
Implementing UNIX with Effects Handlers

Ramsay Carslaw
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Computer Science

School of Informatics
University of Edinburgh

2024

Abstract
Algebraic effect handlers first outlined by Plotkin and Prenar allow for a computation
to be split into an effect signature and an implementation in the form of handler. Effect
handlers allow for programs to be written in an extremely modular fashion by composing
multiple effect handlers or having multiple handlers for one effect. This approach leads
to programs that are written in an effect-oriented style where most the core functionality
is an effectful computation.

UNIX is an operating system created at AT&T’s Bell Labs in 1971 by Ritchie and
Kernighan. It features a file system, user space and process management. It has become
one of the most widely used operating systems, being licensed in Apple’s macOS and
served as the main inspiration for Linux.

This project provides an effect-oriented implementation of Unix based on Daniel Hiller-
ström’s toy UNIX he outlines in his PhD thesis. In this project, UNIX is implemented
in Unison, a functional language with support for effect handlers. This initial Unison
version of UNIX is then extended with more advanced features such as permissions,
generic users and environment variables and a better scheduler. Both Unison and
effect-oriented programming are analysed with the UNIX implementation serving as
a sufficiently complex program to demonstrate some of the selling points of effect-
oriented programming.

i

Research Ethics Approval
This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics
committee.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Ramsay Carslaw)

ii

Acknowledgements
I would like to thank my supervisor, Sam Lindley, who has taught me so much and
given up so much of his time to help with this project.

Thank you also to Daniel Hillerstöm who met with me on several occasions to help me
understand both his own work and errors in my code.

Finally, thank you to my family, Koré and Alex for their support and listening to me
talk about this project far too often.

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Aims . 1
1.3 Objectives . 1
1.4 Outline . 2

2 Background 3
2.1 Algebraic Effects and Effect Handlers 3

2.1.1 Example in Unison . 3
2.2 The State of Effect-Oriented Programming 4

2.2.1 Library Based Effects . 5
2.2.2 First-Class Effects . 5

2.3 Shallow vs. Deep Effect Handlers 6
2.4 Affine and ‘Multi-Shot’ Handlers . 6
2.5 UNIX . 6

2.5.1 The UNIX Philosophy . 6
2.6 Effect Based File Systems . 6
2.7 Effect Handlers and UNIX . 7

3 Base Implementation 8
3.1 A Basic UNIX Implementation . 8
3.2 Program Status . 8

3.2.1 Unique vs. Structural Types 9
3.2.2 The Handler . 9
3.2.3 The Request Type . 9

3.3 Basic I/O . 9
3.3.1 IO and Exception abilities 10
3.3.2 Defining Multiple Handlers 10

3.4 Users and Environment . 11
3.4.1 The Apostrophe in Unison 12
3.4.2 Environment as a handler . 12
3.4.3 Remark on Handlers as State 13

3.5 Nondeterminism . 13
3.5.1 Remark on Joining Lists in Unison 14

3.6 Scheduling . 14

iv

3.7 Serial File System . 15
3.7.1 State . 15
3.7.2 Definitions . 15
3.7.3 Types . 15
3.7.4 Initial File System . 16
3.7.5 Effect Types and Operations 16
3.7.6 File System Handlers . 18
3.7.7 Unlisted Functions . 19

3.8 Pipes . 19
3.8.1 Cat . 19
3.8.2 Find . 20
3.8.3 Pipe and Copipe Handler . 20

3.9 Unix Fork . 21
3.9.1 Process ID’s . 21
3.9.2 Effect Signature . 21
3.9.3 Types . 21
3.9.4 Running a process . 22
3.9.5 The handler . 22

4 Extensions 24
4.1 Error Handling . 24
4.2 Environment Variables . 25

4.2.1 Getting and Setting Environment Variables 25
4.2.2 Remark on Storing Environment Variables 25
4.2.3 Updated Environment Handler 26
4.2.4 Unlisted Functions . 27

4.3 Generic Users . 27
4.3.1 Effect Operation . 27
4.3.2 Changes to the Handler . 27

4.4 Permissions . 28
4.4.1 Remark on Multihandlers Handlers in Unison 30

4.5 An Alternate Scheduler . 30
4.5.1 Effect Signature . 31
4.5.2 Priority Queue . 31
4.5.3 An Aging Scheduler . 32
4.5.4 Simple Starvation Heuristic 33
4.5.5 Remark on Switching Handlers 33

5 Evaluation and Discussion 34
5.1 Unison . 34

5.1.1 Typechecker . 34
5.1.2 Multihandler Pattern Matching 34
5.1.3 Effect Variables in Definitions 35

5.2 Effect Oriented vs Conventional Programming 36
5.2.1 Modularity . 36
5.2.2 Composition . 37
5.2.3 Performance . 38

v

6 Conclusion and Future Work 39
6.1 Base Implementation . 39

6.1.1 Summary . 39
6.1.2 Future Work . 39

6.2 Extended Implementation . 39
6.2.1 Summary . 39
6.2.2 Future Work . 40

6.3 Evaluation . 40
6.3.1 Summary . 40
6.3.2 Future Work . 40

A Final State of the Code 41
A.1 Base Implementation . 41
A.2 Extended Implementation . 53

B Profiling Code 73

Bibliography 75

vi

Chapter 1

Introduction

1.1 Motivation

Effect handlers [1] are widely becoming adopted in functional programming languages
[2] and even imperative languages as libraries. They provide a unique and expressive
syntax for handling side effects and control flow. This approach has led to a new
paradigm of programming known as effect-oriented programming [3]. Effect-oriented
programming leverages the way effect handlers can be composed to create modular
programs that can be easily extended and maintained. The aim of this project is to
demonstrate that complex programs, such as UNIX [4] can be implemented in this
effect oriented style. The project details techniques and observations on effect oriented
programming through the context of implementing a UNIX-like operating system.

We choose to implement UNIX as it is a well known and widely used operating system.
Choosing an operating system also introduces more advanced control flow and concepts
through time sharing, filesystems and pipes. The primary implementation language of
this project is Unison, a functional programming language with first class support for
effect handlers.

1.2 Aims

While the primary goal is to implement a UNIX-like operating system in Unison,
the project also aims to compare the effect oriented programming style to traditional
programming styles. In doing so, we will also aim to provide a commentary on the
performance of effect handlers in Unison. The goal is not to write a real operating
system but to demonstrate that effect handlers can be the right choice for complex
programming tasks. As such, metrics like performance and scalability are of secondary
concern.

1.3 Objectives

The objectives of the project are as follows:

1

Chapter 1. Introduction 2

• Provide a background and context for effect oriented programming and its inter-
section with operating systems

• Implement a UNIX-like operating system in Unison based on the work of Hiller-
ström [5]

• Extend this initial version with more interesting uses of effect handlers and more
advanced operating system features

• Provide a commentary on the performance of effect handlers in Unison

• Compare the effect oriented programming style to traditional programming styles

• Provide a reflection on the project and its outcomes

1.4 Outline

Chapter 2 introduces the literature and background of effect handlers and provides a
simple example in Unison. We then discuss the state of effect oriented programming and
some of the pros and cons of various effect implementations. Chapter 2 also describes
some of the other research that has been done in this area.

Chapter 3 details the Unison implementation of a Hillerström’s toy Unix operating
system. It provides a basic implementation of a subset of UNIX features including:
users, a filesystem , timesharing and pipes. This chapter also provides examples on
using the implemented features.

Chapter 4 outlines features implemented beyond Hillerström’s original implementation.
These features include a more advanced scheduler, errors and exceptions as well as an
overhauled userspace complete with environment variables.

Chapter 5 provides a commentary on the performance of effect handlers in Unison and
details some of the challenges faced when implementing UNIX in this way. It also
compares the effect oriented programming style to traditional programming styles in
areas such as modularity, extensibility and performance.

Chapter 6 provides a reflection on the project and its outcomes. It details some of the
challenges faced and the lessons learned. It also provides some ideas for future work in
this area.

Chapter 2

Background

2.1 Algebraic Effects and Effect Handlers

Algebraic effects [1] and their corresponding handlers [6] [3] are a programming
paradigm that when paired together offers a novel way to compose programs. It starts
with the definition of the effect or the effect signature that gives the effect a name
in scope and specifies any input and the return type otherwise known as the effect
operation. For example, we might define the effect signature State that stores state for
some type a. In order to make use of our State effect we can define the effect operations
put and get where put will update the value of type a stored in State and get will return
the current value. At this stage the effect operation has no implementation and is more
an acknowledgement to the compiler that it should expect an implementation. For this
reason any function that references these effect operations is known as an effectful
function or a function whose definition is not complete without an effect handler. In
the put and get example, any function that uses put and get to store values would be an
effectful function. The effect handler provides one implementation of the given effect
operation. We could define a simple handler for state that simply updates a variable of
the given type or we could define a more complex one that uses hash maps. In this way,
we can change the semantics of an effectful function by handling it with a different
handler that provides an alternative implementation to the effect. Crucially, we can have
multiple handlers defined in the same program for one effect allowing for much more
modular programming or effect-oreinted programming.

2.1.1 Example in Unison

Unison 1 is a functional language implemented in Haskell that offers built in support
for effect handlers through its abilities system.

Unison provides the ability keyword which allows users to define their own effects. It
also provides the handle ... with ... pattern to attach handlers to effectful functions.
structural ability State a

where

1https://github.com/unisonweb/unison

3

Chapter 2. Background 4

put: a -> {State a} ()
get: {State a} a

Listing 2.1: The put and get example in Unison. Note that the structural keyword refers
to the fact that Unison stores type definitions as a hash. Even if we changed all the
variable names it would still view it as the same type. To avoid that behaviour you can
swap the structural keyword for unique

This defines the two effect operations put and get that have the effect signature State
a. Put takes a value of type a and returns the unit type (). The prefix of {State a} to
the (), refers to the fact that in order to allow for put to return, it must be run from an
effectful function that is handled with an appropriate handler for State a, the need for
this is discussed later in more detail. Similarly, put takes an argument of type a and
must be handled.
addStore : Nat -> {State Nat} ()
addStore x =

y = get ()
put (x + y)

Listing 2.2: An example of an effectful function that uses the State effect

The code in Listing 2.2 is an example of how you would use the effects in Unison. It
takes an argument of type Nat and adds it to the current value by using get. Note that
we specify in the braces in the type signature that we are using a State effect that
operates on Nats or natural numbers.

runState : a -> Request {Store a} a -> a
runState value = cases

{Store.get -> resume} -> handle resume value with runState
value

{Store.put v -> resume} handle resume () with runState v
{result} -> result

Listing 2.3: The handler for the State effect

The handlers in Unison use tail recursion to reduce to the case where just the value is left
result -> result. For both store and put we use the resumption and the handler to
reach the final value. The special type Request allows us to perform pattern matching
on the possible types of the computation.
handle (addStore 10) with storeHandler 10

Finally, we can put it all together by calling the function addStore with the handler
storeHandler.

2.2 The State of Effect-Oriented Programming

There are many implementations of effect handlers, some of which are implemented as
libraries and some are built into the language as first class operators.

Chapter 2. Background 5

2.2.1 Library Based Effects

• libhandler [7] is a portable c99 library that implements algebraic effect handlers
for C. It implements high performance multi-shot effects using standard C func-
tions. It is limited by the assumptions it makes about the stack such as it being
contiguous and not moving. In practice this could lead to memory leaks if it
copies pointers.

