→• () ! {Choose : () ↠◦ Bool}
dubiousWrite3 = 𝜆• 𝑓 .

let◦𝑏 ← (do Choose ()) {Choose:()↠◦Bool} in
let◦𝑠 ← if 𝑏 then "A" else "B" in
let• 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′

}
continuation of Choose

let 𝑓 ← open "C.txt" in
handle (dubiousWrite3 𝑓) with {Choose _ 𝑟 ↦→ 𝑟 true ; 𝑟 false}

Ill-typed!

8

Control Flow Linearity in F◦eff

F◦eff tracks the control flow linearity at the granularity of operations
(Choose : () ↠𝑌 Bool), which represents the control flow linearity of their
continuations.

Let-bindings (let𝑌 𝑥 ← 𝑀 in 𝑁) are annotated with the control flow linearity
of the local context (i.e., let𝑌 𝑥 ← _ in 𝑁).

dubiousWrite3 : File→• () ! {Choose : () ↠◦ Bool}
dubiousWrite3 = 𝜆• 𝑓 .

let◦𝑏 ← (do Choose ()) {Choose:()↠◦Bool} in
let◦𝑠 ← if 𝑏 then "A" else "B" in
let• 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′

}
continuation of Choose

let 𝑓 ← open "C.txt" in
handle (dubiousWrite3 𝑓) with {Choose _ 𝑟 ↦→ 𝑟 true ; 𝑟 false}

Ill-typed!
8

Linear effect rows can be used as unlimited ones

F◦eff lifts the control flow linearity of operations to effect rows.

(Choose : () ↠◦ Bool) : Row◦

(Choose : () ↠• Bool) : Row•

(L1 : ◦ ; L2 : ◦ ; L3 : •) : Row•

It is always safe to use control-flow-linear operations in an unlimited context.
We have the subkinding relation ⊢ Row◦ ≤ Row•. For instance,

tossCoin : ∀𝜇Row• .(() →• Bool ! {𝜇}) →• String ! {𝜇}
tossCoin = Λ𝜇Row

•
.𝜆•𝑔. let• 𝑏 ← 𝑔 () in if 𝑏 then "heads" else "tails"

Control flow linearity is dual to value linearity!

9

Linear effect rows can be used as unlimited ones

F◦eff lifts the control flow linearity of operations to effect rows.

(Choose : () ↠◦ Bool) : Row◦

(Choose : () ↠• Bool) : Row•

(L1 : ◦ ; L2 : ◦ ; L3 : •) : Row•

It is always safe to use control-flow-linear operations in an unlimited context.
We have the subkinding relation ⊢ Row◦ ≤ Row•. For instance,

tossCoin : ∀𝜇Row• .(() →• Bool ! {𝜇}) →• String ! {𝜇}
tossCoin = Λ𝜇Row

•
.𝜆•𝑔. let• 𝑏 ← 𝑔 () in if 𝑏 then "heads" else "tails"

Control flow linearity is dual to value linearity!

9

Control Flow Linearity in LINKS

The original LINKS does not track control flow linearity.
links> fun(ch:End) {do L; close(ch)};

fun : forall (𝜌::Row) . (End) {L:() => () | 𝜌}~> ()

We use xlin to claim that the current context is control flow linear, and lindo

to invoke linear operations.
links> fun(ch:End) {xlin; lindo L; close(ch)};

fun : forall (𝜌::Row(Lin)) . () {L:() =@ () | 𝜌}~> ()

Linear operations can only be handled by linear handlers.
links> fun(ch:End) {

handle ({ xlin; lindo L; close(ch) }) { case <L =@ r> -> xlin; r(()) }

}

fun : forall (𝜃:Presence(Lin)) (row:Row(Lin)) . (End) {L{𝜃} | 𝜌}~> ()

10

Control Flow Linearity in LINKS

The original LINKS does not track control flow linearity.
links> fun(ch:End) {do L; close(ch)};

fun : forall (𝜌::Row) . (End) {L:() => () | 𝜌}~> ()

We use xlin to claim that the current context is control flow linear, and lindo

to invoke linear operations.
links> fun(ch:End) {xlin; lindo L; close(ch)};

fun : forall (𝜌::Row(Lin)) . () {L:() =@ () | 𝜌}~> ()

Linear operations can only be handled by linear handlers.
links> fun(ch:End) {

handle ({ xlin; lindo L; close(ch) }) { case <L =@ r> -> xlin; r(()) }

}

fun : forall (𝜃:Presence(Lin)) (row:Row(Lin)) . (End) {L{𝜃} | 𝜌}~> ()

