
Asymptotic Speedup via Effect Handlers

Daniel Hillerström

Laboratory for Foundations of Computer Science
The University of Edinburgh, Scotland, UK

December 13, 2022

Formal Analysis, Theory and Algorithms
School of Computing Science

University of Glasgow

(joint work with Sam Lindley and John Longley)

Effect handlers primer

Effect handlers provide a request-response paradigm-style of programming
Perform an abstract request: do `V (Plotkin and Power 2003)
Respond to requests in some computation: handle M with H (Plotkin and Pretnar 2009)

Example: Count the number of true valuations.
One request operation Branch : Unit→ Bool.

handle

(do Branch 〈〉 || do Branch 〈〉)

with
val x 7→ if x then 1 else 0
Branch 〈〉 resume 7→ resume true + resume false

Computation tree model

Branch

true Branch

true false

Effect handlers primer

Effect handlers provide a request-response paradigm-style of programming
Perform an abstract request: do `V (Plotkin and Power 2003)
Respond to requests in some computation: handle M with H (Plotkin and Pretnar 2009)

Example: Count the number of true valuations.
One request operation Branch : Unit→ Bool.

handle

(do Branch 〈〉 || do Branch 〈〉)

with
val x 7→ if x then 1 else 0
Branch 〈〉 resume 7→ resume true + resume false

Computation tree model

Branch

true Branch

true false

Effect handlers primer

Effect handlers provide a request-response paradigm-style of programming
Perform an abstract request: do `V (Plotkin and Power 2003)
Respond to requests in some computation: handle M with H (Plotkin and Pretnar 2009)

Example: Count the number of true valuations.
One request operation Branch : Unit→ Bool.

handle

(do Branch 〈〉 || do Branch 〈〉)

with
val x 7→ if x then 1 else 0
Branch 〈〉 resume 7→ resume true + resume false

Computation tree model

Branch

true Branch

true false

Effect handlers primer

Effect handlers provide a request-response paradigm-style of programming
Perform an abstract request: do `V (Plotkin and Power 2003)
Respond to requests in some computation: handle M with H (Plotkin and Pretnar 2009)

Example: Count the number of true valuations.
One request operation Branch : Unit→ Bool.

handle (do Branch 〈〉 || do Branch 〈〉) with

val x 7→ if x then 1 else 0
Branch 〈〉 resume 7→ resume true + resume false

Computation tree model

Branch

true Branch

true false

Effect handlers primer

Effect handlers provide a request-response paradigm-style of programming
Perform an abstract request: do `V (Plotkin and Power 2003)
Respond to requests in some computation: handle M with H (Plotkin and Pretnar 2009)

Example: Count the number of true valuations.
One request operation Branch : Unit→ Bool.

handle (do Branch 〈〉 || do Branch 〈〉) with
val x 7→ if x then 1 else 0

Branch 〈〉 resume 7→ resume true + resume false

Computation tree model

Branch

true Branch

true false

Effect handlers primer

Effect handlers provide a request-response paradigm-style of programming
Perform an abstract request: do `V (Plotkin and Power 2003)
Respond to requests in some computation: handle M with H (Plotkin and Pretnar 2009)

Example: Count the number of true valuations.
One request operation Branch : Unit→ Bool.

handle (do Branch 〈〉 || do Branch 〈〉) with
val x 7→ if x then 1 else 0
Branch 〈〉 resume 7→ resume true + resume false

Computation tree model

Branch

true Branch

true false

Motivation: space exploration

Expressivity of L ⊂ L′

Computability: Can some things be done in L′ but not in L?

Complexity: Can some things be done faster in L′ than in L?

Programmability: Can some things be done more easily in L′ than in L?

Image: Hubble Ultra-Deep Field; source: Wikipedia

Motivation: space exploration

Expressivity of L ⊂ L′

Computability: Can some things be done in L′ but not in L?

Complexity: Can some things be done faster in L′ than in L?

Programmability: Can some things be done more easily in L′ than in L?