• libmprompt 2 is a C/C++ library that adds effect handlers. It uses virtual memory
to solve the problem mentioned with libhandler. By keeping the stack in a fixed
location in virtual memory it restores safety. It also provides the higher level
libmpeff interface. A downside is they recommend at least 2GiB of virtual
memory to allow for 16000 stacks which may be challenging on some systems.

• cpp-effects [8] is a C++ implementation of effect handlers. It uses C++ template
classes and types to create modular effects and handlers. Its performance has
been shown to be comparable to C++20 coroutines. its limitations are it only
supports one-shot resumptions.

• There are several Haskell libraries that implement effect handlers [9, 10, 11].
Some of these libraries are discussed in more detail below.

– EvEff uses lambda calculus based evidence translation to implement its
effects system. It provides deep effects.

– fused-effects 3 fuses the effect handlers it provides with computation by
applying fusion laws that avoid intermediate representation. The handlers in
fused-effects are one-shot however.

2.2.2 First-Class Effects

• Unison is shown in more detail in Section 2.1.1

• Koka [2] is a statically typed functional language with effect types and handlers.
It can also compile straight to C code without needing a garbage collector. Koka
is developed by a small team and as such is still missing much of its standard
library.

• Frank [12] is a strict functional language that is effectful in that it has first class
support for bi-directional effects and effect handlers.

• Links [13] is a functional programming language designed for the web. Out of
the box it does not support true algebraic effects, however through an extension
[14] it gains first class support for continuations.

2https://github.com/koka-lang/libmprompt
3https://hackage.haskell.org/package/fused-effects

Chapter 2. Background 6

2.3 Shallow vs. Deep Effect Handlers

There are two types of effect handler implementation, deep handlers, as originally
defined by Plotkin and Pretnar [6] and shallow handlers [15]. Deep handlers pass a
copy of the full handler along with the computation which allows for the handler to be
invoked again as the handlers receive themselves as an argument. Shallow handlers do
not pass the handler with the computation. There are also sheep handlers, which while
being shallow implement some of the behaviour of deep handlers leading to the name
sheep or shallow + deep. In practice, the type of handler is more of an implementation
detail, to the programmer it mostly just effects how code is structured and leads to
different patterns.

2.4 Affine and ‘Multi-Shot’ Handlers

If remaining computation or continuation of an effect can be resumed once from a
handler then the effect system implements one-shot or affine effect handlers. If it is able
to resume the computation multiple times then it is a multi-shot handler.

2.5 UNIX

UNIX [4] is an operating system designed and implemented by Dennis M. Ritchie and
Ken Thompson at AT&T’s Bell Labs in 1974. It provides a file system (directories, file
protection etc.), a shell, processes (pipe, fork etc) and a userspace. Since its first release
it has been reimplemented for a variety of systems such as macOS. It also heavily
inspired GNU/Linux.

2.5.1 The UNIX Philosophy

A phrase often associated with UNIX is the Unix philosophy. The UNIX philosophy
refers to some of the core principles with which it was developed. The core principles
involve composing many small simple programs that accomplish one task well to solve
more complex tasks [16]. The idea of many small modular components has spread to
many areas of computer science.

2.6 Effect Based File Systems

Continuations in operating systems [17] are not a new concept. Kiselyov has demon-
strated that algebraic effects can be used in a real file system and provide advanced
features like snapshots, an undo operation and copy-on-write behaviour. Although this
publication does not consider the performace of implementing features in this way it
demonstrates that file systems can be built around continuations.

Chapter 2. Background 7

2.7 Effect Handlers and UNIX

In chapter 2 of his 2022 thesis, Daniel Hillerström [5] outlines a theoretical implemen-
tation of UNIX using an original calculus syntax. In this he provides an implementation
of the original UNIX paper [4] that includes a filesystem and timesharing. Hillerström
makes several assumptions about the effect system that would need to be taken into
account in order to implement this with a real language. For example, he uses Kammar
et. al [18] style deep handlers for most sections, however he also makes use of shallow
handlers and parametrised handlers. Most effect handler implementations are limited to
just one type of handler.

Chapter 3

Base Implementation

3.1 A Basic UNIX Implementation

This chapter outlines and details a Unison implementation of the toy UNIX written by
Hillerström [5]. Hillerström’s original is written in a fictional Lambda calculus that al-
lows for using Shallow, Deep and Parameterised handlers. in the Unison implemenation
I use only shallow handlers.

3.2 Program Status

In Unix programs must provide a code when they exit (usually 0 for success and
anything else for failure). The effect signature Status provides the exit operation
which takes one argument of type Nat 1 and returns the empty type which is defined
unique type Empty =. Given the empty type has no implementation it has the effect
of terminating the program wherever it is returned by exit, therefore exiting.The
argument represents the return code.
unique ability Status

where
exit: Nat -> Empty

We can now use this to indicate program status. For example:
--- some functionality

if somethingWentWrong == true then
exit 1

else
print "Hello , World"

There is no explicit exit 0 on the else branch. This is because the default state of a
program should be 0, it should not need an explicit exit 0.

1a positive integer in Unison

8

Chapter 3. Base Implementation 9

3.2.1 Unique vs. Structural Types

In Unison, unique types are used when the name of the type is semantically important.
The alternative is structural types which are used when the name of the type is not
important and it can be stored as a hash without its name. unique types are used for all
effects as it has no real implication given the program is not distributed.

3.2.2 The Handler

The handler for Status is defined as:
exitHandler : Request {e, Status} x -> Nat
exitHandler request =

match request with
{ result } -> 0
{ exit v -> resume } -> v

The implementation for exit has no effect it simply consumes the exit code and returns.
The handler however returns a Nat return code. If an exit operation is encountered we
return the value given to the exit operation. The return case simply returns 0 as if we
reach the end of a function being handled by the handler then we can assume it was
successful and return 0. This means that even though the program is terminated with
the empty type, we will still have access to the return code of the program through the
handlers return type.

3.2.3 The Request Type

The Request type is a special type in Unison that allows for pattern matching on
operations of an effect. In the braces are the effect types for the handler. The Status is
the effect signature that is explicitly being handled. The e allows for any other effects
in the computation to be passed through. The x is the return type of the computation.

3.3 Basic I/O

The effect signature BasicIO is used for simple I/O operations. The first and only effect
operation of BasicIO is echo which takes an argument of type Text and returns the
unit type ().
unique ability BasicIO where

echo: Text -> ()

The handler for BasicIO is simply a wrapper for Unison’s putText function which it
uses to print the given text to stdout. It then handles the resumption with the same
handler to handle any further echo calls.
basicIO : Request {BasicIO} x ->{IO, Exception} ()
basicIO result =

match result with
{ echo text -> resume } ->

putText stdOut text;

Chapter 3. Base Implementation 10

handle resume () with basicIO
{ result } -> ()

3.3.1 IO and Exception abilities

The handler for BasicIO uses the putText function from Unison’s standard library
because of this we must include the {IO, Exeption} in the type signature to indicate
that this function needs access to both the IO and Exception abilities in order to be run.
Both of these abilities are built in and used for all input and output in unison.

Program 1 — Hello World

By combining the operations of Status and BasicIO we can write a simple
program that prints “Hello, World!” and then exits with the successful error code.
Notice that the operations are invoked in the same way as functions. In this case
they are being used inside a function. It would be possible to implement a simple
shell for these commands however that is outside the scope of this project.
greetAndExit : a ->{BasicIO , Status} ()
greetAndExit _ = echo "Hello , World!\n"; exit 0

By composing the two handlers in sections 3.2 and 3.3 we can run the program.
runGreetAndExit _ = handle (handle !greetAndExit with basicIO)

with exitHandler

By running this function with the unison codebase manager we get

Hello , World!

0

3.3.2 Defining Multiple Handlers

Effects are not limited to just one handler. The semantics of echo can be changed
without altering its definition. For example, the backwardsIO handler below.
backwardsIO : Request {BasicIO} x ->{IO, Exception} ()
backwardsIO result =

match result with
{ echo text -> resume } ->

handle resume () with basicIO
putText stdOut text;

{ result } -> ()

In this case, the resumption is handled first and then the text is printed. The effect of
this is best shown by running it side by side with basicIO on the following program.
helloworld _ = echo "Hello ,"; echo " World!\n"

The output of running this program with each handler is shown in Figure 3.1.

By handling the resumption first ‘World’ is printed first.

Chapter 3. Base Implementation 11

> handle !helloworld with
basicIO

Hello , World!

()

> handle !helloworld with
backwardsIO

World!
Hello ,

()

Figure 3.1: The output of running helloworld with each handler.

3.4 Users and Environment

To introduce the concept of a user-space and users we can start by adding some hard
coded users. For now, alice, bob and a root user: unique type User = Alice | Bob
| Root.

Next we introduce the Session signature for operations involving users. The operation
su or substitute user is used to change the environment to that of a different user. The
ask operation can be used to access environment variables. Since the only variable we
have now is USER the argument to ask is a unit.
unique ability Session

where
su: User -> {Session } ()
ask: () -> {Session } Text

We can now implement the UNIX command whoami with a wrapper around ask.
whoami: ’{Session} Text
whoami _ = ask ()

We now have all the tools to keep track of which user is logged in and display that
information:

Chapter 3. Base Implementation 12

Program 2 — Session Management

We can now compose the handlers we have written so far to switch between the
users and invoke whoami.

session _ = su Alice
echo (!whoami)
echo "\n"
su Bob
echo (!whoami)
echo "\n"
su Root
echo(!whoami)
echo "\n"

The function runsession simply invokes session using our unix function.
runsession _ = handle (handle (handle (session) with env
Root) with basicIO) with exitHandler

alice
bob
root

0

3.4.1 The Apostrophe in Unison

The ’ character in Unison is syntactic sugar for a function with a unit as the type of
its first argument. For example, the type signature of whoami could be rewritten as ()
->{Session} Text. This is equivalent to ’{Session} Text.

3.4.2 Environment as a handler

The handler for Session also takes a user as an argument, this is the user that is
currently logged in. To switch user we simply handle the rest of the computation with
the new user provided as the argument to su. Then when the computation ends we will
be back in the environment of the old user.

Due to the single environment variable being USER, ask performs the action of whoami.
It keeps the user the same and returns the user as a string.
env: User -> Request {Session} a -> a
env user request =

match request with
{result} -> result
{ ask () -> resume } -> match user with

Alice -> handle resume "alice" with env user
Bob -> handle resume "bob" with env user
Root -> handle resume "root" with env user

Chapter 3. Base Implementation 13

{su user ’ -> resume} -> handle resume () with env user ’

In this way the environment is the handler itself as it contains the information such as
which user is logged in. The handler can be extended to have parameterised environment
variables making it the complete environment.

3.4.3 Remark on Handlers as State

In this example, the handler replaces an algebraic datatype as state. When the user is
substituted the handler handles the remaining computation with with the newly logged
in user as an argument to itself. In this way the state only needs to be set when the
handler is initially called i.e. handle ... with env Root and it is automatically
managed for the whole program. This is discussed more in Section 5.2.

