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What are logical relations?

▶ Logical relations are a method of proof for type theories.

▶ A method of defining relations inductively over types.

▶ Introduced by Plotkin 1973, 1980.
▶ Able to prove things like:

▶ Termination: do your programs stop?
▶ Type safety: do your programs keep going?
▶ Optimizations: why can I rewrite my program?
▶ Representation independence: internals don’t matter if you hide them.
▶ Security: show the output doesn’t depend on secure information.

▶ There are syntactic, semantic, and mixed approaches, we focus on semantic.
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Why are logical relations neat?

▶ The logical relation interpretation ⟦−⟧ maps
▶ each context Γ to a binary relation ⟦Γ⟧ ⊆ G1 × G2;
▶ each type A to a binary relation ⟦A⟧ ⊆ X1 × X2; and
▶ each program Γ ⊢ M : A to a pair of functions ⟦M⟧ = (f1, f2) where fi : Gi → Xi .

▶ The fundamental theorem of logical relations says that given any program

Γ ⊢ M : A

that
∀(γ1, γ2) ∈ ⟦Γ⟧ . (f1(γ1), f2(γ2)) ∈ ⟦A⟧

or equivalently
(f1 × f2)

[⟦Γ⟧] ⊆ ⟦A⟧ .
▶ Thus we prove a property about all programs!
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What language will we work with?

▶ We will start with a simple language which has:
▶ base types
▶ finite products
▶ finite coproducts
▶ exponentials

▶ A category C with these constructions is a bi-cartesian closed category (bi-CCC).
▶ For each such C, when we choose an object for each base type, we get a

completely determined interpretation ⟦−⟧C which maps
▶ each context Γ to an object ⟦Γ⟧C ;
▶ each type A to an object ⟦A⟧C ; and
▶ each program Γ ⊢ M : A a morphism ⟦M⟧C : ⟦Γ⟧C → ⟦A⟧C .

▶ Clearly, Set is a bi-CCC, and ⟦−⟧Set is the standard semantics.

▶ We want to prove things about the standard semantics.
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Binary logical relations

▶ The binary logical relation interpretation ⟦−⟧ maps
▶ each context Γ to a binary relation ⟦Γ⟧ ⊆ G1 × G2;
▶ each type A to a binary relation ⟦A⟧ ⊆ X1 × X2; and
▶ each program Γ ⊢ M : A to a pair of functions ⟦M⟧ = (f1, f2) where fi : Gi → Xi .

▶ Important: f1 and f2 are standard interpretations ⟦M⟧1Set and ⟦M⟧2Set for different
base type assignments!

▶ The fundamental lemma of logical relations says that given any program

Γ ⊢ M : A

that
∀(γ1, γ2) ∈ ⟦Γ⟧ . (f1(γ1), f2(γ2)) ∈ ⟦A⟧

or equivalently
(f1 × f2)

[⟦Γ⟧] ⊆ ⟦A⟧ .
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Unary logical relations

▶ The unary logical relation interpretation ⟦−⟧ maps
▶ each context Γ to a predicate ⟦Γ⟧ ⊆ G ;
▶ each type A to a predicate ⟦A⟧ ⊆ X ; and
▶ each program Γ ⊢ M : A to a function ⟦M⟧ = f : G → X .

▶ Important: ⟦M⟧ is the standard interpretation ⟦M⟧Set!
▶ The fundamental theorem of logical relations says that given any program

Γ ⊢ M : A

that
∀γ ∈ ⟦Γ⟧ . f (γ) ∈ ⟦A⟧

or equivalently
f
[⟦Γ⟧] ⊆ ⟦A⟧ .

▶ Now for the secret sauce.
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Category of predicates

Let Pred be the category with

objects: pairs of sets (A,X ) such that A ⊆ X

morphisms: f : (A,X )→ (B,Y ) is a function f : X → Y such that f [A] ⊆ B.

Pred has finite products, finite coproducts, and exponentials given by

1̇ = (1, 1) (A,X ) ×̇ (B,Y ) = (A× B,X × Y )

0̇ = (0, 0) (A,X ) +̇ (B,Y ) = (A+ B,X + Y )

(A,X ) ⇒̇ (B,Y ) = (
{
f : f [A] ⊆ B

}
,X ⇒ Y )

We also have a functor π : Pred→ Set given by (A,X ) 7→ X , f 7→ f .

Key feature: π strictly preserves the bi-cartesian closed (bi-CC) structure
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Fundamental theorem of unary logical relations

▶ We now have two interpretations of our language:
▶ ⟦−⟧Set giving semantics in Set and
▶ ⟦−⟧Pred giving semantics in Pred

given completely by the bi-CC structure.

