Categorical logical relations for effects and handlers

Jesse Sigal (University of Edinburgh)

CATNIP 6, University of Strathclyde, 28/02/2025

Logical Relations
Effects and Handlers

Bringing it all together

2/38

Logical Relations
Effects and Handlers

Bringing it all together

3/38

What are logical relations?

Logical relations are a method of proof for type theories.
A method of defining relations inductively over types.

>
>
» Introduced by Plotkin 1973, 1980.
» Able to prove things like:

» Termination: do your programs stop?

» Type safety: do your programs keep going?

» Optimizations: why can | rewrite my program?

» Representation independence: internals don't matter if you hide them.

» Security: show the output doesn’'t depend on secure information.

» There are syntactic, semantic, and mixed approaches, we focus on semantic.

Why are logical relations neat?

» The logical relation interpretation [—] maps

» each context I to a binary relation [[] C Gy x Gy;
> each type A to a binary relation [A] C X; x Xp; and
» each program [M : A to a pair of functions [M] = (£, f,) where f;: G; — X;.

» The fundamental theorem of logical relations says that given any program

Fr=M: A

that
Y(71,72) € [T]- (A(m), 2(72)) € [A]

or equivalently
(A x £) [[F]] < [A].

» Thus we prove a property about all programs!

What language will we work with?

> We will start with a simple language which has:

» base types

> finite products
» finite coproducts
P exponentials

» A category C with these constructions is a bi-cartesian closed category (bi-CCC).

» For each such C, when we choose an object for each base type, we get a
completely determined interpretation [—]. which maps

» each context I to an object [I'],;
> each type A to an object [A].; and
» each program ' = M : A a morphism [M].: [T'], — [A],.

» Clearly, Set is a bi-CCC, and [—]g,, is the standard semantics.

> We want to prove things about the standard semantics.

Binary logical relations

» The binary logical relation interpretation [—] maps

» each context I to a binary relation [[] C Gy x Gy;
> each type A to a binary relation [A] C X; x Xp; and
» each program ' = M : A to a pair of functions [M] = (f, f2) where f;: G; — X;.

» Important: f; and f; are standard interpretations [[/\/I}]éet and [[I\/I}]get for different
base type assignments!
» The fundamental lemma of logical relations says that given any program

rN-M:A

that
V(71,72) € [T]- (A(n), 2(12)) € [A]

or equivalently

(A x) [[F]] € [A].

Unary logical relations

» The unary logical relation interpretation [—] maps

» each context I to a predicate [I'] C G;
» each type A to a predicate [A] C X; and
» each program [M : A to a function [M] =f: G — X.

» Important: [M] is the standard interpretation [M]g,,!
» The fundamental theorem of logical relations says that given any program

rN-M:A

that
vy e [I].f(7) € [A]

or equivalently

FIIr] < [A]-

» Now for the secret sauce.

Category of predicates

Let Pred be the category with
objects: pairs of sets (A, X) such that A C X
morphisms: f: (A, X) — (B, Y) is a function f: X — Y such that f[A] C B.

Pred has finite products, finite coproducts, and exponentials given by

1=(1,1) (AX)x(B,Y)=(AxB,XxY)
0=(0,00 (AX)+(B,Y)=(A+B,X+Y)
(A, X)=(B,Y)=({f: f[AC B}, X=Y)
We also have a functor 7: Pred — Set given by (A, X) — X, f — f.

Key feature: 7 strictly preserves the bi-cartesian closed (bi-CC) structure

Fundamental theorem of unary logical relations

» We now have two interpretations of our language:

» [—]se giving semantics in Set and
» [—Ipreq giving semantics in Pred

given completely by the bi-CC structure.
» For a program ' M : A, we have

HM]Set : [[H]Set - [[A]]Set HM]Pred : HrﬂPred - HAﬂPred

and because 7 strictly preserves the bi-CC structure 7 [M]p,oq = [M]ges-
> Thus, where HrﬂPred = (G7 [[H]Set) and [[AﬂPred = (X’ [[AﬂSet) we get

HMﬂSet [G] cX

which is exactly the fundamental theorem!

Category of relations

We need an analogous category for the binary case. Let F: Set x Set — Set map
(X,Y)— X x Y. Consider the pullback of categories

F*Pred —% Pred

S

Set x Set —— Set

Then F*Pred has as
objects: pairs (R, (X, Y)) where X, Y € Set and R is a subset of X x Y
morphisms: (fi,f): (R, (X1, X2)) = (S, (Y1, Y2)) is a pair of functions f;: X; — Y;
such that (A1 x R)[R] C S

We call this category BRel.

