
Soundly Handling Linearity

Wenhao Tang
The University of Edinburgh

Seminar, University of Bristol, 3rd Oct 2023

(Joint work with Daniel Hillerström, Sam Lindley, and J. Garrett Morris)

Links

Picture by Simon Fowler

1

Linear Types in LINKS

Linear types statically guarantee linear resources are used exactly once.

LINKS uses linear types for session types:

- !A.S : send a value of type A, then continue as S

- ?A.S : receive a value of type A, then continue as S

- End : no communication

Primitive operations on session-typed channels:

send : forall (a::Any) (b::Session) . (a, !a.b) -> b

receive : forall (a::Any) (b::Session) . (?a.b) -> (a, b)

fork : forall (b::Session) . (b -> ()) -> ~b

close : End -> ()

2

Linear Types in LINKS

Linear types statically guarantee linear resources are used exactly once.

LINKS uses linear types for session types:

- !A.S : send a value of type A, then continue as S

- ?A.S : receive a value of type A, then continue as S

- End : no communication

Primitive operations on session-typed channels:

send : forall (a::Any) (b::Session) . (a, !a.b) -> b

receive : forall (a::Any) (b::Session) . (?a.b) -> (a, b)

fork : forall (b::Session) . (b -> ()) -> ~b

close : End -> ()

2

Linear Types in LINKS

Linear types statically guarantee linear resources are used exactly once.

LINKS uses linear types for session types:

- !A.S : send a value of type A, then continue as S

- ?A.S : receive a value of type A, then continue as S

- End : no communication

Primitive operations on session-typed channels:

send : forall (a::Any) (b::Session) . (a, !a.b) -> b

receive : forall (a::Any) (b::Session) . (?a.b) -> (a, b)

fork : forall (b::Session) . (b -> ()) -> ~b

close : End -> ()

2

Linear Types in LINKS

A sender sends an integer.

sig sender : (!Int.End) ~> ()

fun sender(c) { var c' = send(42, c); close(c') }

A receiver receives the integer and prints it.

sig receiver : (?Int.End) ~> ()

fun receiver(c) { var (i, c') = receive(c); close(c'); printInt(i) }

Fork the receiver and pass the dual channel to the sender.

links> { var c = fork(receiver); sender(c) };

42

3

Linear Types in LINKS

A sender sends an integer.

sig sender : (!Int.End) ~> ()

fun sender(c) { var c' = send(42, c); close(c') }

A receiver receives the integer and prints it.

sig receiver : (?Int.End) ~> ()

fun receiver(c) { var (i, c') = receive(c); close(c'); printInt(i) }

Fork the receiver and pass the dual channel to the sender.

links> { var c = fork(receiver); sender(c) };

42

3

Linear Types in LINKS

A sender sends an integer.

sig sender : (!Int.End) ~> ()

fun sender(c) { var c' = send(42, c); close(c') }

A receiver receives the integer and prints it.

sig receiver : (?Int.End) ~> ()

fun receiver(c) { var (i, c') = receive(c); close(c'); printInt(i) }

Fork the receiver and pass the dual channel to the sender.

links> { var c = fork(receiver); sender(c) };

42

3

Linear types in LINKS are sound

Linear channels cannot be used twice.
links> { var c = fork(receiver); sender(c); sender(c); };

Type error: Variable ch has linear type `!Int.End' but is used 2 times.

Unlimited functions cannot capture linear channels.
links> { var c = fork(receiver);

var f = fun(){ sender(c) }; f(); f() };

Type error: Variable ch of linear type `!Int.End'

is used in a non-linear function literal.

Linear functions cannot be used twice.
links> { var c = fork(receiver);

var f = linfun(){ sender(c) }; f(); f() };

Type error: Variable f has linear type `() -@ ()' but is used 2 times.

4

Linear types in LINKS are sound

Linear channels cannot be used twice.
links> { var c = fork(receiver); sender(c); sender(c); };

Type error: Variable ch has linear type `!Int.End' but is used 2 times.

Unlimited functions cannot capture linear channels.
links> { var c = fork(receiver);

var f = fun(){ sender(c) }; f(); f() };

Type error: Variable ch of linear type `!Int.End'

is used in a non-linear function literal.

Linear functions cannot be used twice.
links> { var c = fork(receiver);

var f = linfun(){ sender(c) }; f(); f() };

Type error: Variable f has linear type `() -@ ()' but is used 2 times.

4

Linear types in LINKS are sound

Linear channels cannot be used twice.
links> { var c = fork(receiver); sender(c); sender(c); };

Type error: Variable ch has linear type `!Int.End' but is used 2 times.

Unlimited functions cannot capture linear channels.
links> { var c = fork(receiver);

var f = fun(){ sender(c) }; f(); f() };

Type error: Variable ch of linear type `!Int.End'

is used in a non-linear function literal.

Linear functions cannot be used twice.
links> { var c = fork(receiver);

var f = linfun(){ sender(c) }; f(); f() };

Type error: Variable f has linear type `() -@ ()' but is used 2 times.

4

Effect Handlers in LINKS

Effect handlers provide advanced mechanisms for manipulating control flow.

Invoke an operation Choose.
sig choose : () { Choose: () => Bool | _ }~> ()

fun choose() { var i = if (do Choose) 42 else 84; printInt(i) }

Handle by invoking the continuation once.
links> handle (choose())

{ case <Choose => r> -> r(true) }

42

Handle by invoking the continuation twice.
links> handle (choose())

{ case <Choose => r> -> r(true); r(false) }

4284

5

Effect Handlers in LINKS

Effect handlers provide advanced mechanisms for manipulating control flow.