▶ For a program Γ ⊢ M : A, we have

⟦M⟧Set : ⟦Γ⟧Set → ⟦A⟧Set ⟦M⟧Pred : ⟦Γ⟧Pred → ⟦A⟧Pred
and because π strictly preserves the bi-CC structure π ⟦M⟧Pred = ⟦M⟧Set.

▶ Thus, where ⟦Γ⟧Pred =
(
G , ⟦Γ⟧Set

)
and ⟦A⟧Pred =

(
X , ⟦A⟧Set

)
we get

⟦M⟧Set [G ] ⊆ X

which is exactly the fundamental theorem!
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Category of relations

We need an analogous category for the binary case. Let F : Set× Set→ Set map
(X ,Y ) 7→ X × Y . Consider the pullback of categories

F ∗Pred Pred

Set× Set Set

π

F

F∗π

q

Then F ∗Pred has as

objects: pairs (R, (X ,Y )) where X ,Y ∈ Set and R is a subset of X × Y

morphisms: (f1, f2) : (R, (X1,X2))→ (S , (Y1,Y2)) is a pair of functions fi : Xi → Yi

such that (f1 × f2)[R] ⊆ S

We call this category BRel.



12/38

Category of relations

BRel has finite products, finite coproducts, and exponentials given by

1̇ = (1, (1, 1)) 0̇ = (0, (0, 0))(
R, (X1,X2)

)
×̇
(
S , (Y1,Y2)

)
=

(
swap−1 [R × S ] , (X1 × Y1,X2 × Y2)

)
(
R, (X1,X2)

)
+̇
(
S , (Y1,Y2)

)
=

(
ι [R + S ] , (X1 + Y1,X2 + Y2)

)
(
R, (X1,X2)

)
⇒̇

(
S , (Y1,Y2)

)
=

({
(f1, f2) : (f1 × f2)[A] ⊆ B

}
, (X1 ⇒ Y1,X2 ⇒ Y2)

)
where

swap: (X1 × Y1)× (X2 × Y2)→ (X1 × X2)× (Y1 × Y2)

ι : (X1 × X2) + (Y1 × Y2)→ (X1 + Y1)× (X2 + Y2)

Note: we need preimage, direct image, and for exponentials that F is product
preserving.

Key feature: F ∗π strictly preserves the bi-CC structure
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Fundamental theorem of binary logical relations

▶ We now have two interpretations of our language ⟦−⟧Set×Set and ⟦−⟧BRel given
completely by the bi-CC structure.

▶ Note that ⟦−⟧Set×Set = (⟦−⟧1Set , ⟦−⟧2Set) for two different base type assignments.

▶ For a program Γ ⊢ M : A, we have

⟦M⟧Set×Set : ⟦Γ⟧Set×Set → ⟦A⟧Set×Set ⟦M⟧BRel : ⟦Γ⟧BRel → ⟦A⟧BRel
and F ∗π strictly preserves the bi-CC structure so F ∗π ⟦M⟧BRel = ⟦M⟧Set×Set.

▶ Thus, where ⟦Γ⟧BRel =
(
G , ⟦Γ⟧Set×Set

)
and ⟦A⟧BRel =

(
X , ⟦A⟧Set×Set

)
we get(

⟦M⟧1Set × ⟦M⟧2Set
)
[G ] ⊆ X

which is exactly the fundamental theorem!
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How do we generalize?

▶ The key ingredients for unary logical relations were
▶ a bi-CCC C;
▶ a bi-CCC E ; and
▶ a functor p : E → C which strictly preserved the bi-CC structure.
▶ (less important, a form of thinness)

▶ The key ingredients for deriving binary logical relations from unary ones were
▶ for each morphism f in C a preimage f −1[−] for E ;
▶ for each morphism f in C a direct image f [−] for E ; and
▶ that we pull back along a product preserving functor.

▶ We want both features, and more in order to support effects and handlers.
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Fibrations

▶ Let p : E → C be a functor. We will call E the total category and C the base
category.

▶ We will only work with p’s which are faithful.

▶ X ∈ E such that pX = I ∈ C is said to be above I .

▶ A morphism f of E with pf = u of C is said to be above u.

▶ The subcategory EI of E consisting of the objects above I and morphisms above
idI is called the fibre category, or simply fibre, over I .