Category of relations

BRel has finite products, finite coproducts, and exponentials given by
1=(1,(1,1)) 0=(0,(0,0))
(R, (X1, X2)) % (S, (Y4, Ya)) = (swap_l [R x S], (X1 x Y1, X x Y2))
(R, (X1, X2)) + (S, (Y1, Y2)) = (¢[R+S], (X1 + Y1, X2 + Y2))
(R (X1,%2)) = (5, (11, ¥2)) = ({(f) : (A x B)AIC B}, (% = Y1, % = Y2))
where
swap: (X1 x Y1) X (X2 X Y2) = (X1 x X2) X (Y1 X Y2)
i (Xe x X2)+ (Y1 X Y2) = (X1 + Y1) x (Xa+ Y2)

Note: we need preimage, direct image, and for exponentials that F is product
preserving.

Key feature: F*r strictly preserves the bi-CC structure

Fundamental theorem of binary logical relations

» We now have two interpretations of our language [—]getxset 2Nd [—]gRre &iven
completely by the bi-CC structure.

» Note that [—]gerxset = ([[—}]éet , [[—}]get) for two different base type assignments.
» For a program ' = M : A, we have

[Msetxset : [Msetxset = [Allsetxset [Mlgrer = [Tgret = [AlgRel

and F*7 strictly preserves the bi-CC structure so F*m [M]gret = [M]setxset-

> Thus, where [aga = (G [Msetxser) 3nd [Alprer = (X, [Alsexser) we get

(IM]5e, x [MI3ee) [6] € X

which is exactly the fundamental theorem!

How do we generalize?

» The key ingredients for unary logical relations were

» a bi-CCC C;
» 3 bi-CCC &; and
» a functor p: £ — C which strictly preserved the bi-CC structure.

> (less important, a form of thinness)
» The key ingredients for deriving binary logical relations from unary ones were
» for each morphism f in C a preimage f~1[—] for &;
» for each morphism f in C a direct image f[—] for £; and
» that we pull back along a product preserving functor.

> We want both features, and more in order to support effects and handlers.

Fibrations

vvyyy v

v

Let p: £ — C be a functor. We will call £ the total category and C the base
category.

We will only work with p's which are faithful.
X € £ such that pX =1 € C is said to be above .
A morphism f of £ with pf = u of C is said to be above u.

The subcategory & of £ consisting of the objects above / and morphisms above
id; is called the fibre category, or simply fibre, over I.

We will only work with p's such that each &; is a partial order.

Cartesian lifts

A morphism f: X — Y in £ is Cartesian over u: | — J in C if pf = u and every
g: Z — Y in £ for which one has pg = u - w for some w: pZ — I, uniquely
determines an h: Z — X in £ above w with f - h=g.

E V4 J
h\\A
X — Y
P
pZ u-w=pg
‘N
B | —— J

For faithful p, any lift is unique, and if it exists write u: X = Y.

Fibrations, generalized preimage

» When every map in the base category C has a cartesian lift, we say p is a fibration.
» Under our assumptions, these lifts organize into functors.

» For each u: | — Jin C, we get a functor

u*:EJ—>5/

» Fact: m: Pred — Set is a fibration and for f: X — Y,
f*: Predy — Predy

(B,Y) s (f*l[B],x)

Fibrations, generalized direct image

» The important property of direct image is

fFIA]C B «<— AC f![B]

» Thus, for each u: I — J in C we want the functor v*: £, — &; to have a left
adjoint
ug: & —: &y

» When each u* has a left adjoint, we say p is a bifibration.
» Fact: m: Pred — Set is a bifibration and for f: X —» Y,

f.: Predx — Predy
(A, X) = (fIALY)

Putting it all together

Thus, we want
> a bi-CCCC,
> a bi-CCC &,
» a faithful functor p: £ — C,
» p to strictly preserve the bi-CC structure,
» the fibre categories to be partial orders,
> p to be a bifibration, and
» (later) the fibre categories to have small products.

This is the definition of a fibration for logical relations of Katsumata 2013. FFLRs
subsume sconing and Kripke logical relations with varying arity.

Logical Relations
Effects and Handlers

Bringing it all together

20/38

What are effects and handlers?

v

Real life programs need side effects.
Side effects are often modelled with monads, but monads don't compose!

Effects and handlers are a modular and composable way for users to define their
own effects.

Specifically, effectful operations have no meaning except when given one by user
defined handlers.

This is achieved with a special free monad for which handlers induce monad
algebras, see Forster et al. 2019.

Real languages like WebAssembly and OCaml have effects and handlers!

Kleisli categories for effects

P> A standard model for side-effects in programming languages is a cartesian closed
category C equipped with a strong monad 7 = (T, 7, y, st).

