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Linear Types in LINKS

LINKS uses linear types for session types:

- !A.S : send a value of type A, then continue as S

- ?A.S : receive a value of type A, then continue as S

- End : no communication

Primitive operations on session-typed channels:

send : forall (a::Any) (b::Session) . (a, !a.b) -> b

receive : forall (a::Any) (b::Session) . (?a.b) -> (a, b)

fork : forall (b::Session) . (b -> ()) -> ~b

close : End -> ()
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Linear Types in LINKS

A sender sends an integer.

sig sender : (!Int.End) ~> ()

fun sender(ch) { var ch' = send(42, ch); close(ch') }

A receiver receives the integer and prints it.

sig receiver : (?Int.End) ~> ()

fun receiver(ch) { var (i, ch') = receive(ch); close(ch'); printInt(i) }

Fork the receiver and pass the dual channel to the sender.

links> { var ch = fork(receiver); sender(ch) };

42
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Linear types in LINKS are sound ?

Linear channels cannot be used twice.
links> { var ch = fork(receiver); sender(ch); sender(ch); };

Type error: Variable ch has linear type `!Int.End'

but is used 2 times.

Unlimited functions cannot capture linear channels.
links> { var ch = fork(receiver);

var f = fun(){ sender(ch) }; f(); f() };

Type error: Variable ch of linear type `!Int.End'

is used in a non-linear function literal.

Linear functions cannot be used twice.
links> { var ch = fork(receiver);

var f = linfun(){ sender(ch) }; f(); f() };

Type error: Variable f has linear type `() -@ ()'

but is used 2 times.
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No, well-typed programs in LINKS can go wrong ! 12

We can use the same channel twice by multi-shot handlers.

links> handle

({ var ch = fork(receiver); var _ = do Choose; sender(ch) })

{ case <Choose => r> -> r(true); r(false) }

***: Internal Error in evalir.ml (Please report as a bug): NotFound

chan_3 (in Hashtbl.find) while interpreting.

We fix this by extending the linear type system and effect system to track
control flow linearity, in addition to value linearity.

1https://github.com/links-lang/links/issues/544
2Emrich and Hillerström, “Broken Links (Presentation)”, 2020.
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Value Linearity in F◦eff

Value linearity restricts the use of values.

Value linearity characterises whether values contain linear resources.

F◦eff tracks the value linearity with kinds.

Int : Type•

File : Type◦

(File, Int) : Type◦

𝐴→◦ 𝐶 : Type◦

Functions are annotated with their value linearity.

𝜆• 𝑓 . (𝜆◦𝑠 . let 𝑓 ′ ← write (𝑠, 𝑓 ) in close 𝑓 ′) : File→• (String→◦ ())

It is always safe to use unlimited values just once. We have the subkinding
relation ⊢ Type• ≤ Type◦.
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Multi-shot handlers abuse linear resources

We get the same problem as LINKS if we only track value linearity in the
presence of multi-shot handlers.

dubiousWrite7 : File→• () ! {Choose : () ↠ Bool}
dubiousWrite7 = 𝜆• 𝑓 .

let 𝑏 ← (do Choose ()) {Choose:( )↠Bool} in
let 𝑠 ← if 𝑏 then "A" else "B" in
let 𝑓 ′ ← write (𝑠, 𝑓 ) in close 𝑓 ′

}
continuation of Choose

let 𝑓 ← open "C.txt" in
handle (dubiousWrite7 𝑓 ) with {Choose _ 𝑟 ↦→ 𝑟 true ; 𝑟 false}
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Control Flow Linearity in F◦eff

Ctrl flow linearity restricts how many times control may enter a local context.

Ctrl flow linearity characterises whether a local context captures linear
resources.