3.5 Nondeterminism

To implement the fork command from UNIX we can leverage deliberate non-determinism
that is possible with effect handlers. We define the fork operation which returns a
Boolean as a member of the TimeSharing signature.
unique ability TimeSharing

where
fork: Boolean

To use fork we can simply use it in control flow to create a branch. Where normally
only one branch would be executed, the two branches become our two processes. For
example:
if fork then

echo "Heads\n"
else

echo "Tails\n"

By running that code with the handler for fork we expect to get:

Heads
Tails

0

The handler for fork is fairly simple:
nondet : Request {TimeSharing} a -> [a]
nondet request =

match request with
{ fork -> resume } -> (handle resume true with nondet) lib.

base.data.List.++ (handle resume false with nondet)
{ result } -> [result]

The handler returns a list of values with the type a which is the return type of the
computation. When we encounter a fork we resume with the values true and false and

Chapter 3. Base Implementation 14

join the two lists that are created. The return case wraps the value in a list so that we
can use the ++ operator.

3.5.1 Remark on Joining Lists in Unison

Unison’s typechecker sometimes struggles inferring the type of ++. For this reason we in-
clude the full path to the standard library where ++ is defined i.e. lib.base.data.List.++.
This is discussed more in Section 5.1.1.

3.6 Scheduling

Now that we can create processes through fork it would be useful to be able to write
scheduling algorithms. Currently fork will run the first process to completion, and
then run the second process to completion. To begin scheduling we need to give the
processes a method of stopping execution and giving control to the other process. We
introduce the Interrupt signature with one operation also called interrupt.
unique ability Interrupt

where
interrupt: {Interrupt } ()

Now that we have interrupt we can write an alternative handler for BasicIO that will
interrupt before every IO operation, allowing for the other process to run first.
interruptWrite : Request {e, BasicIO} x ->{e, Interrupt , BasicIO} ()
interruptWrite result =

match result with
{ echo text -> resume } ->

interrupt
echo text
handle resume () with interruptWrite

{ result } -> ()

Note that we still need to provide a handler for echo, this handler simply injects interrupt
in front of every instance of echo.

In order to schedule processes we need to introduce state. Each process can either be
Done (It has produced a return value) or Paused (It has been interrupted). Paused is a
recursive definition as it contains a PState in its type.
unique type PState a e = Done a | Paused (’{e} PState a e)

The type a is the return type of the process and the e is an effect variable that represents
any effects that are needed to run the PState. This can be thought of as analagous
to the resumption monad first introduced by Milner in 1975 [19], in that computation
is split into either the result or another computation i.e. the resumption. We can now
implement the handler for interrupt.
reifyProcess : Request {Interrupt , e} a -> PState a e
reifyProcess request =

match request with

Chapter 3. Base Implementation 15

{ interrupt -> resume } -> Paused (_ -> handle !resume with
reifyProcess)

{ result } -> Done result

In the case of an interrupt, the handler suspends the computation by making it an
anonymous function with a unit type as its first argument, and wrapping it in the Paused
datatype. This means we can run the Paused computations later by invoking that
function we created. The return case simply wraps the value in the Done type.
sched : [PState a {e, TimeSharing}] -> [a] ->{e} [a]
sched ps done =

match ps with
[] -> done
(Done res) +: ps’ -> sched ps’ (res lib.base.data.List.+:

done)
(Paused m) +: ps’ -> sched (ps’ lib.base.data.List.++ (

handle !m with nondet)) done

timeshare : ’{e, Interrupt , TimeSharing} a ->{e} [a]
timeshare m = sched [Paused (_ -> handle !m with reifyProcess)] []

The timeshare function can be wrapped around a computation and will schedule
set the first process as Paused. This can we wrapped around any function that uses
interrupt or fork to handle them correctly.

3.7 Serial File System

3.7.1 State

To implement a file system we need to introduce a method of storing and retrieving
state. The effect signature and operations introduced in section 2.1.1 provide the perfect
interface as it takes a generic type a as an argument, we can introduce our own type to
represent the filesystem and use it as an argument to State.

3.7.2 Definitions

File System — Unlike a real UNIX implementation we only implement the most basic
operations on files, i.e. creation, deletion, reading and writing. Additionally we treat
everything as a file, unlike UNIX which has directories and special files, we only allow
basic files. Thus the file tree is completely flat.

Serial — Each file can only be read from in order, additionally when we write to file,
there are no write modes, we only append to the file. Semantically, different write modes
can be achieved with the four basic operations and can be implemented by composing
handlers. For example, overwriting a file is equivalent to deleting the existing file,
creating a new one with the same name and writing the content to the new file.

3.7.3 Types

Chapter 3. Base Implementation 16

unique type DirectoryT = Directory (Text , Nat)
unique type DataRegionT = DataRegion (Nat, Text)
unique type INodeT = INode Nat Nat
unique type IListT = IList (Nat, INodeT)
unique type FileSystemT = FileSystem (List DirectoryT) (List IListT)

(List DataRegionT) Nat Nat

• DirectoryT — A directory stores a file name with its associated I-number

• INode — An I-Node stores the metadata for a file along with a pointer to a
DataRegion

• IList — An I-List stores an I-number with an I-Node

• DataRegion — A DataRegion contains the actual file contents along with the
pointer from the INode

Finally, the FileSystem type collects the above types into lists along with two Nat’s to
represent the next directory number and the next I-number.

3.7.4 Initial File System

Much like Root is the initial user, we introduce an initial file system by initialising the
types in Section 3.7.3. We create the file stdout to represent the standard output file at
I-number 0.
initialINode : INodeT
initialINode = INode 0 0

initialDirectory : DirectoryT
initialDirectory = (Directory ("stdout", 0))

initialDataRegion : DataRegionT
initialDataRegion = DataRegion (0, "")

initialIList : IListT
initialIList = IList (0, initialINode)

initialFileSystem : FileSystemT
initialFileSystem = FileSystem [initialDirectory] [initialIList] [

initialDataRegion] 0 0

3.7.5 Effect Types and Operations

Now we have the types and the state we can introduce the new effect signatures and
operations. Firstly, FileRW which provides the read and write.
unique ability FileRW

where
read: Nat -> Text
write: (Nat, Text) -> ()

read — Read takes an I-number and returns the text at the corresponding data region.

Chapter 3. Base Implementation 17

write – Write takes an I-number and some text and appends the text to the end of the
data region pointed to by the I-number.

Next FileCO which is used for creating and opening files.
unique ability FileCO

where
create: Text -> Nat
open: Text -> Nat

FileCO provides two operations, create and open.

create — Create takes a filename and returns a fresh I-number for the new file. If the
provided filename exists it will overwrite the file to be blank again.

open — Open takes a filename and returns the I-number associated with it.

Finally, we have FileLU which links and unlinks files.
unique ability FileLU

where
link: (Text , Text) -> ()
unlink: Text -> ()

link — Links two files such that changes to one happen to the other by making their
I-Nodes point to the same data region.

unlink — Undoes the effect of link by making the two files have separate data regions
again.

Program 3 – mv

We can now use these effect operations to define a mv command. While it can be
used to move files between directories we have a flat file system so in this case
its more of a rename command.

mv : Text -> Text ->{State FileSystemT , FileRW , FileCO} ()
mv src dest =

let file = read (open src)
_ = create src
write ((create dest), file)

First, we use open to obtain the I-number of of the INode of the source file, we
can then use this I-number as an argument to read to obtain the contents of
the source file. Now that the contents of the source file are stored in the file
varaible, we can safely delete the source file by calling create on it. If create
is called on an existing file it will delete that file by overwriting it. Since we no
longer need its I-number we assign the return value of the create to an empty
variable. Finally, in one step we create the destination file (overwriting it if it
exists) and write the value of the variable file to this new file using the I-number
returned from create.

Chapter 3. Base Implementation 18

3.7.6 File System Handlers

The handler for FileRW is fairly simple. It takes a request and matches on the operations.
If the operation is read it returns the text at the corresponding data region. If the
operation is write it appends the text to the end of the data region pointed to by the
I-number. It makes use of the underlying fwrite and fread functions that traverse the
filesystem data structure, they are listed in the appendix. It will silently fail currently
which we will address in the next chapter.
fileRW : Request {FileRW} a ->{State FileSystemT , Error} a
fileRW result =

match result with
{ read i -> resume } ->

let fs = get ()
text = fread i fs
match text with

Left text -> handle resume text with fileRW
Right () ->

handle resume "" with fileRW
{ write (i, text) -> resume } ->

let fs = get ()
fs’ = fwrite i text fs
put fs’
handle resume () with fileRW

{ result } -> result

The handler for FileCO is also fairly simple. It takes a request and matches on the
operations. If the operation is create it returns a fresh I-number for the new file. If the
operation is open it returns the I-number associated with the filename. It makes use of
the underlying fcreate and fopen.
fileCO : Request {FileCO} a ->{FileRW , State FileSystemT , Error} a
fileCO result =

match result with
{ create name -> resume } ->

let fs = get ()
(ino, fs’) = fcreate name fs
put fs’
handle resume ino with fileCO

{ open name -> resume } ->
let fs = get ()

ino = fopen name fs
put fs
handle resume ino with fileCO

{ result } -> result

Finally, FileLU which follows the same structure as the other handlers. The operation
link takes a pair of filenames as it’s argument and alters thier I-Nodes such that they
both point at the same data region. This has the effect of ‘linking’ the files where
changing or modifying one file will do the same as the other. The operation unlink
operates in the same way, separating two linked files by creating a new I-Number and
data region for the file in question. Once again these use underlying function flink
and funlink.

Chapter 3. Base Implementation 19

fileLU : Request {FileLU} a ->{FileRW , State FileSystemT , Error} a
fileLU result =

match result with
{ link (src, dest) -> resume } ->

let fs = get ()
fs’ = flink src dest fs
put fs’
handle resume () with fileLU

{ unlink name -> resume } ->
let fs = get ()

fs’ = funlink name fs
put fs’
handle resume () with fileLU

{ result } -> result

3.7.7 Unlisted Functions

This section references lots of functions that are not listed here i.e. fcreate, fopen etc.
These functions all traverse and modify the FileSystem data type. They are all too
long to be listed here but can be found in the Appendix.

3.8 Pipes

In UNIX, a pipe is essentially syntactic sugar for connecting the input and output of
two files. Given the simple nature of the file-system described in Section 3.7, and the
lack of true stdout and stdin files, pipes are represented as effect operations that are
connected via handlers.

Yield and Await are two new effect signatures for implementing pipes. Yield performs
some computation and returns or ‘yields’ a value, Await takes that value as an argument
and then performs computation. Using the yield operation can be thought of as writing
to stdout and await is reading from stdin.
unique ability Await a

where
await: () -> a

unique ability Yield a
where

yield: a -> ()

3.8.1 Cat

In UNIX, cat prints the contents of a file to stdout. In this case, pipes can be used, by
yielding the file a character at a time other utilities can simply await input.
cat: Text -> {FileRW , FileCO , Yield Text , e} -> ()
cat fname =

let ino = open fname
iter (ch -> yield ch) (read ino)
yield ’\0’

Chapter 3. Base Implementation 20

3.8.2 Find

We define a new program find that searches for a string in a the output of a pipe. This
is done by yielding the output of the pipe to the find function which then awaits the
string to search for. If the string is found it yields true, otherwise it yields false.
find: Text ->{Await Text} Boolean
find target =

findRec target buffer n length =
if n < length then

findRec target (buffer ++ !await) n+1 length
else

if buffer == target then
True

else
if buffer == "" then

False
else

findRec target ((drop 1 buffer) ++ !await) n length
findRec target "" 0 (length target)

Program 4 – Searching in a set of files

Given a list of filenames we want to return the name of each file that contains a
particular string. We can compose cat and find to achieve this.

searchFiles: Text -> [Text] ->{FileRW , FileCO , Await Text ,
Yield Text , e} [Text]

searchFiles target fnames = match fnames with
[] -> []
fname +: rest ->

if pipe (cat fname) (find target) then
fname ++ searchFiles target rest

else
searchFiles target rest

3.8.3 Pipe and Copipe Handler

The handlers can now be defined:
pipe : (’{Yield b, e} a) -> (’{Await b, e} a) ->{e} a
pipe p c = handle c () with

(cases
{ x } -> x
{ await () -> resume } -> copipe (resume) p)

copipe : (b -> {Await b, e} a) -> (’{Yield b, e} a) ->{e} a
copipe c p = handle p () with

(cases
{ x } -> x
{ yield y -> resume } -> pipe resume ’(c y))

Chapter 3. Base Implementation 21

Each handler takes two arguments: a producer, p and a consumer, c. Both arguments
are suspended computations that produce a value of type a. A producer may invoke
Yield and a consumer may invoke Await.