Invoke an operation Choose.
sig choose : () { Choose: () => Bool | _ }~> ()

fun choose() { var i = if (do Choose) 42 else 84; printInt(i) }

Handle by invoking the continuation once.
links> handle (choose())

{ case <Choose => r> -> r(true) }

42

Handle by invoking the continuation twice.
links> handle (choose())

{ case <Choose => r> -> r(true); r(false) }

4284

5

Effect Handlers in LINKS

Effect handlers provide advanced mechanisms for manipulating control flow.

Invoke an operation Choose.
sig choose : () { Choose: () => Bool | _ }~> ()

fun choose() { var i = if (do Choose) 42 else 84; printInt(i) }

Handle by invoking the continuation once.
links> handle (choose())

{ case <Choose => r> -> r(true) }

42

Handle by invoking the continuation twice.
links> handle (choose())

{ case <Choose => r> -> r(true); r(false) }

4284

5

Effect Handlers in LINKS

Effect handlers provide advanced mechanisms for manipulating control flow.

Invoke an operation Choose.
sig choose : () { Choose: () => Bool | _ }~> ()

fun choose() { var i = if (do Choose) 42 else 84; printInt(i) }

Handle by invoking the continuation once.
links> handle (choose())

{ case <Choose => r> -> r(true) }

42

Handle by invoking the continuation twice.
links> handle (choose())

{ case <Choose => r> -> r(true); r(false) }

4284

5

Well-typed programs in LINKS can go wrong ! 12

A nondeterministic sender sends an integer using the Choose operation.

sig ndsender : forall r::Row . (!Int.End) { Choose: () => Bool | r}~> ()

fun ndsender(c) {var c' = send(if (do Choose) 42 else 84, c); close(c')}

Use the same channel twice by multi-shot handlers.

links> handle ({ var c = fork(receiver); ndsender(c) })

{ case <Choose => r> -> r(true); r(false) };

42***: Internal Error in evalir.ml (Please report as a bug):

NotFound chan_3 (in Hashtbl.find) while interpreting.

Our solution: track control-flow linearity in addition to value linearity.

1https://github.com/links-lang/links/issues/544
2Emrich and Hillerström, “Broken Links (Presentation)”, 2020.

6

Well-typed programs in LINKS can go wrong ! 12

A nondeterministic sender sends an integer using the Choose operation.

sig ndsender : forall r::Row . (!Int.End) { Choose: () => Bool | r}~> ()

fun ndsender(c) {var c' = send(if (do Choose) 42 else 84, c); close(c')}

Use the same channel twice by multi-shot handlers.

links> handle ({ var c = fork(receiver); ndsender(c) })

{ case <Choose => r> -> r(true); r(false) };

42***: Internal Error in evalir.ml (Please report as a bug):

NotFound chan_3 (in Hashtbl.find) while interpreting.

Our solution: track control-flow linearity in addition to value linearity.

1https://github.com/links-lang/links/issues/544
2Emrich and Hillerström, “Broken Links (Presentation)”, 2020.

6

Well-typed programs in LINKS can go wrong ! 12

A nondeterministic sender sends an integer using the Choose operation.

sig ndsender : forall r::Row . (!Int.End) { Choose: () => Bool | r}~> ()

fun ndsender(c) {var c' = send(if (do Choose) 42 else 84, c); close(c')}

Use the same channel twice by multi-shot handlers.

links> handle ({ var c = fork(receiver); ndsender(c) })

{ case <Choose => r> -> r(true); r(false) };

42***: Internal Error in evalir.ml (Please report as a bug):

NotFound chan_3 (in Hashtbl.find) while interpreting.

Our solution: track control-flow linearity in addition to value linearity.
1https://github.com/links-lang/links/issues/544
2Emrich and Hillerström, “Broken Links (Presentation)”, 2020.

6

Value Linearity in F◦eff

Value linearity restricts the use of values.

Value linearity characterises whether values contain linear resources.

F◦eff tracks the value linearity with kinds.

Int : Type•

File : Type◦

(File, Int) : Type◦

𝐴→◦ 𝐶 : Type◦

Functions are annotated with their value linearity.

faithfulWrite : File→• (String→◦ ())
faithfulWrite = 𝜆• 𝑓 .(𝜆◦𝑠 .let 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′)

7

Value Linearity in F◦eff

Value linearity restricts the use of values.

Value linearity characterises whether values contain linear resources.

F◦eff tracks the value linearity with kinds.

Int : Type•

File : Type◦

(File, Int) : Type◦

𝐴→◦ 𝐶 : Type◦

Functions are annotated with their value linearity.

faithfulWrite : File→• (String→◦ ())
faithfulWrite = 𝜆• 𝑓 .(𝜆◦𝑠 .let 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′)

7

Value Linearity in F◦eff

Value linearity restricts the use of values.

Value linearity characterises whether values contain linear resources.

F◦eff tracks the value linearity with kinds.