» Recall that a strength for a functor F: C — Cisamapst: X x FY — F(X x Y),
and when F is a monad, some compatibility conditions.

» The semantics [—] then assigns to each program I' = M : A a morphism

[M]y: [Tl — T[Al-
in the Kleisli category C7.

> If we want to add a built-in effectful operation op: A — B to the language, we
choose a map

[Alr = T[Blr

Algebraic effects

» An algebraic operation o from A to B for a strong monad 7 is a natural
transformation
ax: (B=TX) = (A= TX)
which respects 1 and .
> Algebraic operations are in bijection with Kleisli morphism given (morally) by

B=TX)> (A= TX)=A— TB

a— ag(ng)
Ng.(gc,)« f

A special functor

» Suppose we have n algebraic operations op;: A; — B; we want to support. Then

we have
fori=1,...,n:(Bj= TX) — (Ai = TX)

Zfori=1,...,n: Aix(Bi= TX) > TX

n

gZA,- x (Bj= TX) = TX
i=1

» Thus, if we define a functor F: C — C as
FY = Aix(Bi=Y)
i=1
then we are asking for an F-algebra structure on TX
F(TX) = TX

natural in X.

Effect functor

» We call a functor .,
FY =) Aix(Bi=Y)
i=1
an effect functor.

» A monad T supports F when there is a natural transformation p: FT — T so
each component is an F-algebra.

» How can we find such a monad for an arbitrary F?

Free algebras

A free F-algebra on an object A in C is an algebra pa: FA* — A? such that for every
B: FB — B and every morphism f: A — B in C, there exists a unique homomorphism
f: A - B extending f.
FAﬁ PA Aﬁ 1A A
7| al /
FB —5 B

Thus, a free algebra (if it exists) is a minimal way to equip A with an F-algebra
structure.

Free monads

> If every object has a free F-algebra, these coalesce into a monad 7 = (T,n, 1) on
C by TA = AL

» This is the free algebraic monad, and there is a natural transformation
@: FT — T and so is component wise F-algebras.

» There is a strictly weaker definition of free monad, but we require the stronger
version.

» Importantly, there is an equivalence of categories between F-algebras and
T -algebras.

» Finally, when F is strong, so is 7.

Handlers

» Given an effect functor F, the programming language construct of a handler
generates an F-algebra.

» Thus, we choose our semantics to work with the free monad 7 on F, we get a
T-algebra.

» Therefore, users can “escape” from the monad by giving their chosen
interpretation of the supported effects.

Semantics

The basic semantics for effects and handlers is completely determined by
» a bi-CCC C such that free monads T of effect functors exist and
» the free-forgetful adjunction

C /J_\Alg T
~N_

=
The semantics [—], then assigns to each program I' = M : C a morphism in C

[Mle: [Tle — H[C]]c}

Logical Relations
Effects and Handlers

Bringing it all together

30/38

Lifting monads

We currently have the left hand side. We must find a strong monad 7 on £ which is a
lift of T, resulting in the right hand side.

£ TC e L - ms T
pl = lAlg P
(¢ CAIgT TCC Alg T
T = (T,7, f1,st) is a lift when

p(TX)=T(pX), Pix =1pxs PiX = lpX, PStX.y = Stpx py

and such a 7 gives us the right hand side.

The correct lifting

» In general, there are many liftings of a monad 7.

» We also have a stronger requirement. An effect functor on C
n
FC =Y Aix (B =C)
i=1
and choices of pX; = A;, pY; = B; induces one on £
FZ=Y Xix(Yi=2)
i=1

and so pF = Fp.

> We need T to be the free algebra monad for F for our semantics.

Free algebriac lift

The answer is the free algebraic lift of Kammar and McDermott 2018.

Let {a,-: (B,’ = T—) — (A,‘ = T_)}1<i<n
Y;, Z; € £ above A;, B; € C respectively.

be a set of algebraic operations of 7 and

For each object X € &£, define RX as the set of all X' € E1(,x) such that:
» The unit respects X', i.e. n: X = X',
» Each algebraic operation respects X’ for the given lift, i.e.
ai: (Zi= X)) (Y= X)
Define TX := ARX, i.e. TX is the least element of RX (/\ product in ET(px))-

Then T is part of a monad lift 7. Furthermore, each algebraic operation «; lifts to an
algebraic operation &;.

Free for free

Theorem _
Let p: £ — C be an FFLR, F an effect functor, F it's lift, and T the free algebra

monad for F. Then the free algebraic lift T with respect to the operations supported
by F is the free algebra monad for F

Sketch.
The monad T is “exactly” made up of the algebraic operations it supports, and so if
we take a lift which respects them, the lift respects this “exactness”. []

Note: the proof makes use of all pieces of the FFLR definition.