The pipe handler immediately handles the consumer and defines an inline function to
handle it with. If the consumer invokes an await it is handled with the copipe with the
producer and the resumption of the consumer. This means that the consumer process is
blocked until the producer can produce its value.

Similarly, the copipe handler runs the producer until it yields a value, that value is then
given to the suspended consumer and given back to the pipe handler.

3.9 Unix Fork

3.9.1 Process ID’s

It would be useful to be able to keep track of multiple processes. UNIX uses process
ID’s or pid’s for this purpose. Whenever a program forks, fork should return a process
ID of the newly created process. This then allows programs to ‘wait’ for a particular
process to finish.

3.9.2 Effect Signature

The updated effect signature now includes wait which will wait for a process with the
specified pid. Fork now returns the pid of the newly created process. The type of
interrupt remains unchanged. Fork and interrupt are renamed to ufork and uinterrupt
to avoid having to overwrite the previous definition.
unique ability Co

where
ufork: Nat
wait: Nat -> ()
uinterrupt: ()

3.9.3 Types

Now that the program must also handle pid’s there must be more state that is capable
of storing this information. Done and Paused become Ready and Blocked as now, a
process is either ready to run, or blocked by another process. Instead of returning just a
return value of a it must now also return which process returned that value, hence the
List (Nat, a) type.
unique type Proc a e = Proc (Sstate a e ->{e} List (Nat, a))
unique type Pstate a e = Ready (Proc a e) | Blocked Nat (Proc a e)
unique type Sstate a e = {q: List (Nat, Pstate a e), done: List (Nat

, a), pid: Nat, pnext: Nat}

Finally, there is the Sstate type which has the queue of process to be run, the list of
process that are finished or done and the current and next process ID’s.

Chapter 3. Base Implementation 22

Program 5 – Init process

When UNIX is initialised it forks to create a new process to run all programs on.
The original process is then the parent process of every process created by the
operating system.
init: ’{e} a ->{e, Co} ()
init main = let pid = ufork

if pid == 0 then
let a = main ()

()
else

wait pid

We accept one argument main which is the function to be ran as the first program.
If we are on the ancestor process (pid = 0) then we capture the return value of
main while running it and return the unit type. If we are on any other process we
wait for the main process.

3.9.4 Running a process

The runNext function takes an argument of type Sstate and runs it to produce the list
of pid’s and return values.
runNext: Sstate a e ->{e} List (Nat, a)
runNext st =

let (Sstate q done pid pnext) = st
match q with

[] -> done
(pid’, Blocked pid’’ resume) +: q’ ->

runNext (Sstate (q’ lib.base.data.List.++ [(pid’,
Blocked pid’’ resume)]) done pid pnext)

(pid’, Ready resume) +: q’ ->
let st’ = (Sstate q’ done pid’ pnext)

Proc (resume ’) = resume
resume ’ st’

It unpacks the Sstate and matches on the queue. When it encounters a blocked process,
it sends it to the back of the queue and recursively calls the function on the new queue.
When it encounters a process that is ready to be run it unpacks the Proc type and gives
the Sstate as an argument to the resumption, thus creating the list.

3.9.5 The handler
scheduler: Sstate a e -> Request {Co, e} a ->{e} List (Nat, a)
scheduler st request = match request with

{ result } ->
let (Sstate q done pid pnext) = st

done ’ = done lib.base.data.List.++ [(pid, result)]
runNext (Sstate q done ’ pid pnext)

{ ufork -> resume } ->

Chapter 3. Base Implementation 23

let resume ’ = (Proc (st -> handle resume 0 with scheduler st
))

(Sstate q done pid pnext) = st
pid’ = pnext
pnext ’ = pnext + 1
q’ = q lib.base.data.List.++ [(pid’, Ready resume ’)]
handle resume pid’ with scheduler (Sstate q’ done pid

pnext ’)
{ wait pid -> resume } ->

let resume ’ = (Proc (st -> handle resume () with scheduler
st))

(Sstate q done pid pnext) = st
q’ = if processExists pid q then

q lib.base.data.List.++ [(pid, Blocked pid
resume ’)]

else q lib.base.data.List.++ [(pid, Ready resume ’)]
runNext (Sstate q’ done pid pnext)

{ uinterrupt -> resume } ->
let resume ’ = (Proc (st -> handle resume () with scheduler

st))
(Sstate q done pid pnext) = st
q’ = q lib.base.data.List.++ [(pid, Ready resume ’)]
runNext (Sstate q’ done pid pnext)

The handler takes a Sstate and a request. If the request is a return value it appends the
result to the list of done processes and runs the next process. If the request is a fork it
creates a new process with the next pid and handles its resumption. The parent process
is put back into a Proc type and added to the back of the queue with a process ID of
zero. Interrupting simply causes the process to be put back into the queue as ready to
run while running the next operation. Waiting for a process is more complex. If the
process exists in the queue it is blocked and the resumption is handled with the new
state. If the process does not exist in the queue it is added to the back of the queue as
ready to run. Therefore, if the process ID it has been asked to wait on does not exist it
behaves the same as interrupt.

Chapter 4

Extensions

4.1 Error Handling

Currently, whenever this implementation encounters an error or problem it will silently
fail. To address this we will introduce different types of error through the EType type.
unique type EType = PermissionDenied | FileNotFound | FileExists |

UserExists | UnknownError

We provide common errors that might occur in UNIX as well as a catch-all unknown
error. Now is also a good time to provide a toText implementation for EType such
that we can print them later. This is simply pattern matching on each possible value of
EType and returning a sensible string for the error message:
toText: EType -> Text
toText = cases

PermissionDenied -> "Permission denied"
FileNotFound -> "File not found"
FileExists -> "File exists"
UserExists -> "User exists"
UnknownError -> "Unknown error"

Now we can introduce the Error signature which provides only one operation throw.
Throw takes an argument of type EType and returns the unit.
unique ability Error

where
throw: EType -> ()

fail : Request {e, Error} a ->{e, IO, Exception , Status} Empty
fail request =

match request with
{ throw err -> resume } ->

printLine (toText err)
exit 1

{ result } -> exit 0

warn : Request {e, Error} a ->{e, IO, Exception} a
warn request =

24

Chapter 4. Extensions 25

match request with
{ throw err -> resume } ->

printLine (toText err)
handle resume () with warn

{ result } -> result

We provide two handlers, fail and warn. fail will print the error message and exit
the program with a return code of 1 thus halting execution. warn will print the error
message and continue execution by handling the resumption.

4.2 Environment Variables

In the implementation outlined in Chapter 3, the environment is solely the user that is
currently logged in. No other information is stored or can be stored. In UNIX, envi-
ronment variables are used to store and get information about the current environment
from within and outside applications. In the UNIX shell, a user can ‘ask’ for the value
of a shell with the $ prefix. For example, echo $USER will print the username of the
currently logged in user. its not just the shell – scripts and programs can also access this
information and use it in control flow.

4.2.1 Getting and Setting Environment Variables

In the implementation detailed in Section 3.4 the operation ask may only ever return
the name of the current user. Instead of ask having the type () -> Text it now takes
an argument of type Text which represents the name of the environment variable it
should lookup and return. In this way it now acts as a get operation for environment
variables.

Now that there is a way to ‘get’ environment variables it makes sense to introduce a ‘set’
operation. setvar takes the name of an environment variable and another argument of
type Text representing its new value and updates it in the store.
unique ability Session

where
su: User -> ()
ask: Text -> Text
setvar: Text -> Text -> ()

It is now possible to update whoami to use this new syntax.
whoami: ’{Session} Text
whoami _ = ask "USER"

4.2.2 Remark on Storing Environment Variables

If this program was written in a more conventional style the arguments to env (the
handler for Session) would have to be modified to accommodate a new argument
that is the state for environment variables or a global data structure would have to be
introduced. Since this implementation uses effect handlers the State handler used in

Chapter 4. Extensions 26

the filesystem can be added to the type signature of env as an effect variable meaning the
arguments to env do not change and no additional data structures need be implemented.
This is discussed more in Section 5.2.

4.2.3 Updated Environment Handler

The handler can now be updated and extended to handle the new and updated operations.
env: User -> Request {Session} a ->{State [(User , [(Text , Text)])]}

a
env user request =

match request with
{result} -> result

{ ask var -> resume } ->
match var with

"USER" ->
match user with

Alice -> handle resume "alice" with env user
Bob -> handle resume "bob" with env user
Root -> handle resume "root" with env user

var ->
let st = get ()

envs = lookupEnvs user st
val = lookupEnvVar var envs
handle resume val with env user

{su user ’ -> resume} ->
handle resume () with env user ’

{setvar var val -> resume} ->
let st = get ()

envs = lookupEnvs user st
envs ’ = modifyEnvVar var val envs
put (modifyEnvs user envs ’ st)
handle resume () with env user

The main difference aside from the new operations, is the type signature which now
includes State [(User, [(Text, Text)])]

The su operation did not require any modification. ask now uses its first argument to
check if the environment variable being requested is ‘‘USER’’ or another variable. If
it is user it calls resume with the hard-coded Text version of the user. In the general
case it uses lookup functions that navigate the environment variables data structure and
return the correct value for the correct user. This mix of hard coded and user defined
environment variables is caused by the hard coded users, and is fixed in the next section,
Section 4.3.

Another interesting feature is the case where a program requests the value of an en-
vironment variable that is not set. UNIX will return an empty string in this case so
lookupEnvVar will return an empty string if it does not exist.

Chapter 4. Extensions 27

4.2.4 Unlisted Functions

The above handler makes use of the functions lookupEnvVar, modifyEnvVar, lookupEnvs,
modifyEnvs and userEquals. The lookup and modify functions traverse and update
the [(User, [(Text, Text)])] data structure that environment variables are stored
in and userEquals returns true if the two given users are the same. These functions
are listed in the appendix.