Image: Hubble Ultra-Deep Field; source: Wikipedia

Motivation: space exploration

Asymptotic speedup with effect handlers
The generic count problem

countn : ((Natn → Bool)→ Bool)→ Nat

point: boolean-valued vector of size n

predicate: encodes some search problem (e.g. n-Queens)
countn P: returns number of n-points satisfying P

Fix L := PCF

and L′ := PCFh with effect handlers
1 There exists an implementation, effcount ∈ PCFh, of generic count such that effcount ∈ O(2n)

2 For all implementations, count ∈ PCF, of generic count it holds that count ∈ Ω(n2n)

Image: Hubble Ultra-Deep Field; source: Wikipedia

PCF Effect
handlers

Motivation: space exploration

Asymptotic speedup with effect handlers
The generic count problem

countn : ((Natn → Bool)︸ ︷︷ ︸
point

→ Bool)→ Nat

point: boolean-valued vector of size n

predicate: encodes some search problem (e.g. n-Queens)
countn P: returns number of n-points satisfying P

Fix L := PCF

and L′ := PCFh with effect handlers
1 There exists an implementation, effcount ∈ PCFh, of generic count such that effcount ∈ O(2n)

2 For all implementations, count ∈ PCF, of generic count it holds that count ∈ Ω(n2n)

Image: Hubble Ultra-Deep Field; source: Wikipedia

PCF Effect
handlers

Motivation: space exploration

Asymptotic speedup with effect handlers
The generic count problem

countn : ((Natn → Bool)︸ ︷︷ ︸
point

→ Bool)

︸ ︷︷ ︸
predicate

→ Nat

point: boolean-valued vector of size n

predicate: encodes some search problem (e.g. n-Queens)

countn P: returns number of n-points satisfying P

Fix L := PCF

and L′ := PCFh with effect handlers
1 There exists an implementation, effcount ∈ PCFh, of generic count such that effcount ∈ O(2n)

2 For all implementations, count ∈ PCF, of generic count it holds that count ∈ Ω(n2n)

Image: Hubble Ultra-Deep Field; source: Wikipedia

PCF Effect
handlers

Motivation: space exploration

Asymptotic speedup with effect handlers
The generic count problem

countn : ((Natn → Bool)︸ ︷︷ ︸
point

→ Bool)

︸ ︷︷ ︸
predicate

→ Nat

point: boolean-valued vector of size n

predicate: encodes some search problem (e.g. n-Queens)
countn P: returns number of n-points satisfying P

Fix L := PCF

and L′ := PCFh with effect handlers
1 There exists an implementation, effcount ∈ PCFh, of generic count such that effcount ∈ O(2n)

2 For all implementations, count ∈ PCF, of generic count it holds that count ∈ Ω(n2n)

Image: Hubble Ultra-Deep Field; source: Wikipedia

PCF Effect
handlers

Motivation: space exploration

Asymptotic speedup with effect handlers
The generic count problem

countn : ((Natn → Bool)︸ ︷︷ ︸
point

→ Bool)

︸ ︷︷ ︸
predicate

→ Nat

point: boolean-valued vector of size n

predicate: encodes some search problem (e.g. n-Queens)
countn P: returns number of n-points satisfying P

Fix L := PCF

and L′ := PCFh with effect handlers
1 There exists an implementation, effcount ∈ PCFh, of generic count such that effcount ∈ O(2n)

2 For all implementations, count ∈ PCF, of generic count it holds that count ∈ Ω(n2n)

Image: Hubble Ultra-Deep Field; source: Wikipedia

PCF

Effect
handlers

Motivation: space exploration

Asymptotic speedup with effect handlers
The generic count problem

countn : ((Natn → Bool)︸ ︷︷ ︸
point

→ Bool)

︸ ︷︷ ︸
predicate

→ Nat

point: boolean-valued vector of size n

predicate: encodes some search problem (e.g. n-Queens)
countn P: returns number of n-points satisfying P

Fix L := PCF and L′ := PCFh with effect handlers

1 There exists an implementation, effcount ∈ PCFh, of generic count such that effcount ∈ O(2n)

2 For all implementations, count ∈ PCF, of generic count it holds that count ∈ Ω(n2n)

Image: Hubble Ultra-Deep Field; source: Wikipedia

PCF Effect
handlers

Motivation: space exploration

Asymptotic speedup with effect handlers
The generic count problem

countn : ((Natn → Bool)︸ ︷︷ ︸
point

→ Bool)

︸ ︷︷ ︸
predicate

→ Nat

point: boolean-valued vector of size n

predicate: encodes some search problem (e.g. n-Queens)
countn P: returns number of n-points satisfying P

Fix L := PCF and L′ := PCFh with effect handlers
1 There exists an implementation, effcount ∈ PCFh, of generic count such that effcount ∈ O(2n)