Int : Type•

File : Type◦

(File, Int) : Type◦

𝐴→◦ 𝐶 : Type◦

Functions are annotated with their value linearity.

faithfulWrite : File→• (String→◦ ())
faithfulWrite = 𝜆• 𝑓 .(𝜆◦𝑠 .let 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′)

7

Unlimited values can be used as linear values

It is always safe to use unlimited values just once.

id : 𝛼Type◦ . 𝛼 →• 𝛼 ! {}
id = 𝛼Type◦ . 𝜆•𝑥 . 𝑥

With the subkinding relation ⊢ Type• ≤ Type◦, we can instantiate 𝛼 to Int.

id File : File→• File ! {}
id Int : Int→• Int ! {}

8

Multi-shot handlers abuse linear resources

We encounter the same problem as LINKS if we only track value linearity in
the presence of multi-shot handlers.

dubiousWrite7 : File→• () ! {Choose : () ↠ Bool}
dubiousWrite7 = 𝜆• 𝑓 .

let 𝑏 ← (do Choose ()) {Choose:()↠Bool} in
let 𝑠 ← if 𝑏 then "A" else "B" in
let 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′

}
continuation of Choose

let 𝑓 ← open "C.txt" in
handle (dubiousWrite7 𝑓) with {Choose _ 𝑟 ↦→ 𝑟 true ; 𝑟 false}

9

Control-Flow Linearity in F◦eff

CFL restricts how many times control may enter a local context.

CFL characterises whether a local context captures linear resources.

The continuation (context) of Choose is control-flow linear.

dubiousWrite7 : File→• () ! {Choose : () ↠ Bool}
dubiousWrite7 = 𝜆• 𝑓 .

let 𝑏 ← (do Choose ()) {Choose:()↠Bool} in
let 𝑠 ← if 𝑏 then "A" else "B" in
let 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′

}
continuation of Choose

10

Control-Flow Linearity in F◦eff

CFL restricts how many times control may enter a local context.

CFL characterises whether a local context captures linear resources.

The continuation (context) of Choose is control-flow linear.

dubiousWrite7 : File→• () ! {Choose : () ↠ Bool}
dubiousWrite7 = 𝜆• 𝑓 .

let 𝑏 ← (do Choose ()) {Choose:()↠Bool} in
let 𝑠 ← if 𝑏 then "A" else "B" in
let 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′

}
continuation of Choose

10

Control-Flow Linearity in F◦eff

Linearity 𝑌 ::= ◦ | •

F◦eff tracks CFL at the granularity of operations (Choose : () ↠
𝑌 Bool), which

represents the CFL of their continuations.

Let-bindings (let𝑌 𝑥 ← 𝑀 in 𝑁) are annotated with the CFL of the local
context of 𝑀 (i.e., let𝑌 𝑥 ← _ in 𝑁).

dubiousWrite3 : File→• () ! {Choose : () ↠◦ Bool}
dubiousWrite3 = 𝜆• 𝑓 .

let◦𝑏 ← (do Choose ()) {Choose:()↠◦Bool} in
let◦𝑠 ← if 𝑏 then "A" else "B" in
let• 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′

}
continuation of Choose

let 𝑓 ← open "C.txt" in
handle (dubiousWrite3 𝑓) with {Choose _ 𝑟 ↦→ 𝑟 true ; 𝑟 false}

Ill-typed as 𝑟 is given a linear function type!

11

Control-Flow Linearity in F◦eff

Linearity 𝑌 ::= ◦ | •

F◦eff tracks CFL at the granularity of operations (Choose : () ↠
𝑌 Bool), which

represents the CFL of their continuations.

Let-bindings (let𝑌 𝑥 ← 𝑀 in 𝑁) are annotated with the CFL of the local
context of 𝑀 (i.e., let𝑌 𝑥 ← _ in 𝑁).

dubiousWrite3 : File→• () ! {Choose : () ↠◦ Bool}
dubiousWrite3 = 𝜆• 𝑓 .

let◦𝑏 ← (do Choose ()) {Choose:()↠◦Bool} in
let◦𝑠 ← if 𝑏 then "A" else "B" in
let• 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′

}
continuation of Choose

let 𝑓 ← open "C.txt" in
handle (dubiousWrite3 𝑓) with {Choose _ 𝑟 ↦→ 𝑟 true ; 𝑟 false}

Ill-typed as 𝑟 is given a linear function type!

11

Control-Flow Linearity in F◦eff

Linearity 𝑌 ::= ◦ | •

F◦eff tracks CFL at the granularity of operations (Choose : () ↠
𝑌 Bool), which

represents the CFL of their continuations.

Let-bindings (let𝑌 𝑥 ← 𝑀 in 𝑁) are annotated with the CFL of the local
context of 𝑀 (i.e., let𝑌 𝑥 ← _ in 𝑁).

dubiousWrite3 : File→• () ! {Choose : () ↠◦ Bool}
dubiousWrite3 = 𝜆• 𝑓 .

let◦𝑏 ← (do Choose ()) {Choose:()↠◦Bool} in
let◦𝑠 ← if 𝑏 then "A" else "B" in
let• 𝑓 ′ ← write (𝑠, 𝑓) in close 𝑓 ′

}
continuation of Choose

let 𝑓 ← open "C.txt" in
handle (dubiousWrite3 𝑓) with {Choose _ 𝑟 ↦→ 𝑟 true ; 𝑟 false}

Ill-typed as 𝑟 is given a linear function type! 11

Linear effect rows can be used as unlimited ones

F◦eff lifts the control-flow linearity of operations to effect rows.