4.3 Generic Users

Now that there are user-defined environment variables it makes sense to add user-defined
users as well. The User type is modified to have a Username constructor which allows
a user to be constructed with an argument of type Text.
unique type User = Username Text

4.3.1 Effect Operation

The Session operation can now be extended to allow privileged users to create new
users. adduser takes one argument of type Text which is the username of the new user.
unique ability Session

where
su: Text -> ()
ask: Text -> Text
export: Text -> Text -> ()
adduser: Text -> ()

4.3.2 Changes to the Handler

The only operations that need to be modified is su and ask. Substitute user now checks
if the user exists through the userExists function. There is no need to introduce
additional state to create new users, the handler simply uses the [(User, [(Text,
Text)])] data structure to keep track of both the users and their environment variables.
{su user ’ -> resume} ->

if userExists (Username user ’) (get ()) then
handle resume () with env (Username user ’)

else
throw UserDoesntExist
handle resume () with env user -- fail

To add a new user the handler checks if there is already an instance of that user in the
state. If there is it just handles the resumption without modifying the state. If the user
does not exist then it adds the user to the state along with an entry in the new users
environment variables called USER which can be accessed by ask.
{adduser user ’ -> resume} ->

let st = get ()
newuser = (Username user ’)
if not (userExists newuser st) then

Chapter 4. Extensions 28

newvars = [("USER", user ’)]
newenv = modifyEnvs newuser newvars st
put newenv
handle resume () with env newuser

else
handle resume () with env user

Finally, the match statement can be removed from ask as now when a user is created
they are created with the "USER" environment variable set. The last step is to add an
initial userspace which just contains the root user and their environment variable.
initialUserspace : [(User , [(Text , Text)])]
initialUserspace = [(Username "root", [("USER", "root")])]

Userspace code can now be run with handle (handle ... with env (Username
"root")) with initialUserspace.

4.4 Permissions

In Unix file permissions are stored in the I-node of a file. In this implementation,
we demonstrate how an effect handler can be used to manage permissions. First, we
introduce a new type Permission which represents the different types of permissions
that can be granted to a user. We also introduce all which is a list containing every
permission.
unique type Permission = Read | Write | AddUser | Grant | Revoke |

Execute

all : [Permission]
all = [Read , Write , AddUser , Grant , Revoke , Execute]

Now we need a way to modify a user’s permissions. grant and revoke are two
new operations that take a username and a permission and either add or remove that
permission from the user’s list of permissions.
unique ability Permit

where
grant: Text -> Permission -> ()
revoke: Text -> Permission -> ()

Finally we introduce the monolithic handler that we use to implement permissions.
Notice the handler handles every effect we have defined thus far although notice from
the right hand side of the type signature, that it only handles the Permit abilities.
permissions: User -> Request {e, Permit , Session , FileRW , FileLU ,

FileCO , Co} a ->{e, Session , FileRW , FileLU , FileCO , Co, Error ,
State [(Text , [Permission])], IO, Exception} a

permissions user request =
match request with

-- Permissions
{grant user ’ perm -> resume} ->

checkPermission user Grant !get
existingPerms = lookupPermission user ’ !get

Chapter 4. Extensions 29

newPerms = perm +: existingPerms
put (modifyPermission user ’ newPerms !get)
handle resume () with permissions user

{revoke user ’ perm -> resume} ->
checkPermission user Revoke !get
newPerms = removePermission perm (lookupPermission user ’

!get)
put (modifyPermission user ’ newPerms !get)
handle resume () with permissions user

-- Users
{ask var -> resume} ->

checkPermission user Read !get
answer = ask var
handle resume answer with permissions user

{su user ’ -> resume} ->
su user ’
handle resume () with permissions (Username user ’)

{adduser user ’ -> resume} ->
checkPermission user AddUser !get
adduser user ’
handle resume () with permissions user

{export var val -> resume} ->
checkPermission user Write !get
export var val
handle resume () with permissions user

-- Files
{read i -> resume} ->

checkPermission user Read !get
text = read i
handle resume text with permissions user

{write (i, text) -> resume} ->
checkPermission user Write !get
write (i, text)
handle resume () with permissions user

{link (src, dest) -> resume} ->
checkPermission user Write !get
link (src, dest)
handle resume () with permissions user

{unlink name -> resume} ->
checkPermission user Write !get
unlink name
handle resume () with permissions user

{create name -> resume} ->
checkPermission user Write !get
ino = create name
handle resume ino with permissions user

{open name -> resume} ->
checkPermission user Read !get

Chapter 4. Extensions 30

ino = open name
handle resume ino with permissions user

{ufork -> resume} ->
checkPermission user Execute !get
let pid = ufork

handle resume pid with permissions user

{wait pid -> resume} ->
checkPermission user Execute !get
wait pid
handle resume () with permissions user

{uinterrupt -> resume} ->
checkPermission user Execute !get
uinterrupt
handle resume () with permissions user

{result} -> result

The handler works by once again using the State effect to store a list of users and
their permissions. Whenever the handler encounters an effect it will check the currently
logged in users permissions, and if the user has the corerct permissions, it will run the
original effect with its original arguments. The handler keeps track of which user is
logged in through the user argument to itself. If it encounters a su operation it will
update this value.

The grant and revoke operations are implemented by simply traversing and modifying
the data structure stored by the State effect.

The final step is to add an initial permissions list which contains the root user and all
permissions.
initialPermissions : [(Text , [Permission])]
initialPermissions = [("root", all)]

4.4.1 Remark on Multihandlers Handlers in Unison

In the implementation of the permissions handler, there is a lot of repeated code this is
because we are forced to explicitly handle every effect. There is no way to condense
the repeat definitions into a pattern match or similar within the match statement. This is
discussed further in section 5.1.2.

4.5 An Alternate Scheduler

The scheduler in Section 4 is a simple round-robin scheduler while not dissimilar to
UNIX’s multilevel feedback queue round robin scheduler it is much more simplistic.
Even in widely used systems like Linux which switches between multiple algorithms,
scheduling remains very much unsolved [20].

Chapter 4. Extensions 31

To improve the scheduler we introduce the concept of priority levels through a nice
value. In Linux, nice values range from -20 to 19 with -20 being the lowest priority.
Each process has a nice value associated with it that the user can manually change to
increase or decrease the priority of a process.

4.5.1 Effect Signature

The Co effect signature is updated to include nice and renice operations for getting
and setting nice values respectively.
unique ability Co

where
ufork: Nat
wait: Nat -> ()
uinterrupt: ()
nice: Nat -> Int
renice: Nat -> Int -> ()

To avoid breaking the original scheduler these effects are handled but simply handle
the resumption and perform no computation.

4.5.2 Priority Queue

The next step is to create a new runNext function that takes into account the nice value
of each process.
runNextNice: Sstate a e -> [(Nat, Int)] ->{e} List (Nat, a)
runNextNice st niceValues =

let (Sstate q done pid pnext) = st
match q with

[] -> done
(pid’, Blocked pid’’ resume) +: q’ ->

runNextNice (Sstate (q’ lib.base.data.List.++ [(pid
’, Blocked pid’’ resume)]) done pid pnext) niceValues

(pid’, Ready resume) +: q’ ->
match lowestNiceInQueue niceValues q with

Left (pid’, Ready resume) ->
let st’ = (Sstate q’ done pid’ pnext)

Proc (resume ’) = resume
resume ’ st’

Left (pid’, Blocked pid’’ resume) ->
-- unreachable

let st’ = (Sstate q’ done pid’ pnext)
Proc (resume ’) = resume
resume ’ st’

Right () ->
let st’ = (Sstate q’ done pid’ pnext)

Proc (resume ’) = resume
resume ’ st’

The function lowestNiceInQueue takes a list of pairs of procces ID’s and nice values
and the Sstate it is the same as runNext apart from the ready branch. Instead it checks
if the is a process that is ready to be run with a lower nice value than the one at the

Chapter 4. Extensions 32

front of the list. If there is it runs that instead. The Blocked branch is unreachable
as lowestNiceInQueue will always return a ready process but it must be put there to
satisfy the typechecker.

4.5.3 An Aging Scheduler

An aging scheduler is a type of scheduler that increases the priority of a process the
longer it has been waiting. This is done to prevent starvation of low priority processes
that otherwise would not be run. This is achieved by increasing the priority of a process
every time it forks and setting its child to have its old nice value.

The scheduler is implemented through a modified version of the scheduler handler.
As such only the operations that have changed or been added are listed, the others just
have runNext swapped for runNextNice.
schedAging: Sstate a e -> Request {Co, e} a ->{e, State [(Nat, Int)

]} List (Nat, a)
schedAging st request = match request with

....
{ ufork -> resume } ->

let resume ’ = (Proc (st -> handle resume 0 with scheduler st
))

(Sstate q done pid pnext) = st
nicevalue = lookupNice pid !get

if nicevalue - +1 <= minNice then
let q’ = q lib.base.data.List.++ [(pid, Ready resume

’)]
pid’ = pnext
pnext ’ = pnext + 1
handle resume pid’ with scheduler (Sstate q’

done pid pnext ’)
else

put (modifyNice pnext nicevalue !get)
put (modifyNice pnext (nicevalue - +1) !get)

pid’ = pnext
pnext ’ = pnext + 1

q’ = q lib.base.data.List.++ [(pid’, Ready resume ’)]
handle resume pid’ with schedAging (Sstate q’ done

pid pnext)

{ nice pid -> resume } ->
let (Sstate q done pid pnext) = st

nicevalue = lookupNice pid !get
handle resume nicevalue with schedAging st

{ renice pid newNice -> resume} ->
let resume ’ = (Proc (st -> handle resume () with scheduler

st))
(Sstate q done pid pnext) = st
put (modifyNice pid newNice !get)
runNextNice (Sstate q done pid pnext) !get

Chapter 4. Extensions 33

...

The interesting case here is fork where the nice value of the parent is decreased by one
and the child is set to the old nice value of the parent. This will cause process that have
been waiting for a long time to have a higher and hopefully be run sooner.

4.5.4 Simple Starvation Heuristic

Yet another improvement to the scheduler is to introduce a simple heuristic to prevent
starvation. The heuristic is that if a process reached minimum nice through a fork then
it has probable been interrupt a lot and as such is unlikely to run even if we adjust the
nice. To save on the extra computation of handling nice values we can switch back to
the round robin scheduler just by handling the same state with the old handler.

4.5.5 Remark on Switching Handlers

Although the two schedulers are not too different they still handle the queue differently.
We can define as many schedulers as we like (as long as they operate on the same
types) and seamless switch between them by handling resumptions differently. This is
discussed more in Section 5.2.

Chapter 5

Evaluation and Discussion

5.1 Unison

The following section details some of the quirks and missing features of the Unison
effect systsem that were encountered during the implementation of UNIX.

5.1.1 Typechecker

As mentioned in Section 3.5.1, the Unison typechecker could not infer that resume
true/false was going to return a type of [a] despite their being a type signature to this
effect. This forces the programmer to use the fully qualified lib.base.data.List.++
instead of just ++. This hurts the readability of the code and makes it more irksome to
program with as you don’t know which types it can infer and which it can’t. This seems
like an issue that shouldn’t arise in a modern functional language.

5.1.2 Multihandler Pattern Matching

If we consider a handler, like the one in Section 4.4 for permissions, that handles
multiple effects, it would be useful to be able to pattern match on the effect signature or
across multiple operations and invoke them once.

For example, in the permissions handler there is lots of repeated code of the general
form:

{ [effect] [args] -> resume } ->
checkPermission user perm !get
[effect] [args]
handle resume () with permissions user

If we were allows to have a syntax like {effect1 | effect2 | effect3} [args]
-> resume then we could condense the repeated code into a single branch of the match
statement. Even if we could only perform this match for operations of the same effect
signature it would still massively reduce code reuse.

34

Chapter 5. Evaluation and Discussion 35

permissions: User -> Request {e, Permit , Session , FileRW , FileLU ,
FileCO , Co} a ->{e, Session , FileRW , FileLU , FileCO , Co, Error ,
State [(Text , [Permission])], IO, Exception} a

{grant user ’ perm -> resume} -> ...