10

Control Flow Linearity in LINKS

The original LINKS does not track control flow linearity.
links> fun(ch:End) {do L; close(ch)};

fun : forall (𝜌::Row) . (End) {L:() => () | 𝜌}~> ()

We use xlin to claim that the current context is control flow linear, and lindo

to invoke linear operations.
links> fun(ch:End) {xlin; lindo L; close(ch)};

fun : forall (𝜌::Row(Lin)) . () {L:() =@ () | 𝜌}~> ()

Linear operations can only be handled by linear handlers.
links> fun(ch:End) {

handle ({ xlin; lindo L; close(ch) }) { case <L =@ r> -> xlin; r(()) }

}

fun : forall (𝜃:Presence(Lin)) (row:Row(Lin)) . (End) {L{𝜃} | 𝜌}~> ()

10

xlin is a modality ?

xlin creates a linear scope.

□𝐴: A linear type 𝐴

□ℓ : A control-flow-linear operation ℓ

□(𝐴 ! {ℓ1 ; ℓ2}) = □𝐴 !□{ℓ1 ; ℓ2} = □𝐴 ! {□ℓ1 ;□ℓ2}

T-BOX
Γ," ⊢ 𝑉 : 𝐴

Γ ⊢ box 𝑉 : □𝐴

T-UNBOX
Γ ⊢ 𝑉 : □𝐴

Γ,", Γ′ ⊢ unbox𝑉 : 𝐴

T-VAR

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

T-BOXC
Γ," ⊢ 𝑀 : 𝐴 !𝐸

Γ ⊢ box 𝑀 : □𝐴 !□𝐸

The handler rule guarantees that □ℓ is handled by resuming exactly once.

11

xlin is a modality ?

xlin creates a linear scope.

□𝐴: A linear type 𝐴

□ℓ : A control-flow-linear operation ℓ

□(𝐴 ! {ℓ1 ; ℓ2}) = □𝐴 !□{ℓ1 ; ℓ2} = □𝐴 ! {□ℓ1 ;□ℓ2}

T-BOX
Γ," ⊢ 𝑉 : 𝐴

Γ ⊢ box 𝑉 : □𝐴

T-UNBOX
Γ ⊢ 𝑉 : □𝐴

Γ,", Γ′ ⊢ unbox𝑉 : 𝐴

T-VAR

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

T-BOXC
Γ," ⊢ 𝑀 : 𝐴 !𝐸

Γ ⊢ box 𝑀 : □𝐴 !□𝐸

The handler rule guarantees that □ℓ is handled by resuming exactly once.

11

xlin is a modality ?

xlin creates a linear scope.

□𝐴: A linear type 𝐴

□ℓ : A control-flow-linear operation ℓ

□(𝐴 ! {ℓ1 ; ℓ2}) = □𝐴 !□{ℓ1 ; ℓ2} = □𝐴 ! {□ℓ1 ;□ℓ2}

T-BOX
Γ," ⊢ 𝑉 : 𝐴

Γ ⊢ box 𝑉 : □𝐴

T-UNBOX
Γ ⊢ 𝑉 : □𝐴

Γ,", Γ′ ⊢ unbox𝑉 : 𝐴

T-VAR

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

T-BOXC
Γ," ⊢ 𝑀 : 𝐴 !𝐸

Γ ⊢ box 𝑀 : □𝐴 !□𝐸

The handler rule guarantees that □ℓ is handled by resuming exactly once.

11

Problems with Subkinding-based Linear Types

Linear types in F◦eff (and LINKS) can be annoying.

verboseId : ∀𝜇Row𝑌1 𝛼Type𝑌2 . 𝛼 →𝑌0 𝛼 ! {Print : String↠𝑌3 () ; 𝜇}
verboseId = Λ𝜇Row

𝑌1 𝛼Type𝑌2 . 𝜆𝑌0𝑥 . let𝑌4 () ← do Print "idiscalled" in 𝑥

We have ten different types for verboseId, none of which is the most general.

∀𝜇• 𝛼• .𝛼 →• 𝛼 ! {Print : • ; 𝜇}
∀𝜇• 𝛼• .𝛼 →• 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →• 𝛼 ! {Print : • ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →• 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼◦ .𝛼 →• 𝛼 ! {Print : ◦ ; 𝜇}

∀𝜇• 𝛼• .𝛼 →◦ 𝛼 ! {Print : • ; 𝜇}
∀𝜇• 𝛼• .𝛼 →◦ 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →◦ 𝛼 ! {Print : • ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →◦ 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼◦ .𝛼 →◦ 𝛼 ! {Print : ◦ ; 𝜇}

12

Problems with Subkinding-based Linear Types

Linear types in F◦eff (and LINKS) can be annoying.

verboseId : ∀𝜇Row𝑌1 𝛼Type𝑌2 . 𝛼 →𝑌0 𝛼 ! {Print : String↠𝑌3 () ; 𝜇}
verboseId = Λ𝜇Row

𝑌1 𝛼Type𝑌2 . 𝜆𝑌0𝑥 . let𝑌4 () ← do Print "idiscalled" in 𝑥

We have ten different types for verboseId, none of which is the most general.