▶ We will only work with p’s such that each EI is a partial order.
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Cartesian lifts

A morphism f : X → Y in E is Cartesian over u : I → J in C if pf = u and every
g : Z → Y in E for which one has pg = u · w for some w : pZ → I , uniquely
determines an h : Z → X in E above w with f · h = g .

E Z

X Y

pZ

B I J

p

h

g

f

w

u·w=pg

u

For faithful p, any lift is unique, and if it exists write u : X →̇ Y .



17/38

Fibrations, generalized preimage

▶ When every map in the base category C has a cartesian lift, we say p is a fibration.

▶ Under our assumptions, these lifts organize into functors.

▶ For each u : I → J in C, we get a functor

u∗ : EJ → EI

▶ Fact: π : Pred→ Set is a fibration and for f : X → Y ,

f ∗ : PredY → PredX

(B,Y ) 7→
(
f −1[B],X

)
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Fibrations, generalized direct image

▶ The important property of direct image is

f [A] ⊆ B ⇐⇒ A ⊆ f −1[B]

▶ Thus, for each u : I → J in C we want the functor u∗ : EJ → EI to have a left
adjoint

u∗ : EI → : EJ

▶ When each u∗ has a left adjoint, we say p is a bifibration.

▶ Fact: π : Pred→ Set is a bifibration and for f : X → Y ,

f∗ : PredX → PredY

(A,X ) 7→
(
f [A],Y

)
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Putting it all together

Thus, we want

▶ a bi-CCC C,
▶ a bi-CCC E ,
▶ a faithful functor p : E → C,
▶ p to strictly preserve the bi-CC structure,

▶ the fibre categories to be partial orders,

▶ p to be a bifibration, and

▶ (later) the fibre categories to have small products.

This is the definition of a fibration for logical relations of Katsumata 2013. FFLRs
subsume sconing and Kripke logical relations with varying arity.
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What are effects and handlers?

▶ Real life programs need side effects.

▶ Side effects are often modelled with monads, but monads don’t compose!

▶ Effects and handlers are a modular and composable way for users to define their
own effects.

▶ Specifically, effectful operations have no meaning except when given one by user
defined handlers.

▶ This is achieved with a special free monad for which handlers induce monad
algebras, see Forster et al. 2019.

▶ Real languages like WebAssembly and OCaml have effects and handlers!
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Kleisli categories for effects

▶ A standard model for side-effects in programming languages is a cartesian closed
category C equipped with a strong monad T = (T , η, µ, st).

▶ Recall that a strength for a functor F : C → C is a map st : X × FY → F (X × Y ),
and when F is a monad, some compatibility conditions.

▶ The semantics ⟦−⟧T then assigns to each program Γ ⊢ M : A a morphism

⟦M⟧T : ⟦Γ⟧T → T ⟦A⟧T
in the Kleisli category CT .

▶ If we want to add a built-in effectful operation op: A→ B to the language, we
choose a map

⟦A⟧T → T ⟦B⟧T
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Algebraic effects

▶ An algebraic operation α from A to B for a strong monad T is a natural
transformation

αX : (B ⇒ TX )→ (A⇒ TX )

which respects η and µ.

▶ Algebraic operations are in bijection with Kleisli morphism given (morally) by

(B ⇒ TX )→ (A⇒ TX ) ∼= A→ TB

α 7→ αB (ηB)

λg .(g ·CT f )← [ f
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A special functor

▶ Suppose we have n algebraic operations opi : Ai → Bi we want to support. Then
we have

for i = 1, . . . , n : (Bi ⇒ TX )→ (Ai ⇒ TX )
∼= for i = 1, . . . , n : Ai × (Bi ⇒ TX )→ TX

∼=
n∑

i=1

Ai × (Bi ⇒ TX )→ TX

▶ Thus, if we define a functor F : C → C as

FY :=
n∑

i=1

Ai × (Bi ⇒ Y )

then we are asking for an F -algebra structure on TX

F (TX )→ TX

natural in X .
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Effect functor

▶ We call a functor

FY =
n∑

i=1

Ai × (Bi ⇒ Y )

an effect functor.

▶ A monad T supports F when there is a natural transformation φ : FT → T so
each component is an F -algebra.

▶ How can we find such a monad for an arbitrary F?
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Free algebras

A free F -algebra on an object A in C is an algebra φA : FA
♯ → A♯ such that for every

β : FB → B and every morphism f : A→ B in C, there exists a unique homomorphism
f̄ : A♯ → B extending f .