{revoke user ’ perm -> resume} -> ...

{ read i -> resume } | { write (i, text) -> resume } | { link (src
, dest) -> resume } | { unlink name -> resume } | { create name
-> resume } | { open name -> resume } | ... ->
checkPermission user Read !get
{ability args}
handle resume () with permissions user

You could even borrow the ! syntax and have !ability to represent running an ability
with its given arguments. With this theoretical syntax the size and complexity of the
handler is massively reduced.

5.1.3 Effect Variables in Definitions

In the Unison documentation [21] they suggest defining abilities with the effct signature
as part of the type signature of the effect to represent needing access to the ability to be
run. For example
unique ability Await a

where
await : () ->{Await a} a
yield : a ->{Await a} ()

However, the effect signature {Await a} is inferred by the fact await and yield are
operations of the Await ability. You might think it is useful to be able to include other
effects but if we were to do await : () ->{Await a, Yield a} a then the type
checker stops us with the error EffectConstructorHadMultipleEffects: Await
a3420, Yield a3420 a3420. Furthermore, if you mistakenly put the signature await
() ->{Await} a i.e. you missed the type of a from the Await effect variable, then it
will attempt to infer the type of Await and will no longer throw an error. This is fine
until you try to use the effect in a function when you are met with abstract errors like:

The expression in red

needs the abilities: {Yield b3407}
but was assumed to only require: {Yield a3434 , e3439}

This is likely a result of using an un-annotated function as
an argument with concrete abilities. Try adding an annotation
to the function definition whose body is red.

511 | { await () -> resume } -> copipe
(resume) p)

This error points towards the copipe function as the source of the error which in this
case is completely fine.

Chapter 5. Evaluation and Discussion 36

I suggest to anyone using Unison to avoid including effect variables in the definition
of an ability as it can lead to confusing and abstract errors. Furthermore, I would
encourage the Unison team to consider removing this feature as it seems to cause more
problems than it solves. If it is always inferred to be the correct type then there is no
need to allow a user to set it to an incorrect type.

5.2 Effect Oriented vs Conventional Programming

Consider the following hypothetical implementation of the environment operations
from Section 3.4, which has been implemented in a more conventional style. .
adduser ’: [User] -> Text -> [User]
adduser ’ store user =

store :+ (Username user)

su’ : [User] -> User -> [User]
su’ store user =

match store with
[] -> store
(u +: rest) ->

let uname = userToText u
username = userToText user
if uname == username then

u +: rest
else

store

ask ’: [User] -> Text
ask’ store =

match store with
[] -> ""
(u +: rest) ->

let uname = userToText u
uname

In this version, all the state for the users is stored in a list of users where the first one in
the list is the currently logged in user. This is already more irksome than the handler
implementation as the user of the functions has to keep track of the state themselves
through the return values of su’ and adduser’.

If we compare this to the handler version the state is set once at the beginning by setting
which user is logged in initially and then once a block of code is being handled the user
can ignore the state as it is hidden from them.

5.2.1 Modularity

The comparison in Figure 5.1 shows that although both versions require initial state,
the power of effect handlers allow us to keep the implementation separate from the use
and as such there is no requirement for the function to manage the state of users. As
long as the program is run within scope of the handler all operations will have access to

Chapter 5. Evaluation and Discussion 37

createAndSwitch: Text -> ()
createAndSwitch user =

adduser user
su user

> handle createAndSwitch
‘‘alice ’’ with (Username
’’root ’’)

createAndSwitch ’: Text ->
[User] -> [User]

createAndSwitch ’ user state =
let newState = adduser ’
state user

su’ newState user

> createAndSwitch ’ ‘‘alice ’’
[(Username ‘‘root ’’)]

Figure 5.1: Effect oriented version (left) and the standard version (right)

this state. The result of this is that the effect operations behave much more like UNIX

commands as they can be called without having to pass around variables.

Additionally, if we wanted to provide an alternate implementation of adduser that
logs in the newly created user we could easily accomplish this by writing an alternate
handler for adduser. The conventional version would require a whole new function to
be written just to change the line store :+ (Username user) to (Username user)
+: store. Then once that new function was written, we would have to manually
change every occurence of adduser’ where we want to use the new semantics. The
effect oriented version keeps the same operation and we simply handle any functions
where we need the new version with the new handler. A much more seamless style of
coding.

5.2.2 Composition

When we added environment variables to the userspace it was as simple as adding the
State effect signature with the type being the data structure we need. This means in
the scope of the env function where this was added we could immediately start using
put and get to manage the state of users and environment variables. We didn’t even
need to define a new handler the State handler can accept any algebraic data type as
the type to put and get meaning it was as simple as adding another handle statement
and then modifying the operations.

In contrast, to add environment variables to the conventional code we must modify
the data type used to store users to be something like unique type Environment =
{usr: User, envs: [(Text, Text)]}. Then all occurrences of the operations
must be modified to give them values of the new type. The effect oriented one simply
adds a handle statement and once again leaves the type signatures of the operations
unchanged.

Another example of composing handlers is in the scheduler outlined in Section 4.5.3.
We could develop different scheduling algorithms that are completely isolated from one
and other but still easily switch between them just by handling their resumptions with a
different algorithm. You could use heuristics to determine which is the best scheduler
to use at that moment. To implement this in a conventional way it would require at the
very least some shared queue structure (or lots of copying data) and lots of boilerplate to

Chapter 5. Evaluation and Discussion 38

switch between them. In the effect-oriented version we can simply handle ... with
otherAlgorithm.

5.2.3 Performance

While performance was not the focus of this project, I was still interested in observing
the tradeoffs between the two implementations provided in Section 5.2. Using the
Unison Timers library [22] I ran code that created and switched to a random user 1000
times. The results are shown in Table 5.1.

Metric Effectful Conventional

Samples 1 1

Total (realtime) 2.021658s 15µs
Mean (realtime) 2.021658s 15µs
Median (realtime) 2.021658s 15µs
Min (realtime) 2.021658s 15µs
Max (realtime) 2.021658s 15µs

Total (cpu) 2.152157s 26µs
Mean (cpu) 2.152157s 26µs
Median (cpu) 2.152157s 26µs
Min (cpu) 2.152157s 26µs
Max (cpu) 2.152157s 26µs

Table 5.1: Benchark results for creating and switching to 1000 randomly generated users

The poor performance of the effect oriented version is not surprising. In most effect
implementations layering effect handlers leads to poor performance although there is
work focused on improving the performance in these cases [23] [24] [25].

Chapter 6

Conclusion and Future Work

6.1 Base Implementation

6.1.1 Summary

The section demonstrates a Unison implmentation of Hillerström’s UNIX and provides
several programs that give examples of composing handlers to implement more of
UNIX. I provide Unison implementations for status, basic I/O, users, a basic serial
filesystem, pipes and two methods of timesharing. The programs build on top of these
handlers to create additional UNIX programs like cat.

6.1.2 Future Work

Shell A logical extension to this project would be creating a shell-like bash or similar
to allow users to run the commands in a more real-time way. Writing a shell would
be mostly implementing the parser which is usually unrelated to effect-oriented pro-
gramming which is why it was omitted from this project. It may also be interesting to
see if parsers can be written in an effect oriented style and if there is any benefit to this
approach.

Implementation in other languages Another interesting project would be to implement
the same Unix in another language that has effect handlers like Frank or Koka and
compare the two implementations. This approach would allow for a more direct
comparison of the two languages and their effect systems.

6.2 Extended Implementation

6.2.1 Summary

This section introduces improvements to the userspace through generic user’s and envi-
ronment variables. Both of these features leverage the State effect and demonstrate
how effect handlers can be composed to create new features. We also introduce a sched-
uler that demonstrates how different handlers can be used to achieve more advanced

39

Chapter 6. Conclusion and Future Work 40

control flow. This creates the final version of UNIX which can now be used as a test
platform for analysis.

6.2.2 Future Work

Grep Implementing a version of grep would be a good way to provide some more
advanced examples of effect handlers. This implementation would involve parsing
regular expressions from the pipe command and then matching based on the regular
expression.

Linux Another interesting but extremly difficult project would be attaching effect
handlers to Linux. This could be done through a kernel module and then used for other
applications like writing another scheduling algorithm or making the filesystem closer
to the one outlined by Kiselyov [17]. The scope of the project would have to be reduced
due to the complexity and size of Linux. It would also be a good opportunity to explore
performant effects.

6.3 Evaluation

6.3.1 Summary

This section describes some desirable features the Unison team could consider adding
and the rationale behind adding them. It also outlines and addresses some of the quirks
that were encountered and referenced during the implementation. It also addresses
effect-oriented programming as a concept by comparing the Unix implementation to
a more conventional implementation. This demonstrates the effect-oriented versions
superior modularity and the unique ability to compose effects to create new features.
The performance of the two is also shown, despite this not being an aim of the project,
it is always interesting to compare.

6.3.2 Future Work

Performance As was mentioned before, there is lots of research concerned with im-
proving the performance of effect handlers. A useful extension would be attempting to
apply these techniques to Unison to see if the performance could be improved.

Comparison with a more traditional implementation Although this was partly covered
in the evaluation section it would be interesting to see how the effect oriented version
of Unix compares to a more traditional version in a more complete and thorough way.
This would involve implementing the same features without the use of effect handlers
and comparing them.

Appendix A

Final State of the Code

A.1 Base Implementation

unique ability BasicIO
where

echo: Text -> ()

basicIO : Request {BasicIO} a ->{IO, Exception} a
basicIO result =

match result with
{ echo text -> resume } -> putText stdOut text; handle

resume () with basicIO
{ result } -> result

{-
Status
=========

-}

unique type Empty =

-- The unix exit command that allows you to exit with error code
unique ability Status

where
exit: Nat -> Empty

-- handles the exit command which just returns an integer
exitHandler : Request {g, Status} a -> Nat
exitHandler request =

match request with
{ result } -> 0
{ exit v -> resume } -> v

{-
Userspace
==========

41

Appendix A. Final State of the Code 42

This handles the hard coded users and their environments.
It allows for whoami and su commands to be run.