(Choose : () ↠◦ Bool) : Row◦

(Choose : () ↠• Bool) : Row•

(L1 : ◦ ; L2 : ◦ ; L3 : •) : Row•

It is always safe to use control-flow-linear operations in an unlimited context.

tossCoin : ∀𝜇Row• .(() →• Bool ! {𝜇}) →• String ! {𝜇}
tossCoin = Λ𝜇Row

•
.𝜆•𝑔. let• 𝑏 ← 𝑔 () in if 𝑏 then "heads" else "tails"

With the subkinding relation ⊢ Row◦ ≤ Row•, we have

tossCoin {Choose : •} (𝜆• () .(do Choose ()) {Choose:•})
tossCoin {Choose : ◦} (𝜆• () .(do Choose ()) {Choose:◦})

Control flow linearity is “dual” to value linearity!

12

Linear effect rows can be used as unlimited ones

F◦eff lifts the control-flow linearity of operations to effect rows.

(Choose : () ↠◦ Bool) : Row◦

(Choose : () ↠• Bool) : Row•

(L1 : ◦ ; L2 : ◦ ; L3 : •) : Row•

It is always safe to use control-flow-linear operations in an unlimited context.

tossCoin : ∀𝜇Row• .(() →• Bool ! {𝜇}) →• String ! {𝜇}
tossCoin = Λ𝜇Row

•
.𝜆•𝑔. let• 𝑏 ← 𝑔 () in if 𝑏 then "heads" else "tails"

With the subkinding relation ⊢ Row◦ ≤ Row•, we have

tossCoin {Choose : •} (𝜆• () .(do Choose ()) {Choose:•})
tossCoin {Choose : ◦} (𝜆• () .(do Choose ()) {Choose:◦})

Control flow linearity is “dual” to value linearity!

12

Control-Flow Linearity in LINKS

Previously, LINKS does not track control-flow linearity.
links> fun(ch:End) {do L; close(ch)};

fun : (End) {L:() => () | _}~> ()

By default, CFL is unlimited. We use the keyword xlin to switch CFL to linear,
and lindo to invoke control-flow-linear operations.
links> fun(ch:End) {xlin; lindo L; close(ch)};

fun : () {L:() =@ () | _::Lin}~> ()

Control-flow-linear operations can only be handled by one-shot handlers.
links> fun(ch:End) { handle ({xlin; lindo L; close(ch)})

{case <L =@ r> -> xlin; r(())} };

fun : (End) {L{_::Lin}|_::Lin}~> ()

13

Control-Flow Linearity in LINKS

Previously, LINKS does not track control-flow linearity.
links> fun(ch:End) {do L; close(ch)};

fun : (End) {L:() => () | _}~> ()

By default, CFL is unlimited. We use the keyword xlin to switch CFL to linear,
and lindo to invoke control-flow-linear operations.

links> fun(ch:End) {xlin; lindo L; close(ch)};

fun : () {L:() =@ () | _::Lin}~> ()

Control-flow-linear operations can only be handled by one-shot handlers.
links> fun(ch:End) { handle ({xlin; lindo L; close(ch)})

{case <L =@ r> -> xlin; r(())} };

fun : (End) {L{_::Lin}|_::Lin}~> ()

13

Control-Flow Linearity in LINKS

Previously, LINKS does not track control-flow linearity.
links> fun(ch:End) {do L; close(ch)};

fun : (End) {L:() => () | _}~> ()

By default, CFL is unlimited. We use the keyword xlin to switch CFL to linear,
and lindo to invoke control-flow-linear operations.

links> fun(ch:End) {xlin; lindo L; close(ch)};

fun : () {L:() =@ () | _::Lin}~> ()

Control-flow-linear operations can only be handled by one-shot handlers.
links> fun(ch:End) { handle ({xlin; lindo L; close(ch)})

{case <L =@ r> -> xlin; r(())} };

fun : (End) {L{_::Lin}|_::Lin}~> ()

13

Nondeterministic sender, again

sig receiver : (?Int.End) { |_::Lin}~> ()

fun receiver(c) { xlin; var (i, c') = receive(c); close(c'); printInt(i) }

sig ndsender : (!Int.End) {Choose: () => Bool | _::Lin}~> ()

fun ndsender(c) {xlin; close(send(if (lindo Choose) 42 else 84, c))}

links> handle ({ xlin; var c = fork(receiver); ndsender(c) })

{ case <Choose => r> -> r(true); r(false) };

Type error: ... =@ does not match => ...

links> handle ({ xlin; var c = fork(receiver); ndsender(c) })

{ case <Choose =@ r> -> r(true); r(false) };

Type error: ... linear function r is used 2 times ...

links> handle ({ xlin; var c = fork(receiver); ndsender(c) })

{ case <Choose =@ r> -> r(true) };

42

14

Nondeterministic sender, again

sig receiver : (?Int.End) { |_::Lin}~> ()

fun receiver(c) { xlin; var (i, c') = receive(c); close(c'); printInt(i) }

sig ndsender : (!Int.End) {Choose: () => Bool | _::Lin}~> ()

fun ndsender(c) {xlin; close(send(if (lindo Choose) 42 else 84, c))}

links> handle ({ xlin; var c = fork(receiver); ndsender(c) })

{ case <Choose => r> -> r(true); r(false) };

Type error: ... =@ does not match => ...

links> handle ({ xlin; var c = fork(receiver); ndsender(c) })

{ case <Choose =@ r> -> r(true); r(false) };

Type error: ... linear function r is used 2 times ...

links> handle ({ xlin; var c = fork(receiver); ndsender(c) })

{ case <Choose =@ r> -> r(true) };

42 14

Implementation Details

LINKS also adapts a Row-based effect system. Effect types of sequenced
computations are unified. For instance,

f(42); g(); h("Hello, world!")