FA♯ A♯ A

FB B
β

F f̄ f̄
f

ηAφA

Thus, a free algebra (if it exists) is a minimal way to equip A with an F -algebra
structure.
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Free monads

▶ If every object has a free F -algebra, these coalesce into a monad T = (T , η, µ) on
C by TA = A♯.

▶ This is the free algebraic monad, and there is a natural transformation
φ : FT → T and so is component wise F -algebras.

▶ There is a strictly weaker definition of free monad, but we require the stronger
version.

▶ Importantly, there is an equivalence of categories between F -algebras and
T -algebras.

▶ Finally, when F is strong, so is T .
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Handlers

▶ Given an effect functor F , the programming language construct of a handler
generates an F -algebra.

▶ Thus, we choose our semantics to work with the free monad T on F , we get a
T -algebra.

▶ Therefore, users can “escape” from the monad by giving their chosen
interpretation of the supported effects.
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Semantics

The basic semantics for effects and handlers is completely determined by

▶ a bi-CCC C such that free monads T of effect functors exist and

▶ the free-forgetful adjunction

C Alg T

|−|

⊣

The semantics ⟦−⟧C then assigns to each program Γ ⊢ M : C a morphism in C

⟦M⟧C : ⟦Γ⟧C →
∣∣⟦C⟧C∣∣
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Lifting monads

We currently have the left hand side. We must find a strong monad Ṫ on E which is a
lift of T , resulting in the right hand side.

E

C Alg T

p

T ⊣

⇒

E Alg Ṫ

C Alg T

Ṫ

p Alg p

T

⊣
⊣

Ṫ = (Ṫ , η̇, µ̇, ṡt) is a lift when

p(ṪX ) = T (pX ), pη̇X = ηpX , pµ̇X = µpX , pṡtX ,Y = stpX ,pY

and such a Ṫ gives us the right hand side.



32/38

The correct lifting

▶ In general, there are many liftings of a monad T .
▶ We also have a stronger requirement. An effect functor on C

FC =
n∑

i=1

Ai × (Bi ⇒ C )

and choices of pXi = Ai , pYi = Bi induces one on E

ḞZ =
ṅ∑

i=1

Xi ×̇ (Yi ⇒̇ Z )

and so pḞ = Fp.

▶ We need Ṫ to be the free algebra monad for Ḟ for our semantics.
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Free algebriac lift

The answer is the free algebraic lift of Kammar and McDermott 2018.

Let
{
αi : (Bi ⇒ T−)→ (Ai ⇒ T−)

}
1≤i≤n

be a set of algebraic operations of T and
Yi ,Zi ∈ E above Ai ,Bi ∈ C respectively.

For each object X ∈ E , define RX as the set of all X ′ ∈ ET (pX ) such that:

▶ The unit respects X ′, i.e. η : X →̇ X ′.

▶ Each algebraic operation respects X ′ for the given lift, i.e.
αi : (Zi ⇒̇ X ′) →̇ (Yi ⇒̇ X ′)

Define ṪX B
∧
RX , i.e. ṪX is the least element of RX (

∧
product in ET (pX )).

Then Ṫ is part of a monad lift Ṫ . Furthermore, each algebraic operation αi lifts to an
algebraic operation α̇i .
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Free for free

Theorem
Let p : E → C be an FFLR, F an effect functor, Ḟ it’s lift, and T the free algebra
monad for F . Then the free algebraic lift Ṫ with respect to the operations supported
by F is the free algebra monad for Ḟ

Sketch.
The monad T is “exactly” made up of the algebraic operations it supports, and so if
we take a lift which respects them, the lift respects this “exactness”.

Note: the proof makes use of all pieces of the FFLR definition.
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Fundamental theorem of logical relations

▶ We now have two interpretations of our effects an handler language:
▶ ⟦−⟧C giving semantics in C and
▶ ⟦−⟧E giving semantics in E

given completely by the bi-CC structure and existence of free algebra monads for
effect functors.

▶ For a program Γ ⊢ M : C , we have

⟦M⟧C : ⟦Γ⟧C →
∣∣⟦C⟧C∣∣ ⟦M⟧E : ⟦Γ⟧E →

∣∣⟦C⟧E ∣∣
▶ p and Alg p strictly preserve the used structure, and so we have

p ⟦M⟧E = ⟦M⟧C
which is exactly a generalized fundamental theorem.
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Conclusion

▶ Logical relations let us prove powerful theorems about languages.

▶ Fibrations for logical relations provide a categorical extension of logical relations,
including constructing new from old.

▶ Effects and handlers let one program with certain free monads.

▶ FFLRs let us do logical relations for effects and handlers via the free algebraic lift.
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