The continuation (context) of Choose is control flow linear.

dubiousWrite7 : File→• () ! {Choose : () ↠ Bool}
dubiousWrite7 = 𝜆• 𝑓 .

let 𝑏 ← (do Choose ()) {Choose:( )↠Bool} in
let 𝑠 ← if 𝑏 then "A" else "B" in
let 𝑓 ′ ← write (𝑠, 𝑓 ) in close 𝑓 ′

}
continuation of Choose
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Control Flow Linearity in F◦eff

F◦eff tracks the control flow linearity at the granularity of operations
(Choose : () ↠𝑌 Bool), which represents the control flow linearity of their
continuations.

Let-bindings (let𝑌 𝑥 ← 𝑀 in 𝑁 ) are annotated with the control flow linearity
of the local context (i.e., let𝑌 𝑥 ← _ in 𝑁 ).

dubiousWrite3 : File→• () ! {Choose : () ↠◦ Bool}
dubiousWrite3 = 𝜆• 𝑓 .

let◦𝑏 ← (do Choose ()) {Choose:( )↠◦Bool} in
let◦𝑠 ← if 𝑏 then "A" else "B" in
let• 𝑓 ′ ← write (𝑠, 𝑓 ) in close 𝑓 ′

}
continuation of Choose

let 𝑓 ← open "C.txt" in
handle (dubiousWrite3 𝑓 ) with {Choose _ 𝑟 ↦→ 𝑟 true ; 𝑟 false}

Ill-typed!
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Linear effect rows can be used as unlimited ones

F◦eff lifts the control flow linearity of operations to effect rows.

(Choose : () ↠◦ Bool) : Row◦

(Choose : () ↠• Bool) : Row•

(L1 : ◦ ; L2 : ◦ ; L3 : •) : Row•

It is always safe to use control-flow-linear operations in an unlimited context.
We have the subkinding relation ⊢ Row◦ ≤ Row•. For instance,

tossCoin : ∀𝜇Row• .(() →• Bool ! {𝜇}) →• String ! {𝜇}
tossCoin = Λ𝜇Row

•
.𝜆•𝑔. let• 𝑏 ← 𝑔 () in if 𝑏 then "heads" else "tails"

Control flow linearity is dual to value linearity!
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Control Flow Linearity in LINKS

The original LINKS does not track control flow linearity.
links> fun(ch:End) {do L; close(ch)};

fun : forall (𝜌::Row) . (End) {L:() => () | 𝜌}~> ()

We use xlin to claim that the current context is control flow linear, and lindo

to invoke linear operations.
links> fun(ch:End) {xlin; lindo L; close(ch)};

fun : forall (𝜌::Row(Lin)) . () {L:() =@ () | 𝜌}~> ()

Linear operations can only be handled by linear handlers.
links> fun(ch:End) {

handle ({ xlin; lindo L; close(ch) }) { case <L =@ r> -> xlin; r(()) }

}

fun : forall (𝜃:Presence(Lin)) (row:Row(Lin)) . (End) {L{𝜃} | 𝜌}~> ()
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xlin is a modality ?

xlin creates a linear scope.

□𝐴: A linear type 𝐴

□ℓ : A control-flow-linear operation ℓ

□(𝐴 ! {ℓ1 ; ℓ2}) = □𝐴 !□{ℓ1 ; ℓ2} = □𝐴 ! {□ℓ1 ;□ℓ2}

T-BOX
Γ," ⊢ 𝑉 : 𝐴

Γ ⊢ box 𝑉 : □𝐴

T-UNBOX
Γ ⊢ 𝑉 : □𝐴

Γ,", Γ′ ⊢ unbox𝑉 : 𝐴

T-VAR

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

T-BOXC
Γ," ⊢ 𝑀 : 𝐴 !𝐸

Γ ⊢ box 𝑀 : □𝐴 !□𝐸

The handler rule guarantees that □ℓ is handled by resuming exactly once.
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Problems with Subkinding-based Linear Types

Linear types in F◦eff (and LINKS) can be annoying.

verboseId : ∀𝜇Row𝑌1 𝛼Type𝑌2 . 𝛼 →𝑌0 𝛼 ! {Print : String↠𝑌3 () ; 𝜇}
verboseId = Λ𝜇Row

𝑌1 𝛼Type𝑌2 . 𝜆𝑌0𝑥 . let𝑌4 () ← do Print "idiscalled" in 𝑥

We have ten different types for verboseId, none of which is the most general.