Informally, we introduce the concept effect scope to mean the maximal scope
where computations have the same effect types. There are only two cases
that new effect scopes are created:

▶ Function bodies (closures) hold their own effect scopes.
▶ Computations being handled (the M in handle M {...}) have their own
effect scopes, but also share unhandled effects with outside.

xlin requires all operations in the current effect scope to be linear.

15

Implementation Details

LINKS also adapts a Row-based effect system. Effect types of sequenced
computations are unified. For instance,

f(42); g(); h("Hello, world!")

Informally, we introduce the concept effect scope to mean the maximal scope
where computations have the same effect types. There are only two cases
that new effect scopes are created:

▶ Function bodies (closures) hold their own effect scopes.
▶ Computations being handled (the M in handle M {...}) have their own
effect scopes, but also share unhandled effects with outside.

xlin requires all operations in the current effect scope to be linear.

15

Implementation Details

LINKS also adapts a Row-based effect system. Effect types of sequenced
computations are unified. For instance,

f(42); g(); h("Hello, world!")

Informally, we introduce the concept effect scope to mean the maximal scope
where computations have the same effect types. There are only two cases
that new effect scopes are created:

▶ Function bodies (closures) hold their own effect scopes.
▶ Computations being handled (the M in handle M {...}) have their own
effect scopes, but also share unhandled effects with outside.

xlin requires all operations in the current effect scope to be linear.

15

(Bonus) xlin is a modality ?

Intuition: xlin creates a linear scope.

Typing rules for the Fitch-style modal lambda calculus 𝜆IK:

" ∉ Γ′

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

Γ," ⊢ 𝑀 : 𝐴

Γ ⊢ box𝑀 : □𝐴

Γ ⊢ 𝑀 : □𝐴 " ∉ Γ′

Γ,", Γ′ ⊢ unbox𝑀 : 𝐴

16

(Bonus) xlin is a modality ?

Intuition: xlin creates a linear scope.

Typing rules for the Fitch-style modal lambda calculus 𝜆IK:

" ∉ Γ′

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

Γ," ⊢ 𝑀 : 𝐴

Γ ⊢ box𝑀 : □𝐴

Γ ⊢ 𝑀 : □𝐴 " ∉ Γ′

Γ,", Γ′ ⊢ unbox𝑀 : 𝐴

16

(Bonus) xlin is a modality ?

TLDR: No, it isn’t.

□𝐴: a linear type 𝐴

If we only consider where linear variables can be used

T-VAR
" ∉ Γ′

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

T-BOX(CT)
Γ, ["] ⊢ 𝑉 : 𝐴

Γ ⊢ box 𝑉 : □𝐴

T-UNBOX(4)
Γ ⊢ 𝑉 : □𝐴

Γ,", Γ′ ⊢ unbox𝑉 : 𝐴

However, it doesn’t work well for operations :(

The main problem is that closures should create new scopes.

17

(Bonus) xlin is a modality ?

TLDR: No, it isn’t.

□𝐴: a linear type 𝐴

If we only consider where linear variables can be used

T-VAR
" ∉ Γ′

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

T-BOX(CT)
Γ, ["] ⊢ 𝑉 : 𝐴

Γ ⊢ box 𝑉 : □𝐴

T-UNBOX(4)
Γ ⊢ 𝑉 : □𝐴

Γ,", Γ′ ⊢ unbox𝑉 : 𝐴

However, it doesn’t work well for operations :(

The main problem is that closures should create new scopes.

17

(Bonus) xlin is a modality ?

TLDR: No, it isn’t.

□𝐴: a linear type 𝐴

If we only consider where linear variables can be used

T-VAR
" ∉ Γ′

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

T-BOX(CT)
Γ, ["] ⊢ 𝑉 : 𝐴

Γ ⊢ box 𝑉 : □𝐴

T-UNBOX(4)
Γ ⊢ 𝑉 : □𝐴

Γ,", Γ′ ⊢ unbox𝑉 : 𝐴

However, it doesn’t work well for operations :(

The main problem is that closures should create new scopes.

17

(Bonus) xlin is a modality ?

TLDR: No, it isn’t.

□𝐴: a linear type 𝐴

If we only consider where linear variables can be used

T-VAR
" ∉ Γ′

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

T-BOX(CT)
Γ, ["] ⊢ 𝑉 : 𝐴

Γ ⊢ box 𝑉 : □𝐴

T-UNBOX(4)
Γ ⊢ 𝑉 : □𝐴

Γ,", Γ′ ⊢ unbox𝑉 : 𝐴

However, it doesn’t work well for operations :(

The main problem is that closures should create new scopes.

17

(Bonus) CFL with modalities

We may still formalise xlin with modalities.

Consider CBPV. Value linearity is a property of values, while CFL is a property
of computations (effects). □𝐴 and □𝐸 for unlimited values and effects.