∀𝜇• 𝛼• .𝛼 →• 𝛼 ! {Print : • ; 𝜇}
∀𝜇• 𝛼• .𝛼 →• 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →• 𝛼 ! {Print : • ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →• 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼◦ .𝛼 →• 𝛼 ! {Print : ◦ ; 𝜇}

∀𝜇• 𝛼• .𝛼 →◦ 𝛼 ! {Print : • ; 𝜇}
∀𝜇• 𝛼• .𝛼 →◦ 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →◦ 𝛼 ! {Print : • ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →◦ 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼◦ .𝛼 →◦ 𝛼 ! {Print : ◦ ; 𝜇}

12

Qualified Linear Types in Q◦eff

We can restore principal types by abstracting over linearity and introducing
constraints on linearity.

verboseId : ∀𝛼 𝜇 𝜙 𝜙 ′ . (𝛼 ⪯ 𝜙) ⇒ 𝛼 →𝜙 ′ 𝛼 ! {Print : 𝜙 ; 𝜇}
verboseId = 𝜆𝑥 . do Print "42" ; 𝑥

13

Problems with Row-based Effect Types

Effect row types of sequenced computations must be unified.

sandwichClose : (() →• () ! {𝑅1}, File, () →• () ! {𝑅2}) →• () ! {𝑅}
sandwichClose = 𝜆• (𝑔, 𝑓 , ℎ). let◦ () ← 𝑔 () in let• () ← close 𝑓 in ℎ ()

We can only have 𝑅1 = 𝑅2 = 𝑅, which overly restricts that operations invoked
in ℎ must be control flow linear.

14

Qualified Effect Types in Q◦eff

We support row subtyping again by qualified types.

sandwichClose : ∀𝜇1 𝜇2 𝜇.(𝜇1 ⩽ 𝜇, 𝜇2 ⩽ 𝜇, File ⪯ 𝜇1)
⇒ (() →• () ! {𝜇1}, File, () →• () ! {𝜇2}) →• () ! {𝜇}

sandwichClose = 𝜆• (𝑔, 𝑓 , ℎ). let () ← 𝑔 () in let () ← close 𝑓 in ℎ ()

Qualified types is expressive. Q◦eff has a full type inference with constraint
solving which does not require any type or linearity annotations.

Interesting interaction between row constraints and linearity constraints:
𝜇1 ⩽ 𝜇2 and ◦ ⪯ 𝜇2 implies ◦ ⪯ 𝜇1.

But having explicit constraint sets in types is still a pain?

15

Qualified Effect Types in Q◦eff

We support row subtyping again by qualified types.

sandwichClose : ∀𝜇1 𝜇2 𝜇.(𝜇1 ⩽ 𝜇, 𝜇2 ⩽ 𝜇, File ⪯ 𝜇1)
⇒ (() →• () ! {𝜇1}, File, () →• () ! {𝜇2}) →• () ! {𝜇}

sandwichClose = 𝜆• (𝑔, 𝑓 , ℎ). let () ← 𝑔 () in let () ← close 𝑓 in ℎ ()

Qualified types is expressive. Q◦eff has a full type inference with constraint
solving which does not require any type or linearity annotations.

Interesting interaction between row constraints and linearity constraints:
𝜇1 ⩽ 𝜇2 and ◦ ⪯ 𝜇2 implies ◦ ⪯ 𝜇1.

But having explicit constraint sets in types is still a pain?

15

Qualified Effect Types in Q◦eff

We support row subtyping again by qualified types.

sandwichClose : ∀𝜇1 𝜇2 𝜇.(𝜇1 ⩽ 𝜇, 𝜇2 ⩽ 𝜇, File ⪯ 𝜇1)
⇒ (() →• () ! {𝜇1}, File, () →• () ! {𝜇2}) →• () ! {𝜇}

sandwichClose = 𝜆• (𝑔, 𝑓 , ℎ). let () ← 𝑔 () in let () ← close 𝑓 in ℎ ()

Qualified types is expressive. Q◦eff has a full type inference with constraint
solving which does not require any type or linearity annotations.