2 For all implementations, count ∈ PCF, of generic count it holds that count ∈ Ω(n2n)

Image: Hubble Ultra-Deep Field; source: Wikipedia

PCF Effect
handlers

Motivation: space exploration

Asymptotic speedup with effect handlers
The generic count problem

countn : ((Natn → Bool)︸ ︷︷ ︸
point

→ Bool)

︸ ︷︷ ︸
predicate

→ Nat

point: boolean-valued vector of size n

predicate: encodes some search problem (e.g. n-Queens)
countn P: returns number of n-points satisfying P

Fix L := PCF and L′ := PCFh with effect handlers
1 There exists an implementation, effcount ∈ PCFh, of generic count such that effcount ∈ O(2n)

2 For all implementations, count ∈ PCF, of generic count it holds that count ∈ Ω(n2n)

Image: Hubble Ultra-Deep Field; source: Wikipedia

PCF Effect
handlers

Methodology

PCF Effect
handlers

One ground rule:

No change of type signatures is allowed!

Fixed signature countn : ((Natn → Bool)→ Bool)→ Nat

Prohibits translation of PCFh into PCF (interpreter / CPS)
Programming against a fixed interface

(PCF due to Plotkin (1977))

A predicate and its model

ex : (Nat3 → Bool)→ Bool
ex .

= λp. if p 0 then p 1 xor p 2
else not (p 2 xor p 1)

Behaviour of ex (λj .nth [true, false, true] j):

?0

?1

?2

!false !true

?2

!true !false

?2

?1

!true !false

?1

!false !true

More predicates, more models (1)

Consider a constant predicate, e.g.
T0

.
= λq.true

whose model is

!true

Potential problem: the runtime of the predicate doesn’t depend on the input q.

More predicates, more models (2)

Consider the following identity predicate over B1 → B

I2
.
= λq.(q 0) && (q 0)

whose model is

?0

?0

!true !false

!false

Potential problem: Repeated queries may yield imperfect binary tree models.

More predicates, more models (3)

Consider the following false-only yielding predicate

∞ .
= rec P q.if q 0 then P q else false

whose model is infinite

?0

?0

..
.

!false

!false

Potential problem: Possibly infinite runtime.

Restriction to n-standard predicates

Properties of an n-standard model
Perfect binary tree of height n > 0
Contains every query ?j for j ∈ {0, . . . , n − 1}
No repeated queries along any path

Example: ex is 3-standard

?0

?1

?2

!false !true

?2

!true !false

?2

?1

!true !false

?1

!false !true

Definition (untimed decision tree)

1 The address set Addr is simply the set B∗ of finite lists of booleans. If bs, bs ′ ∈ Addr, we write
bs v bs ′ (resp. bs @ bs ′) to mean that bs is a prefix (resp. proper prefix) of bs ′.

2 The label set Lab consists of queries parameterised by a natural number and answers
parameterised by a boolean:

Lab .
= {?k | k ∈ N} ∪ {!b | b ∈ B}

3 An (untimed) decision tree is a partial function τ : Addr ⇀ Lab such that:
The domain of τ (written dom(τ)) is prefix closed.
Answer nodes are always leaves: if τ(bs) = !b then τ(bs ′) is undefined whenever bs @ bs ′.

Definition (timed decision tree)

A timed decision tree is a partial function τ : Addr ⇀ Lab× N such that its first projection
bs 7→ τ(bs).1 is a decision tree. We write labs(τ) for the first projection (bs 7→ τ(bs).1) and steps(τ)
for the second projection (bs 7→ τ(bs).2) of a timed decision tree.

Restriction to n-standard trees and predicates, formally

Definition (n-standard trees and predicates)
An n-predicate tree τ is said to be n-standard if the following hold:

The domain of τ is precisely Addrn, the set of bit vectors of length ≤ n.
There are no repeated queries along any path in τ :

∀bs, bs ′ ∈ dom(τ), k ∈ Nn. bs v bs ′ ∧ τ(bs) = τ(bs ′) = ?k ⇒ bs = bs ′

A timed decision tree τ is n-standard if its underlying untimed decision tree (bs 7→ τ(bs).1) is so. An
n-predicate P is n-standard if its model is n-standard.

Canonical n-predicates

Definition (canonical n-standard predicates)

Given an n-standard tree τ , we may associate to each address bs ∈ dom(τ) a λb term T (τ, bs) (with
free variable q : (Natn → Bool)) by reverse induction on the length of bs:

T (τ, bs)
.
= b if τ(bs) =!b

T (τ, bs)
.
= if q(k) then T (τ, bs ++ [true]) else T (τ, bs ++ [false]) if τ(bs) =?k

We then define
P(τ)

.
= λq. T (τ, [])

such that model of P(τ) is τ , and call P(τ) the canonical n-standard predicate for τ .