" ∉ Γ′

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

Γ," ⊢ 𝑉 : 𝐴

Γ ⊢ box𝑉 : □𝐴

Γ ⊢ 𝑉 : □𝐴

Γ, Γ′ ⊢ unbox𝑉 : 𝐴

Γ ⊢ 𝑀 : 𝐶 ⊣ 𝐸
Γ ⊢ thunk𝑀 :↓𝐸𝐶

Γ ⊢ 𝑉 :↓𝐸𝐶
Γ ⊢ force𝑉 : 𝐶 ⊣ 𝐸

Γ ⊢ 𝑀 : 𝐶 ⊣ □𝐸 " ∉ Γ′

Γ,", Γ′ ⊢ unbox𝑀 : 𝐶 ⊣ 𝐸

Γ ⊢ 𝑀 :↑𝐴 ⊣ 𝐸1 Γ,", 𝑥 : 𝐴 ⊢ 𝑁 : 𝐶 ⊣ 𝐸2
Γ ⊢ let box 𝑥 ← 𝑀 in 𝑁 : 𝐶 ⊣ (□𝐸1) ∪ 𝐸2

Γ ⊢ 𝑀 :↑𝐴 ⊣ 𝐸1 Γ, 𝑥 : 𝐴 ⊢ 𝑁 : 𝐶 ⊣ 𝐸2
Γ ⊢ let 𝑥 ← 𝑀 in 𝑁 : 𝐶 ⊣ (lin(𝐸1)) ∪ 𝐸2

18

(Bonus) CFL with modalities

We may still formalise xlin with modalities.

Consider CBPV. Value linearity is a property of values, while CFL is a property
of computations (effects). □𝐴 and □𝐸 for unlimited values and effects.

" ∉ Γ′

Γ, 𝑥 : 𝐴, Γ′ ⊢ 𝑥 : 𝐴

Γ," ⊢ 𝑉 : 𝐴

Γ ⊢ box𝑉 : □𝐴

Γ ⊢ 𝑉 : □𝐴

Γ, Γ′ ⊢ unbox𝑉 : 𝐴

Γ ⊢ 𝑀 : 𝐶 ⊣ 𝐸
Γ ⊢ thunk𝑀 :↓𝐸𝐶

Γ ⊢ 𝑉 :↓𝐸𝐶
Γ ⊢ force𝑉 : 𝐶 ⊣ 𝐸

Γ ⊢ 𝑀 : 𝐶 ⊣ □𝐸 " ∉ Γ′

Γ,", Γ′ ⊢ unbox𝑀 : 𝐶 ⊣ 𝐸

Γ ⊢ 𝑀 :↑𝐴 ⊣ 𝐸1 Γ,", 𝑥 : 𝐴 ⊢ 𝑁 : 𝐶 ⊣ 𝐸2
Γ ⊢ let box 𝑥 ← 𝑀 in 𝑁 : 𝐶 ⊣ (□𝐸1) ∪ 𝐸2

Γ ⊢ 𝑀 :↑𝐴 ⊣ 𝐸1 Γ, 𝑥 : 𝐴 ⊢ 𝑁 : 𝐶 ⊣ 𝐸2
Γ ⊢ let 𝑥 ← 𝑀 in 𝑁 : 𝐶 ⊣ (lin(𝐸1)) ∪ 𝐸2 18

Restriction of Subkinding-based Linear Types

Linear types in F◦eff (and LINKS) can be annoying due to annotations and lack
of principal types.

verboseId : ∀𝜇Row𝑌1 𝛼Type𝑌2 . 𝛼 →𝑌0 𝛼 ! {Print : String↠𝑌3 () ; 𝜇}
verboseId = Λ𝜇Row

𝑌1 𝛼Type𝑌2 . 𝜆𝑌0𝑥 . let𝑌4 () ← do Print "idiscalled" in 𝑥

We have ten different types for verboseId, none of which is the most general.

∀𝜇• 𝛼• .𝛼 →• 𝛼 ! {Print : • ; 𝜇}
∀𝜇• 𝛼• .𝛼 →• 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →• 𝛼 ! {Print : • ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →• 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼◦ .𝛼 →• 𝛼 ! {Print : ◦ ; 𝜇}

∀𝜇• 𝛼• .𝛼 →◦ 𝛼 ! {Print : • ; 𝜇}
∀𝜇• 𝛼• .𝛼 →◦ 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →◦ 𝛼 ! {Print : • ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →◦ 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼◦ .𝛼 →◦ 𝛼 ! {Print : ◦ ; 𝜇}

19

Restriction of Subkinding-based Linear Types

Linear types in F◦eff (and LINKS) can be annoying due to annotations and lack
of principal types.

verboseId : ∀𝜇Row𝑌1 𝛼Type𝑌2 . 𝛼 →𝑌0 𝛼 ! {Print : String↠𝑌3 () ; 𝜇}
verboseId = Λ𝜇Row

𝑌1 𝛼Type𝑌2 . 𝜆𝑌0𝑥 . let𝑌4 () ← do Print "idiscalled" in 𝑥

We have ten different types for verboseId, none of which is the most general.

∀𝜇• 𝛼• .𝛼 →• 𝛼 ! {Print : • ; 𝜇}
∀𝜇• 𝛼• .𝛼 →• 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →• 𝛼 ! {Print : • ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →• 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼◦ .𝛼 →• 𝛼 ! {Print : ◦ ; 𝜇}

∀𝜇• 𝛼• .𝛼 →◦ 𝛼 ! {Print : • ; 𝜇}
∀𝜇• 𝛼• .𝛼 →◦ 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →◦ 𝛼 ! {Print : • ; 𝜇}
∀𝜇◦ 𝛼• .𝛼 →◦ 𝛼 ! {Print : ◦ ; 𝜇}
∀𝜇◦ 𝛼◦ .𝛼 →◦ 𝛼 ! {Print : ◦ ; 𝜇}

19

Qualified Linear Types in Q◦eff

We can restore principal types by abstracting over linearity and introducing
constraints on linearity.

verboseId : ∀𝛼 𝜇 𝜙 𝜙 ′ . (𝛼 ⪯ 𝜙) ⇒ 𝛼 →𝜙 ′ 𝛼 ! {Print : 𝜙 ; 𝜇}
verboseId = 𝜆𝑥 . do Print "42" ; 𝑥

The order of linearity is given by • ⪯ ◦.