∀𝜇• 𝛼• .𝛼 →• 𝛼 ! {Print : • ; 𝜇}
∀𝜇• 𝛼• .𝛼 →• 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →• 𝛼 ! {Print : • ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →• 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼◦ .𝛼 →• 𝛼 ! {Print : ◦ ; 𝜇}

∀𝜇• 𝛼• .𝛼 →◦ 𝛼 ! {Print : • ; 𝜇}
∀𝜇• 𝛼• .𝛼 →◦ 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →◦ 𝛼 ! {Print : • ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →◦ 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼◦ .𝛼 →◦ 𝛼 ! {Print : ◦ ; 𝜇}
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Qualified Linear Types in Q◦eff

We can restore principal types by abstracting over linearity and introducing
constraints on linearity.

verboseId : ∀𝛼 𝜇 𝜙 𝜙 ′ . (𝛼 ⪯ 𝜙) ⇒ 𝛼 →𝜙 ′ 𝛼 ! {Print : 𝜙 ; 𝜇}
verboseId = 𝜆𝑥 . do Print "42" ; 𝑥
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Problems with Row-based Effect Types

Effect row types of sequenced computations must be unified.

sandwichClose : (() →• () ! {𝑅1}, File, () →• () ! {𝑅2}) →• () ! {𝑅}
sandwichClose = 𝜆• (𝑔, 𝑓 , ℎ). let◦ () ← 𝑔 () in let• () ← close 𝑓 in ℎ ()

We can only have 𝑅1 = 𝑅2 = 𝑅, which overly restricts that operations invoked
in ℎ must be control flow linear.
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Qualified Effect Types in Q◦eff

We support row subtyping again by qualified types.

sandwichClose : ∀𝜇1 𝜇2 𝜇.(𝜇1 ⩽ 𝜇, 𝜇2 ⩽ 𝜇, File ⪯ 𝜇1)
⇒ (() →• () ! {𝜇1}, File, () →• () ! {𝜇2}) →• () ! {𝜇}

sandwichClose = 𝜆• (𝑔, 𝑓 , ℎ). let () ← 𝑔 () in let () ← close 𝑓 in ℎ ()

Qualified types is expressive. Q◦eff has a full type inference with constraint
solving which does not require any type or linearity annotations.

Interesting interaction between row constraints and linearity constraints:
𝜇1 ⩽ 𝜇2 and ◦ ⪯ 𝜇2 implies ◦ ⪯ 𝜇1.

But having explicit constraint sets in types is still a pain?
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Algebraic Subtyping for Linear Types and Effect Types

Use algebraic subtyping.

Algebraic subtyping for row types is standard. Informally,

Γ ⊢ 𝑀 : 𝐴 !𝑅1 𝑁 : 𝐵 !𝑅2

Γ ⊢ 𝑀 ;𝑁 : 𝐵 !𝑅1 ⊔ 𝑅2

Algebraic subtyping for linear types is more interesting. Informally,

𝜆𝑥.𝜆𝑦.𝜆𝑧.(𝑥,𝑦, 𝑧) : 𝛼 → 𝛽 →𝛼 𝛾 →𝛼∨𝛽 (𝛼, 𝛽,𝛾)
𝜆𝑥.(𝑥, 𝑥) : 𝛼 ∧ • → (𝛼, 𝛼)

It is easy to extend it with control flow linearity. Informally,

verboseId : 𝛼 → 𝛼 ! {Print : 𝜙 ∨ 𝛼 ; 𝜇}
verboseId = 𝜆𝑥 . do Print "idiscalled" ;𝑥
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Conclusion

▶ Track control flow linearity when combining linear types with effect
handlers.

▶ Row subtyping is necessary to have a more fine-grained tracking of
control flow linearity.
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Thank you!

17