Interesting interaction between row constraints and linearity constraints:
𝜇1 ⩽ 𝜇2 and ◦ ⪯ 𝜇2 implies ◦ ⪯ 𝜇1.

But having explicit constraint sets in types is still a pain?

15

Algebraic Subtyping for Linear Types and Effect Types

Use algebraic subtyping.

Algebraic subtyping for row types is standard. Informally,

Γ ⊢ 𝑀 : 𝐴 !𝑅1 𝑁 : 𝐵 !𝑅2

Γ ⊢ 𝑀 ;𝑁 : 𝐵 !𝑅1 ⊔ 𝑅2

Algebraic subtyping for linear types is more interesting. Informally,

𝜆𝑥.𝜆𝑦.𝜆𝑧.(𝑥,𝑦, 𝑧) : 𝛼 → 𝛽 →𝛼 𝛾 →𝛼∨𝛽 (𝛼, 𝛽,𝛾)
𝜆𝑥.(𝑥, 𝑥) : 𝛼 ∧ • → (𝛼, 𝛼)

It is easy to extend it with control flow linearity. Informally,

verboseId : 𝛼 → 𝛼 ! {Print : 𝜙 ∨ 𝛼 ; 𝜇}
verboseId = 𝜆𝑥 . do Print "idiscalled" ;𝑥

16

Algebraic Subtyping for Linear Types and Effect Types

Use algebraic subtyping.

Algebraic subtyping for row types is standard. Informally,

Γ ⊢ 𝑀 : 𝐴 !𝑅1 𝑁 : 𝐵 !𝑅2

Γ ⊢ 𝑀 ;𝑁 : 𝐵 !𝑅1 ⊔ 𝑅2

Algebraic subtyping for linear types is more interesting. Informally,

𝜆𝑥.𝜆𝑦.𝜆𝑧.(𝑥,𝑦, 𝑧) : 𝛼 → 𝛽 →𝛼 𝛾 →𝛼∨𝛽 (𝛼, 𝛽,𝛾)
𝜆𝑥.(𝑥, 𝑥) : 𝛼 ∧ • → (𝛼, 𝛼)

It is easy to extend it with control flow linearity. Informally,

verboseId : 𝛼 → 𝛼 ! {Print : 𝜙 ∨ 𝛼 ; 𝜇}
verboseId = 𝜆𝑥 . do Print "idiscalled" ;𝑥

16

Algebraic Subtyping for Linear Types and Effect Types

Use algebraic subtyping.

Algebraic subtyping for row types is standard. Informally,

Γ ⊢ 𝑀 : 𝐴 !𝑅1 𝑁 : 𝐵 !𝑅2

Γ ⊢ 𝑀 ;𝑁 : 𝐵 !𝑅1 ⊔ 𝑅2

Algebraic subtyping for linear types is more interesting. Informally,

𝜆𝑥.𝜆𝑦.𝜆𝑧.(𝑥,𝑦, 𝑧) : 𝛼 → 𝛽 →𝛼 𝛾 →𝛼∨𝛽 (𝛼, 𝛽,𝛾)
𝜆𝑥.(𝑥, 𝑥) : 𝛼 ∧ • → (𝛼, 𝛼)

It is easy to extend it with control flow linearity. Informally,

verboseId : 𝛼 → 𝛼 ! {Print : 𝜙 ∨ 𝛼 ; 𝜇}
verboseId = 𝜆𝑥 . do Print "idiscalled" ;𝑥

16

Algebraic Subtyping for Linear Types and Effect Types

Use algebraic subtyping.

Algebraic subtyping for row types is standard. Informally,

Γ ⊢ 𝑀 : 𝐴 !𝑅1 𝑁 : 𝐵 !𝑅2

Γ ⊢ 𝑀 ;𝑁 : 𝐵 !𝑅1 ⊔ 𝑅2

Algebraic subtyping for linear types is more interesting. Informally,

𝜆𝑥.𝜆𝑦.𝜆𝑧.(𝑥,𝑦, 𝑧) : 𝛼 → 𝛽 →𝛼 𝛾 →𝛼∨𝛽 (𝛼, 𝛽,𝛾)
𝜆𝑥.(𝑥, 𝑥) : 𝛼 ∧ • → (𝛼, 𝛼)

It is easy to extend it with control flow linearity. Informally,

verboseId : 𝛼 → 𝛼 ! {Print : 𝜙 ∨ 𝛼 ; 𝜇}
verboseId = 𝜆𝑥 . do Print "idiscalled" ;𝑥

16

Conclusion

▶ Track control flow linearity when combining linear types with effect
handlers.

▶ Row subtyping is necessary to have a more fine-grained tracking of
control flow linearity.

17

Thank you!

17