𝛼 ⪯ 𝜙 : the linearity of the value type 𝛼 is less than the linearity variable 𝜙

𝛼 ⪯ 𝜇: the linearity of the value type 𝛼 is less than the control-flow linearity
of the row type 𝜇

20

Qualified Linear Types in Q◦eff

We can restore principal types by abstracting over linearity and introducing
constraints on linearity.

verboseId : ∀𝛼 𝜇 𝜙 𝜙 ′ . (𝛼 ⪯ 𝜙) ⇒ 𝛼 →𝜙 ′ 𝛼 ! {Print : 𝜙 ; 𝜇}
verboseId = 𝜆𝑥 . do Print "42" ; 𝑥

The order of linearity is given by • ⪯ ◦.

𝛼 ⪯ 𝜙 : the linearity of the value type 𝛼 is less than the linearity variable 𝜙

𝛼 ⪯ 𝜇: the linearity of the value type 𝛼 is less than the control-flow linearity
of the row type 𝜇

20

Restriction of Row-based Effect Types

Effect row types of sequenced computations must be unified.

sandwichClose : (() →• () ! {𝑅1}, File, () →• () ! {𝑅2}) →• () ! {𝑅}
sandwichClose = 𝜆• (𝑔, 𝑓 , ℎ). let◦ () ← 𝑔 () in let• () ← close 𝑓 in ℎ ()

We can only have 𝑅1 = 𝑅2 = 𝑅, which overly restricts that operations invoked
in ℎ must be control-flow linear.

21

Qualified Effect Types in Q◦eff

We support row subtyping again by qualified types.

sandwichClose : ∀𝜇1 𝜇2 𝜇.(𝜇1 ⩽ 𝜇, 𝜇2 ⩽ 𝜇, File ⪯ 𝜇1)
⇒ (() →• () ! {𝜇1}, File, () →• () ! {𝜇2}) →• () ! {𝜇}

sandwichClose = 𝜆• (𝑔, 𝑓 , ℎ). let () ← 𝑔 () in let () ← close 𝑓 in ℎ ()

𝜇 ⩽ 𝜇′: the row type 𝜇 is a subrow of the row type 𝜇′

Q◦eff has a full type inference which infers principal types and a deterministic
constraint solver. It does not require any type or linearity annotations.

Interesting interaction between row constraints and linearity constraints:
𝜇1 ⩽ 𝜇2 and ◦ ⪯ 𝜇2 implies ◦ ⪯ 𝜇1.

But having explicit constraint sets in types is still a pain?

22

Qualified Effect Types in Q◦eff

We support row subtyping again by qualified types.

sandwichClose : ∀𝜇1 𝜇2 𝜇.(𝜇1 ⩽ 𝜇, 𝜇2 ⩽ 𝜇, File ⪯ 𝜇1)
⇒ (() →• () ! {𝜇1}, File, () →• () ! {𝜇2}) →• () ! {𝜇}

sandwichClose = 𝜆• (𝑔, 𝑓 , ℎ). let () ← 𝑔 () in let () ← close 𝑓 in ℎ ()

𝜇 ⩽ 𝜇′: the row type 𝜇 is a subrow of the row type 𝜇′

Q◦eff has a full type inference which infers principal types and a deterministic
constraint solver. It does not require any type or linearity annotations.

Interesting interaction between row constraints and linearity constraints:
𝜇1 ⩽ 𝜇2 and ◦ ⪯ 𝜇2 implies ◦ ⪯ 𝜇1.

But having explicit constraint sets in types is still a pain?

22

Qualified Effect Types in Q◦eff

We support row subtyping again by qualified types.

sandwichClose : ∀𝜇1 𝜇2 𝜇.(𝜇1 ⩽ 𝜇, 𝜇2 ⩽ 𝜇, File ⪯ 𝜇1)
⇒ (() →• () ! {𝜇1}, File, () →• () ! {𝜇2}) →• () ! {𝜇}

sandwichClose = 𝜆• (𝑔, 𝑓 , ℎ). let () ← 𝑔 () in let () ← close 𝑓 in ℎ ()

𝜇 ⩽ 𝜇′: the row type 𝜇 is a subrow of the row type 𝜇′

Q◦eff has a full type inference which infers principal types and a deterministic
constraint solver. It does not require any type or linearity annotations.

Interesting interaction between row constraints and linearity constraints:
𝜇1 ⩽ 𝜇2 and ◦ ⪯ 𝜇2 implies ◦ ⪯ 𝜇1.

But having explicit constraint sets in types is still a pain?

22

Qualified Effect Types in Q◦eff

We support row subtyping again by qualified types.

sandwichClose : ∀𝜇1 𝜇2 𝜇.(𝜇1 ⩽ 𝜇, 𝜇2 ⩽ 𝜇, File ⪯ 𝜇1)
⇒ (() →• () ! {𝜇1}, File, () →• () ! {𝜇2}) →• () ! {𝜇}

sandwichClose = 𝜆• (𝑔, 𝑓 , ℎ). let () ← 𝑔 () in let () ← close 𝑓 in ℎ ()

𝜇 ⩽ 𝜇′: the row type 𝜇 is a subrow of the row type 𝜇′

Q◦eff has a full type inference which infers principal types and a deterministic
constraint solver. It does not require any type or linearity annotations.