Fundamental theorem of logical relations

> We now have two interpretations of our effects an handler language:

» [—]. giving semantics in C and
» [—]¢ giving semantics in £

given completely by the bi-CC structure and existence of free algebra monads for
effect functors.

» For a program = M : C, we have

[M]c: [Tle = |[Cle|l [MIg: [Tle — [[Cl¢]

> p and Alg p strictly preserve the used structure, and so we have

p[M]e =[M]

which is exactly a generalized fundamental theorem.

Conclusion

> Logical relations let us prove powerful theorems about languages.

» Fibrations for logical relations provide a categorical extension of logical relations,
including constructing new from old.

» Effects and handlers let one program with certain free monads.

> FFLRs let us do logical relations for effects and handlers via the free algebraic lift.

References |

[§ Forster, Yannick et al. (2019). “On the expressive power of user-defined effects:
Effect handlers, monadic reflection, delimited control”. |n: Journal of Functional
Programming 29. Publisher: Cambridge University Press. 1SSN: 0956-7968,
1469-7653. DOI: 10.1017/80956796819000121. URL:
https://www.cambridge.org/core/journals/journal-of-functional-
programming/article/on-the-expressive-power-of-userdefined-
effects-effect-handlers-monadic-reflection-delimited-
control/3FFAA9ADO5B58A1467E411F80EE4EQ76 (visited on 04/17/2020).

[§ Kammar, Ohad and Dylan McDermott (Dec. 1, 2018). “Factorisation Systems for
Logical Relations and Monadic Lifting in Type-and-effect System Semantics”. In:
Electronic Notes in Theoretical Computer Science 341. Publisher: Elsevier,
pp. 239-260. 18SN: 1571-0661. poOI: 10.1016/j.entcs.2018.11.012. URL:
https:
//www.sciencedirect.com/science/article/pii/S1571066118300938
(visited on 10/25/2023).

https://doi.org/10.1017/S0956796819000121
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/on-the-expressive-power-of-userdefined-effects-effect-handlers-monadic-reflection-delimited-control/3FFAA9AD05B58A1467E411F80EE4E076
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/on-the-expressive-power-of-userdefined-effects-effect-handlers-monadic-reflection-delimited-control/3FFAA9AD05B58A1467E411F80EE4E076
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/on-the-expressive-power-of-userdefined-effects-effect-handlers-monadic-reflection-delimited-control/3FFAA9AD05B58A1467E411F80EE4E076
https://www.cambridge.org/core/journals/journal-of-functional-programming/article/on-the-expressive-power-of-userdefined-effects-effect-handlers-monadic-reflection-delimited-control/3FFAA9AD05B58A1467E411F80EE4E076
https://doi.org/10.1016/j.entcs.2018.11.012
https://www.sciencedirect.com/science/article/pii/S1571066118300938
https://www.sciencedirect.com/science/article/pii/S1571066118300938

References Il

Katsumata, Shin-ya (Jan. 1, 2013). “Relating computational effects by
TT-lifting” . In: Information and Computation. 38th International Colloquium on
Automata, Languages and Programming (ICALP 2011) 222, pp. 228-246. 1SSN:
0890-5401. por: 10.1016/j.1c.2012.10.014. URL: https:
//www.sciencedirect.com/science/article/pii/S0890540112001551
(visited on 09/05/2022).

Plotkin, Gordon D. (Oct. 1973). A-definability and logical relations. SAI-RM-4,

p. 20. URL: https://homepages.inf.ed.ac.uk/gdp/publications/logical_
relations_1973.pdf (visited on 02/26/2025).

— (1980). “A-definability in the full type hierarchy”. In: To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism. Ed. by Haskell B. Curry,
James R. Hindley, and Jonathan P. Seldin. New York, NY, USA: Academic Press,
pp. 363-373. 1SBN: 0-12-349050-2. URL: https:
//homepages.inf.ed.ac.uk/gdp/publications/Lambda_Definability.pdf
(visited on 02/26/2025).

38/38

https://doi.org/10.1016/j.ic.2012.10.014
https://www.sciencedirect.com/science/article/pii/S0890540112001551
https://www.sciencedirect.com/science/article/pii/S0890540112001551
https://homepages.inf.ed.ac.uk/gdp/publications/logical_relations_1973.pdf
https://homepages.inf.ed.ac.uk/gdp/publications/logical_relations_1973.pdf
https://homepages.inf.ed.ac.uk/gdp/publications/Lambda_Definability.pdf
https://homepages.inf.ed.ac.uk/gdp/publications/Lambda_Definability.pdf

	Logical Relations
	Effects and Handlers
	Bringing it all together
	References