-}

-- The users (hard coded)
unique type User = Alice | Bob | Root
structural type Environment = Environment User

-- Each user has a unique environment
environments : List (User , Environment)
environments = [(Alice , Environment Alice),

(Bob, Environment Bob),
(Root , Environment Root)]

unique ability Session
where

su: User -> {Session } Environment

-- Helper function because unison cannot infer equity on custom
types

userEquals: User -> User -> Boolean
userEquals user1 user2 =

match user1 with
Alice -> match user2 with

Alice -> true
_ -> false

Bob -> match user2 with
Bob -> true
_ -> false

Root -> match user2 with
Root -> true
_ -> false

whoami: ’{Session} Text
whoami _ = ask ()

env: User -> Request {Session} a -> a env user request =
match request with

{result} -> result
{ ask () -> resume } -> match user with

Alice -> handle resume "alice" with env user
Bob -> handle resume "bob" with env user
Root -> handle resume "root" with env user

{-
Time Sharing

==================
-}

unique ability Interrupt
where

interrupt: {Interrupt } ()

-- unique type PState a = Done a | Paused (Unit ->{Interrupt} a)

Appendix A. Final State of the Code 43

unique type PState a e = Done a | Paused (’{e} PState a e)

interruptWrite result =
match result with

{ echo text -> resume } ->
interrupt
echo text
handle resume () with interruptWrite

{ result } -> ()

--reifyProcess : Request {Interrupt} a -> PState a e
--reifyProcess request =
-- match request with
-- { interrupt -> resume } -> (handle resume with

reifyProcess)
-- { result } -> Done result

reifyProcess request =
match request with

{ interrupt -> resume } -> Paused (_ -> handle !resume with
reifyProcess)

{ result } -> Done result

unique ability TimeSharing
where

fork: {TimeSharing } Boolean

-- handler for time sharing ability
nondet : Request {TimeSharing} a -> [a]
nondet request =

match request with
{ fork -> resume } -> (handle resume true with nondet) lib.

base.data.List.++ (handle resume false with nondet)
{ result } -> [result]

sched : [PState a {e, TimeSharing}] -> [a] ->{e} [a]
sched ps done =

match ps with
[] -> done
(Done res) +: ps’ -> sched ps’ (res lib.base.data.List.+:

done)
(Paused m) +: ps’ -> sched (ps’ lib.base.data.List.++ (

handle !m with nondet)) done

--schedule : [PState a {e, TimeSharing}] ->{e} [a]
--schedule processes =
-- sched processes []

timeshare : ’{g, Interrupt , TimeSharing} o ->{g} [o]
timeshare m = sched [Paused (_ -> handle !m with reifyProcess)] []

{-
Serial File System
==================

-}

Appendix A. Final State of the Code 44

unique ability State a
where

put: a -> ()
get: () -> a

--runState : (b, Request {State b} a) -> (b, a)
--runState pair =
-- match pair with
-- (s, request) ->
-- match request with
-- { result } -> (s, result)
-- { put s’ -> resume } -> (s’, resume ())
-- { get () -> resume } -> (s, resume s)

runState : a -> Request {State a} b -> b
runState v request =

match request with
{ put v’ -> resume } -> handle resume () with runState v’
{ get () -> resume } -> handle resume v with runState v
{ result } -> result

unique type DirectoryT = Directory (Text , Nat)
unique type DataRegionT = DataRegion (Nat, Text)
unique type INodeT = INode Nat Nat
unique type IListT = IList (Nat, INodeT)
unique type FileSystemT = FileSystem (List DirectoryT) (List IListT)

(List DataRegionT) Nat Nat

initialINode : INodeT
initialINode = INode 0 0

initialDirectory : DirectoryT
initialDirectory = (Directory ("stdout", 0))

initialDataRegion : DataRegionT
initialDataRegion = DataRegion (0, "")

initialIList : IListT
initialIList = IList (0, initialINode)

initialFileSystem : FileSystemT
initialFileSystem = FileSystem [initialDirectory] [initialIList] [

initialDataRegion] 0 0

lookupINode : Nat -> [IListT] -> Either INodeT ()
lookupINode i ilists =

match ilists with
[] -> Right ()
(IList (i’, inode)) +: rest ->

if i == i’ then Left inode
else lookupINode i rest

lookupFName : Text -> [DirectoryT] -> Either Nat ()
lookupFName name directories =

Appendix A. Final State of the Code 45

match directories with
[] -> Right ()
(Directory (name ’, i)) +: rest ->

if name == name ’ then Left i
else lookupFName name rest

modifyINode : Nat -> INodeT -> [IListT] -> [IListT]
modifyINode i inode ilists =

match ilists with
[] -> []
(IList (i’, inode ’)) +: rest ->

if i == i’ then (IList (i, inode)) +: rest
else (IList (i’, inode ’)) +: modifyINode i inode rest

lookupDataRegion : Nat -> [DataRegionT] -> Either Text ()
lookupDataRegion i dataRegions =

match dataRegions with
[] -> Right ()
(DataRegion (i’, text)) +: rest ->

if i == i’ then Left text
else lookupDataRegion i rest

modifyDataRegion : Nat -> Text -> [DataRegionT] -> [DataRegionT]
modifyDataRegion i text dataRegions =

match dataRegions with
[] -> []
(DataRegion (i’, text ’)) +: rest ->

if i == i’ then (DataRegion (i, (text ’ ++ text))) +:
rest

else (DataRegion (i’, text ’)) +: modifyDataRegion i text
rest

-- fread , implementation of system read
fread : Nat -> FileSystemT -> Either Text ()
fread i fs =

match fs with
FileSystem directories ilists dataRegions _ _ ->

match lookupINode i ilists with
Left inode ->

match inode with
INode _ dataRegion ->

match lookupDataRegion dataRegion
dataRegions with

Left text -> Left text
Right () -> Right ()

Right () -> Right ()

-- fwrite , writes to the file system at the given inode with the
given text

fwrite : Nat -> Text -> FileSystemT -> FileSystemT
fwrite i text fs =

match fs with
FileSystem directories ilists dataRegions _ _ ->

match lookupINode i ilists with
Left inode ->

match inode with

Appendix A. Final State of the Code 46

INode _ dataRegion ->
FileSystem directories (modifyINode i (

INode i dataRegion) ilists) (modifyDataRegion dataRegion text
dataRegions) 0 0

Right () -> fs

unique ability FileRW
where

read: Nat -> {FileRW } Text
write: (Nat, Text) -> {FileRW } ()

fileRW : Request {FileRW} a ->{State FileSystemT} a
fileRW result =

match result with
{ read i -> resume } ->

let fs = get ()
text = fread i fs
match text with

Left text -> handle resume text with fileRW
Right () -> handle resume "" with fileRW --

make this fail
{ write (i, text) -> resume } ->

let fs = get ()
fs’ = fwrite i text fs
put fs’
handle resume () with fileRW

{ result } -> result

echoWrite : Text ->{FileRW} ()
echoWrite text = write (0, text)

systemIO : Request {BasicIO} a ->{FileRW , State FileSystemT} a
systemIO result =

match result with
{ echo text -> resume } ->

handle write (0, text) with fileRW
handle resume () with systemIO

{ result } -> result

fopen : Text -> FileSystemT -> Nat
fopen name fs =

match fs with
FileSystem directories ilists dataRegions dnext inext ->

match lookupFName name directories with
Left i -> i
Right () -> inext

has : Text -> [DirectoryT] -> Boolean
has name directories =

match directories with
[] -> false
(Directory (name ’, i)) +: rest ->

if name == name ’ then true
else has name rest

fcreate : Text -> FileSystemT -> (Nat, FileSystemT)

Appendix A. Final State of the Code 47

fcreate name fs =
match fs with

FileSystem directories ilists dataRegions dnext inext ->
-- file already exists , overwrite it
if has name directories then

let ino = (fopen name fs)
inode = lookupINode ino ilists
match inode with

Left inode ->
match inode with

INode ino loc ->
let dreg ’ = modifyDataRegion loc

"" dataRegions
(ino , FileSystem

directories ilists dreg ’ dnext inext)
Right () -> (ino, fs) -- unreacable

else
let inext ’ = inext + 1

dnext ’ = dnext + 1
inode = INode inext dnext
ilists ’ = (IList (inext , inode)) +: ilists
directories ’ = (Directory (name , inext)) +:

directories
(inext , FileSystem directories ’ ilists ’

dataRegions dnext ’ inext ’)

unique ability FileCO
where

open: Text -> {FileCO } Nat
close: Nat -> {FileCO } ()

fileCO : Request {FileCO} a ->{FileRW , State FileSystemT} a
fileCO result =

match result with
{ open name -> resume } ->

let fs = get ()
(ino, fs’) = fcreate name fs
put fs’
handle resume ino with fileCO

{ close i -> resume } ->
let fs = get ()

put fs
handle resume () with fileCO

{ result } -> result

flink: Text -> Text -> FileSystemT -> FileSystemT
flink src dest fs =

match fs with
FileSystem directories ilists dataRegions dnext inext ->

if has dest directories then
fs -- error , file exists

else
let ino = lookupFName src directories

match ino with
Left ino ->

let directories ’ = (Directory (dest , ino

Appendix A. Final State of the Code 48

)) +: directories
inode = lookupINode ino ilists
match inode with

Left inode ->
match inode with

INode ino loc ->
let loc’ = loc + 1

inode ’ = INode
ino loc’

ilists ’ =
modifyINode ino inode ’ ilists

FileSystem
directories ’ ilists ’ dataRegions dnext inext

Right () -> fs -- unreachable ,
we know the file exists

Right () -> fs -- no such file src

removeINode : Nat -> [IListT] -> [IListT]
removeINode i ilists =

match ilists with
[] -> []
(IList (i’, inode)) +: rest ->

if i == i’ then rest
else (IList (i’, inode)) +: removeINode i rest

removeDataRegion : Nat -> [DataRegionT] -> [DataRegionT]
removeDataRegion i dataRegions =

match dataRegions with
[] -> []
(DataRegion (i’, text)) +: rest ->

if i == i’ then rest
else (DataRegion (i’, text)) +: removeDataRegion i rest

removeDirectory : Text -> [DirectoryT] -> [DirectoryT]
removeDirectory name directories =

match directories with
[] -> []
(Directory (name ’, i)) +: rest ->

if name == name ’ then rest
else (Directory (name ’, i)) +: removeDirectory name rest

funlink: Text -> FileSystemT -> FileSystemT
funlink name fs =

match fs with
FileSystem directories ilists dataRegions dnext inext ->

if has name directories then
let ino = lookupFName name directories

match ino with
Left ino ->

let directories ’ = removeDirectory name
directories

inode = lookupINode ino ilists
match inode with

Left inode ->
match inode with

INode ino loc ->

Appendix A. Final State of the Code 49

if loc > 1 then
let loc’ =

loc - 1
inode ’ =

INode ino loc’
ilists ’

= modifyINode ino inode ’ ilists

FileSystem directories ’ ilists ’ dataRegions dnext inext
else

let ilists ’
= removeINode ino ilists

dataRegions ’ = removeDataRegion loc dataRegions

FileSystem directories ’ ilists ’ dataRegions ’ dnext inext
Right () -> fs --

unreachable , we know the file exists
Right () -> fs -- no such file src

else
fs -- no such file

unique ability FileLU
where

link: (Text , Text) -> {FileLU } ()
unlink: Text -> {FileLU } ()

fileLU : Request {FileLU} a ->{FileRW , State FileSystemT} a
fileLU result =

match result with
{ link (src, dest) -> resume } ->

let fs = get ()
fs’ = flink src dest fs
put fs’
handle resume () with fileLU

{ unlink name -> resume } ->
let fs = get ()

fs’ = funlink name fs
put fs’
handle resume () with fileLU

{ result } -> result

fileIO m = handle (handle (handle !m with fileRW) with fileCO) with
fileLU

{-
pipes
======

-}

unique ability Await a
where

await: () -> a

Appendix A. Final State of the Code 50

unique ability Yeild a
where

yeild: a -> ()

pipe : ’{Yeild b, e} a -> ’{Await b, e} a ->{e} a
pipe p c = handle c () with

(cases
{ x } -> x
{ await () -> resume } -> copipe resume c p)

copipe : b -> {Await b, e} a -> ’{Yeild b, e} a ->{e} a
copipe c p = handle p () with

(cases
{ x } -> x
{ yeild y -> resume } -> pipe (’resume) c y)