Interesting interaction between row constraints and linearity constraints:
𝜇1 ⩽ 𝜇2 and ◦ ⪯ 𝜇2 implies ◦ ⪯ 𝜇1.

But having explicit constraint sets in types is still a pain?

22

(Bonus) Algebraic Subtyping for Effects

Use algebraic subtyping.

The core idea of algebraic subtyping is to encode subtyping constraints with
union and intersection directly in types. For instance,

∀𝛼 𝛽 𝛾 .(𝛼 ⩽ 𝛾, 𝛽 ⩽ 𝛾) ⇒ (𝛼, 𝛽) → 𝛾

is transformed to
∀𝛼 𝛽.(𝛼, 𝛽) → 𝛼 ⊔ 𝛽

Algebraic subtyping for row types is quite standard. Informally,

Γ ⊢ 𝑀 : 𝐴 !𝑅1 𝑁 : 𝐵 !𝑅2

Γ ⊢ 𝑀 ;𝑁 : 𝐵 !𝑅1 ⊔ 𝑅2

𝑅1 ⊔ 𝑅2: the union of row types 𝑅1 and 𝑅2

23

(Bonus) Algebraic Subtyping for Effects

Use algebraic subtyping.

The core idea of algebraic subtyping is to encode subtyping constraints with
union and intersection directly in types. For instance,

∀𝛼 𝛽 𝛾 .(𝛼 ⩽ 𝛾, 𝛽 ⩽ 𝛾) ⇒ (𝛼, 𝛽) → 𝛾

is transformed to
∀𝛼 𝛽.(𝛼, 𝛽) → 𝛼 ⊔ 𝛽

Algebraic subtyping for row types is quite standard. Informally,

Γ ⊢ 𝑀 : 𝐴 !𝑅1 𝑁 : 𝐵 !𝑅2

Γ ⊢ 𝑀 ;𝑁 : 𝐵 !𝑅1 ⊔ 𝑅2

𝑅1 ⊔ 𝑅2: the union of row types 𝑅1 and 𝑅2

23

(Bonus) Algebraic Subtyping for Linearity

Algebraic subtyping for linear types is more interesting. Informally,

𝜆𝑥.𝜆𝑦.𝜆𝑧.(𝑥,𝑦, 𝑧) : 𝛼 → 𝛽 →𝛼 𝛾 →𝛼∨𝛽 (𝛼, 𝛽,𝛾)
𝜆𝑥.(𝑥, 𝑥) : 𝛼 ∧ • → (𝛼, 𝛼)

→𝛼 : a function type whose linearity is at least the linearity of 𝛼

𝛼 ∨ 𝛽 : the union of the linearity of value types 𝛼 and 𝛽

𝛼 ∧ •: 𝛼 with linearity that is the intersection of 𝛼 and •

It is easy to extend it with control flow linearity. Informally,

verboseId : 𝛼 → 𝛼 ! {Print : 𝜙 ∨ 𝛼 ; 𝜇}
verboseId = 𝜆𝑥 . do Print "idiscalled" ;𝑥

24

(Bonus) Algebraic Subtyping for Linearity

Algebraic subtyping for linear types is more interesting. Informally,

𝜆𝑥.𝜆𝑦.𝜆𝑧.(𝑥,𝑦, 𝑧) : 𝛼 → 𝛽 →𝛼 𝛾 →𝛼∨𝛽 (𝛼, 𝛽,𝛾)
𝜆𝑥.(𝑥, 𝑥) : 𝛼 ∧ • → (𝛼, 𝛼)

→𝛼 : a function type whose linearity is at least the linearity of 𝛼

𝛼 ∨ 𝛽 : the union of the linearity of value types 𝛼 and 𝛽

𝛼 ∧ •: 𝛼 with linearity that is the intersection of 𝛼 and •

It is easy to extend it with control flow linearity. Informally,

verboseId : 𝛼 → 𝛼 ! {Print : 𝜙 ∨ 𝛼 ; 𝜇}
verboseId = 𝜆𝑥 . do Print "idiscalled" ;𝑥

24

Conclusion

More in the paper: https://arxiv.org/abs/2307.09383

▶ F◦eff: a system F-style calculus with subkinding-based linear types and
row-based effect types. Core calculus of LINKS (to some extent).
Metatheory: type soundness + runtime linearity safety.

▶ Q◦eff: an ML-style calculus with linear types and effect types both based
on qualified types. Full type inference with principal types. Deterministic
constraint solving. Better accuracy enabled by effect subtyping.

Potential future work:

▶ CFL with modalities.
▶ Algebraic subtyping for linearity (and effects).
▶ Shallow handlers.

25

https://arxiv.org/abs/2307.09383

Conclusion

More in the paper: https://arxiv.org/abs/2307.09383

▶ F◦eff: a system F-style calculus with subkinding-based linear types and
row-based effect types. Core calculus of LINKS (to some extent).
Metatheory: type soundness + runtime linearity safety.

▶ Q◦eff: an ML-style calculus with linear types and effect types both based
on qualified types. Full type inference with principal types. Deterministic
constraint solving. Better accuracy enabled by effect subtyping.

Potential future work:

▶ CFL with modalities.
▶ Algebraic subtyping for linearity (and effects).
▶ Shallow handlers.

25

https://arxiv.org/abs/2307.09383

Thank you!

Takeaway: consider tracking control-flow linearity when having both linear
types and effect handlers!

25