Example: Canonicalising ex

ex : (Nat3 → Bool)→ Bool
ex .

= λp. if p 0 then p 1 xor p 2
else not (p 2 xor p 1)

=

ex : (Nat3 → Bool)→ Bool
ex .

= λp. if p 0 then
if p 1 then
if p 2 then true xor true
else true xor false

else
if p 2 then false xor true
else false xor false

else
if p 2 then
if p 1 then not (true xor true)
else not (true xor false)

else
if p 1 then not (false xor true)
else not (false xor false)

Specification of generic counting

Definition (n-points)

A closed value Q : (Natn → Bool) is said to be a syntactic n-point if:

∀k ∈ Nn.∃b ∈ B. Q k ∗ b

A semantic n-point π is a mathematical function π : Nn → B. Any syntactic n-point Q is said to
denote the semantic n-point PJQK given by:

∀k ∈ Nn, b ∈ B. PJQK(k) = b ⇔ Q k ∗ b

Any two syntactic n-points Q and Q ′ are said to be distinct if PJQK 6= PJQ ′K.

Definition (Generic count specification)

1 The count of a semantic n-predicate Π, written]Π, is simply the number of semantic n-points
π ∈ Bn for which Π(π) = true.

2 If P is any n-predicate, we say that K correctly counts P if K P ∗ m, where m =]PJPK.

Efficient generic count with effect handlers

effcount : ((Nat→ Bool)→ Bool)→ Nat
effcount .=

λP. handle P (λj .do Branch 〈〉) with
val ans 7→ if ans then 1 else 0
Branch 〈〉 resume 7→ resume true + resume false

(where Branch : 〈〉 → Bool ∈ Σ)

Behaviour of effcount ex:

?0

?1

?2

!false !true

?2

!true !false

?2

?1

!true !false

?1

!false !true

Steps: O(2n)

Efficient generic count with effect handlers

effcount : ((Nat→ Bool)→ Bool)→ Nat
effcount .= λP.

handle

P (λj .do Branch 〈〉)

with
val ans 7→ if ans then 1 else 0
Branch 〈〉 resume 7→ resume true + resume false

(where Branch : 〈〉 → Bool ∈ Σ)

Behaviour of effcount ex:

?0

?1

?2

!false !true

?2

!true !false

?2

?1

!true !false

?1

!false !true

Steps: O(2n)

Efficient generic count with effect handlers

effcount : ((Nat→ Bool)→ Bool)→ Nat
effcount .= λP. handle P (λj .do Branch 〈〉) with

val ans 7→ if ans then 1 else 0
Branch 〈〉 resume 7→ resume true + resume false

(where Branch : 〈〉 → Bool ∈ Σ)

Behaviour of effcount ex:

?0

?1

?2

!false !true

?2

!true !false

?2

?1

!true !false

?1

!false !true

Steps: O(2n)

Efficient generic count with effect handlers

effcount : ((Nat→ Bool)→ Bool)→ Nat
effcount .= λP. handle P (λj .do Branch 〈〉) with

val ans 7→ if ans then 1 else 0

Branch 〈〉 resume 7→ resume true + resume false

(where Branch : 〈〉 → Bool ∈ Σ)

Behaviour of effcount ex:

?0

?1

?2

!false !true

?2

!true !false

?2

?1

!true !false

?1

!false !true

Steps: O(2n)

Efficient generic count with effect handlers

effcount : ((Nat→ Bool)→ Bool)→ Nat
effcount .= λP. handle P (λj .do Branch 〈〉) with

val ans 7→ if ans then 1 else 0
Branch 〈〉 resume 7→ resume true + resume false

(where Branch : 〈〉 → Bool ∈ Σ)

Behaviour of effcount ex:

?0

?1

?2

!false !true

?2

!true !false

?2

?1

!true !false

?1

!false !true

Steps: O(2n)

Efficient generic count with effect handlers

effcount : ((Nat→ Bool)→ Bool)→ Nat
effcount .= λP. handle P (λj .do Branch 〈〉) with

val ans 7→ if ans then 1 else 0
Branch 〈〉 resume 7→ resume true + resume false

(where Branch : 〈〉 → Bool ∈ Σ)

Behaviour of effcount ex:

?0

?1

?2

!false !true

?2

!true !false

?2

?1

!true !false

?1

!false !true

Steps: O(2n)

Efficient generic count theorem

Theorem

The following hold for any n ∈ N and any n-standard predicate P of PCFh:
1 effcount correctly counts P.
2 The number of steps required to evaluate effcount P is(∑

bs∈Addrn

steps(T (P))(bs)

)
+ O(2n)

Proof.
By labourious backwards induction on bs

Naïve count

The naïve approach applies P to all 2n possible points.

naivecountn : ((Natn → Bool)→ Bool)→ Nat
naivecountn

.
= λP.count n (λi .⊥)

where count 0 p
.
= if P p then 1 else 0

count (1 + n) p
.
= count n (λi .if i = n then true else p i)

+ count n (λi .if i = n then false else p i)

Here (λi .⊥) is the divergent point.

Iteration suffices to implement the naïve approach.

whileA : (A→ Bool)→ A→ (A→ A)→ A
whileA test x f

.
= if test x then whileA test (f x) f else x

Naïve count

The naïve approach applies P to all 2n possible points.

naivecountn : ((Natn → Bool)→ Bool)→ Nat
naivecountn

.
= λP.count n (λi .⊥)

where count 0 p
.
= if P p then 1 else 0

count (1 + n) p
.
= count n (λi .if i = n then true else p i)

+ count n (λi .if i = n then false else p i)

Here (λi .⊥) is the divergent point.

Iteration suffices to implement the naïve approach.

whileA : (A→ Bool)→ A→ (A→ A)→ A
whileA test x f

.
= if test x then whileA test (f x) f else x

Berger count

Counter-intuitively, nested calls to a given predicate, P, can vastly improve the performance.

bestshotn : ((Natn → Bool)→ Bool)→ (Natn → Bool)

Returns a point Q such that P Q evaluates to true.

For example, we can implement a ‘fail-fast’ variation of naivecount.

lazycountn
.
= λP. if P (bestshotn P) then naivecountn P else 0

One can take this idea further and do better than naivecount to implement Bergercount (Berger 1990).

Bergercount : ((Natn → Bool)→ Bool)→ Nat

(see Escardó (2007) for mind-boggling uses of this trick)

Berger count

Counter-intuitively, nested calls to a given predicate, P, can vastly improve the performance.

bestshotn : ((Natn → Bool)→ Bool)→ (Natn → Bool)

Returns a point Q such that P Q evaluates to true.

For example, we can implement a ‘fail-fast’ variation of naivecount.

lazycountn
.
= λP. if P (bestshotn P) then naivecountn P else 0

One can take this idea further and do better than naivecount to implement Bergercount (Berger 1990).

Bergercount : ((Natn → Bool)→ Bool)→ Nat

(see Escardó (2007) for mind-boggling uses of this trick)

Berger count

Counter-intuitively, nested calls to a given predicate, P, can vastly improve the performance.

bestshotn : ((Natn → Bool)→ Bool)→ (Natn → Bool)

Returns a point Q such that P Q evaluates to true.

For example, we can implement a ‘fail-fast’ variation of naivecount.

lazycountn
.
= λP. if P (bestshotn P) then naivecountn P else 0

One can take this idea further and do better than naivecount to implement Bergercount (Berger 1990).

Bergercount : ((Natn → Bool)→ Bool)→ Nat

(see Escardó (2007) for mind-boggling uses of this trick)

Pruned count

We can do better!
Idea: remember which components of the point a given predicate inspects (Longley 1999).

modulus : ((Natn → Bool)→ Bool)→ (Natn → Bool)→ (Bool× ListNat)
modulus P q

.
= let log ← ref([] : ListNat) in

let wrap ← λi .(log := i :: !log ; q i) in
let b ← P wrap in
〈b, !log〉

If modulus P q = 〈b, xs〉, then P q′ = b for every q′ that agrees component-wise with q at xs.

We can use this to effectively ‘prune’ the search space to either ‘fail-fast’ or ‘succeed-fast’.

prunedcountn : ((Natn → Bool)→ Bool)→ Nat

Generic count without effect handlers

countn : ((Natn → Bool)→ Bool)→ Nat

Every countn ∈ PCF must restart computation for every point, e.g. countn ex:

?0

?1

?2

!false !true

?2

!true !false

?2

?1

!true !false

?1

!false !true

Steps: Ω(n2n)

Generic count without effect handlers

countn : ((Natn → Bool)→ Bool)→ Nat

Every countn ∈ PCF must restart computation for every point, e.g. countn ex:

?0

?1

?2

!false !true

?2

!true !false

?2

?1

!true !false

?1

!false !true

Steps: Ω(n2n)

Lower bound theorem

Theorem

If K is a PCF program that correctly counts all canonical n-standard PCF predicates, and P is any
canonical n-standard PCF predicate, then the evaluation of K P must take time Ω(n2n).

Proof.
The proof involves tracking of reduction sequences and setting things up such that one can appeal to
Milner (1977)’s Context Lemma.

Experiments

The efficiency gap can be observed in practice.

Benchmarks
Queens: enumerating solutions to the n-Queens problem
Integration: exact real integration (Simpson 1998)

Methodology
Implementations: naïve, Berger, pruned, effectful, and bespoke
Implemented in OCaml 5 using the multicont package
Ran each program 11 times. Given 3 minutes to complete
Reporting the median speedup (or slowdown) of the effectful implementation

The source code and data are available via

https://github.com/dhil/asymptotic-speedup-via-effect-handlers-code-jfp

https://github.com/dhil/asymptotic-speedup-via-effect-handlers-code-jfp

Queens experiments

First solution All solutions
Parameter 20 24 28 8 10 12
Naïve − − − 365.76 6633.47 −
Berger 13.89 21.72 31.83 3.91 3.51 3.18
Pruned 3.75 4.90 5.86 1.75 1.99 1.97
Bespoke 0.24 0.28 0.30 0.24 0.21 0.22

Table: Runtime of the n-Queens procedures relative to the effectful implementation

Integration experiments

Id Squaring Logistic
Parameter 20 14 17 20 1 2 3 4 5
Naïve 6.58 18.22 22.38 27.28 23.44 63.75 36.67 − −
Berger 3.62 7.67 7.83 8.34 8.76 11.98 11.67 12.02 12.62
Pruned 1.25 1.67 1.54 1.60 1.70 2.51 2.20 3.52 3.84

Table: Runtime of exact real integration procedures relative to the effectful implementation

The puzzle so far

Ex
ce
pt
io
ns Affine

handlers

PCF Effect
handlers

State

The puzzle so far

Ex
ce
pt
io
ns Affine

handlers

PCF Effect
handlers

State

The puzzle so far

Ex
ce
pt
io
ns

Affine
handlers

PCF Effect
handlers

State

The puzzle so far

Ex
ce
pt
io
ns Affine

handlers

PCF Effect
handlers

State

Summary and future work

Summary
Take away: effect handlers admit asymptotically more efficient implementations
Intuition: effect handlers enable computation to be shared via backtracking
See the papers for rigorous mathematical analyses of this phenomenon

Future work
What about the expressive power relative to McCarthy’s amb operator?
What about the asymptotic space characteristics of effect handlers?

References I

Berger, Ulrich (1990). “Totale Objekte und Mengen in der Bereichstheorie”. PhD thesis. Munich:
Ludwig Maximillians-Universtität.

Escardó, Martín Hötzel (2007). “Infinite sets that admit fast exhaustive search”. In: LICS. IEEE
Computer Society, pp. 443–452.

Hillerström, Daniel, Sam Lindley, and John Longley (2020). Effects for Efficiency: Asymptotic Speedup
with First-Class Control (extended version). arXiv: 2007.00605 [cs.PL].

Longley, John (1999). “When is a functional program not a functional program?” In: ICFP. ACM,
pp. 1–7.

Milner, Robin (1977). “Fully Abstract Models of Typed λ-Calculi”. In: Theor. Comput. Sci. 4.1,
pp. 1–22.

Plotkin, Gordon (1977). “LCF considered as a programming language”. In: Theor. Comput. Sci. 5.3,
pp. 223–255.

Plotkin, Gordon D. and John Power (2003). “Algebraic Operations and Generic Effects”. In: Applied
Categorical Structures 11.1, pp. 69–94.

Plotkin, Gordon D. and Matija Pretnar (2009). “Handlers of Algebraic Effects”. In: ESOP. Vol. 5502.
Lecture Notes in Computer Science. Springer, pp. 80–94.

https://arxiv.org/abs/2007.00605

References II

Simpson, Alex K. (1998). “Lazy Functional Algorithms for Exact Real Functionals”. In: MFCS.
Vol. 1450. Lecture Notes in Computer Science. Springer, pp. 456–464.

	References