{-
Process Syncronization
======================

-}

unique ability Co
where

ufork: () -> {Co } Nat
wait: Nat -> {Co } ()
uinterrupt: () -> {Co } ()

unique type ProcessState a = Ready a | Blocked Nat a

ready: [(Nat, a)] -> [(Nat, ProcessState a)]
ready processes =

match processes with
[] -> []
(pid, process) +: rest -> (pid, Ready process) +: ready rest

blocked: [(Nat, a)] -> [(Nat, ProcessState a)]
blocked processes =

match processes with
[] -> []
(pid, process) +: rest -> (pid, Blocked pid process) +:

blocked rest

processExists: Nat -> [(Nat, ProcessState a)] -> Boolean
processExists pid processes =

match processes with
[] -> false
(pid’, process) +: rest ->

if pid == pid’ then true
else processExists pid rest

runNext : List (Nat, ProcessState a) -> List (Nat, a) -> Nat -> Nat
->{e} List (Nat, a)

runNext queue done pid pnext =
match queue with

[] -> done
fst +: rest -> match fst with

Appendix A. Final State of the Code 51

(pid’, Ready resume) -> handle resume with
scheduler rest done pid’ pnext

(pid’, Blocked pid’’ resume) -> runNext (rest lib.base.
data.List.:+ (pid, Blocked pid’ resume)) done pid pnext

scheduler : List (Nat, ProcessState a) -> List (Nat, a) -> Nat ->
Nat -> Request {Co} a -> List (Nat, a)

scheduler queue done pid pnext proc =
match proc with

{ ufork () -> resume } ->
let resume ’ = handle resume 0 with scheduler queue done

pid pnext
pid’ = pnext
pnext ’ = pnext + 1
queue ’ = queue lib.base.data.List.++ ready resume ’
handle resume pid with scheduler queue ’ done pid’

pnext ’
{ wait pid’ -> resume } ->

let resume ’ = handle resume () with scheduler queue done
pid pnext

queue ’ = if processExists pid’ queue then
queue lib.base.data.List.++ blocked

resume ’
else queue ++ ready resume ’

runNext queue ’ done pid pnext
{ uinterrupt () -> resume } ->

let resume ’ = handle resume () with scheduler queue done
pid pnext

queue ’ = queue ++ ready resume ’
runNext queue ’ done pid pnext

{ result } -> runNext queue (done lib.base.data.List.++ [(
pid, result)]) pid pnext

timeshare2 : ’{Co} a ->{Co} [(Nat, a)]
timeshare2 m = handle m () with scheduler [] [] 1 2

init : ’{e} () ->{e, Co} ()
init main = let pid = ufork ()

if pid == 0 then
main ()

else
wait pid

{-
Util
======

-}

--unique ability Logging
-- where
-- log: a -> {Logging } ()
--
--logHandler : Request {Logging} a -> a
--logHandler request =
-- match request with
-- { log x -> resume } -> putText stdOut x; handle resume ()

Appendix A. Final State of the Code 52

with logHandler
-- { result } -> result

{-
Examples
=========

-}

ioAndUsers : a ->{Session , Status , BasicIO} ()
ioAndUsers _ =

if whoami == "root" then
echo "Logged in as root\n";
exit 0

else
echo "Permission denied\n";
exit 1

runIOandUsers _ = handle (handle (handle !ioAndUsers with
sessionManager initialEnv) with exitHandler) with basicIO

ritchie _ = echo "UNIX is basically\n"; echo "a simple operating
system\n"; echo "but you have to be a genius to understand the
simplicity\n"

hamlet _ = echo "To be, or not to be,\n"; echo "that is the question
:\n"; echo "Wether ’tis nobler in the mind to suffer\n";

forkAndIO : a ->{BasicIO , TimeSharing} ()
forkAndIO _ =

if fork then
!ritchie

else
!hamlet

runForkAndIO _ = handle (handle !forkAndIO with basicIO) with nondet

{-
Tests
======

-}

-- Test exiting
testProgram0 _ = exit 42
--> handle !testProgram0 with exitHandler

testProgram1 _ =
whoami

--> handle !testProgram1 with whoamiHandler

testProgram2 _ =
handle whoami with sessionManager (handle su Alice with
sessionManager initialEnv)

--> handle !testProgram2 with sessionManager initialEnv

proc1 _ = handle [echo "Hello , ", echo "World!"] with basicIO
proc2 _ = handle [echo "Goodbye , ", echo "Code!"] with basicIO

Appendix A. Final State of the Code 53

testProgram3 _ =
handle whoami with sessionManager (handle su Bob with
sessionManager initialEnv)

testProgram4 _ =
if fork then

[handle whoami with sessionManager (handle su Bob with
sessionManager initialEnv)]
else

[handle whoami with sessionManager (handle su Alice with
sessionManager initialEnv)]

--> handle !testProgram4 with nondet

--ritchie _ = echo "UNIX is basically\n"; echo "a simple operating
system\n"; echo "but you have to be a genius to understand the
simplicity\n"

--hamlet _ = echo "To be, or not to be,\n"; echo "that is the
question:\n"; echo "Wether ’tis nobler in the mind to suffer\n";

testProgram5 _ =
handle (handle (if fork then [!ritchie] else [!hamlet]) with
basicIO) with nondet

testProgram6 _ = timeshare (_ -> (handle (handle (if fork then [!
ritchie] else [!hamlet]) with interruptWrite) with basicIO))

testProgram7 _ = handle (get (handle (handle (echo "Hello , World!\n"
) with systemIO) with fileRW)) with runState initialFileSystem

-- testProgram8 _ = timeshare2 (_ -> (handle (handle (if ufork () ==
0 then [!ritchie] else [!hamlet]) with interruptWrite) with

basicIO))

A.2 Extended Implementation

The final version of the code after all the extensions outlined in chapter 4 were imple-
mented.
{-

BasicIO
=========

-}

unique ability BasicIO
where

echo: Text -> ()

basicIO : Request {BasicIO} a ->{IO, Exception} a
basicIO result =

match result with
{ echo text -> resume } -> putText stdOut text; handle

resume () with basicIO
{ result } -> result

Appendix A. Final State of the Code 54

{-
Status
=========

-}

unique type Empty =

-- The unix exit command that allows you to exit with error code
unique ability Status

where
exit: Nat -> Empty

-- handles the exit command which just returns an integer
exitHandler : Request {g, Status} a -> Nat
exitHandler request =

match request with
{ result } -> 0
{ exit v -> resume } -> v

{-
Userspace
==========

This handles the hard coded users and their environments.
It allows for whoami and su commands to be run.

-}

-- The users (hard coded)
unique type User = Username Text

unique ability Session
where

su: Text -> ()
ask: Text -> Text
setvar: Text -> Text -> ()
adduser: Text -> ()

whoami: ’{Session} Text
whoami _ = ask "USER"

env: User -> Request {Session} a ->{Error , State [(User , [(Text ,
Text)])]} a

env user request =
match request with

{result} -> result

{ ask var -> resume } ->
let st = get ()

envs = lookupEnvs user st
val = lookupEnvVar var envs
handle resume val with env user

{su user ’ -> resume} ->

Appendix A. Final State of the Code 55

if userExists (Username user ’) (get ()) then
handle resume () with env (Username user ’)

else
throw NoSuchUser
handle resume () with env user -- fail

{setvar var val -> resume} ->
let st = get ()

envs = lookupEnvs user st
envs ’ = modifyEnvVar var val envs
put (modifyEnvs user envs ’ st)
handle resume () with env user

{adduser user ’ -> resume} ->
let st = get ()

newuser = (Username user ’)
newvars = [("USER", user ’)]
newenv = modifyEnvs newuser newvars st
if not (userExists newuser st) then

put newenv
handle resume () with env newuser

else
throw UserExists
handle resume () with env user

lookupEnvVar: Text -> [(Text , Text)] -> Text
lookupEnvVar var env =

match env with
[] -> ""
(var’, val) +: rest ->

if var == var’ then val
else lookupEnvVar var rest

modifyEnvVar: Text -> Text -> [(Text , Text)] -> [(Text , Text)]
modifyEnvVar var val env =

match env with
[] -> [(var, val)]
(var’, val ’) +: rest ->

if var == var’ then (var, val) +: rest
else (var’, val ’) +: modifyEnvVar var val rest

lookupEnvs: User -> [(User , [(Text , Text)])] -> [(Text , Text)]
lookupEnvs user envs =

match envs with
[] -> []
(user ’, env) +: rest ->

if userToText user == userToText user ’ then env
else lookupEnvs user rest

modifyEnvs: User -> [(Text , Text)] -> [(User , [(Text , Text)])] -> [(
User , [(Text , Text)])]

modifyEnvs user env envs =
match envs with

[] -> [(user , env)]
(user ’, env ’) +: rest ->

Appendix A. Final State of the Code 56

if userToText user == userToText user ’ then (user , env)
+: rest

else (user ’, env ’) +: modifyEnvs user env rest

userExists: User -> [(User , [(Text , Text)])] -> Boolean
userExists user envs =

match envs with
[] -> false
(user ’, env) +: rest ->

if userToText user == userToText user ’ then true
else userExists user rest

userToText: User -> Text
userToText user =

let (Username username) = user
username

initialUserspace : [(User , [(Text , Text)])]
initialUserspace = [(Username "root", [("USER", "root")])]

{-
Time Sharing

==================
-}

unique ability Interrupt
where

interrupt: {Interrupt } ()

unique type PState a e = Done a | Paused (’{e} PState a e)

interruptWrite : Request {e, BasicIO} x ->{e, Co, BasicIO} ()
interruptWrite result =

match result with
{ echo text -> resume } ->

uinterrupt
echo text
handle resume () with interruptWrite

{ result } -> ()

reifyProcess : Request {Interrupt , e} a -> PState a e
reifyProcess request =

match request with
{ interrupt -> resume } -> Paused (_ -> handle !resume with

reifyProcess)
{ result } -> Done result

unique ability TimeSharing
where

fork: {TimeSharing } Boolean

-- handler for time sharing ability
nondet : Request {TimeSharing} a -> [a]
nondet request =

match request with

Appendix A. Final State of the Code 57

{ fork -> resume } -> (handle resume true with nondet) lib.
base.data.List.++ (handle resume false with nondet)

{ result } -> [result]

sched : [PState a {e, TimeSharing}] -> [a] ->{e} [a]
sched ps done =

match ps with
[] -> done
(Done res) +: ps’ -> sched ps’ (res lib.base.data.List.+:

done)
(Paused m) +: ps’ -> sched (ps’ lib.base.data.List.++ (

handle !m with nondet)) done

timeshare : ’{g, Interrupt , TimeSharing} o ->{g} [o]
timeshare m = sched [Paused (_ -> handle !m with reifyProcess)] []

{-
Serial File System
==================

-}

unique ability State a
where

put: a -> ()
get: () -> a

runState : a -> Request {State a} b -> b
runState v request =

match request with
{ put v’ -> resume } -> handle resume () with runState v’
{ get () -> resume } -> handle resume v with runState v
{ result } -> result

unique type DirectoryT = Directory (Text , Nat)
unique type DataRegionT = DataRegion (Nat, Text)
unique type INodeT = INode Nat Nat
unique type IListT = IList (Nat, INodeT)
unique type FileSystemT = FileSystem (List DirectoryT) (List IListT)

(List DataRegionT) Nat Nat

initialINode : INodeT
initialINode = INode 0 0

initialDirectory : DirectoryT
initialDirectory = (Directory ("stdout", 0))

initialDataRegion : DataRegionT
initialDataRegion = DataRegion (0, "")

initialIList : IListT
initialIList = IList (0, initialINode)

initialFileSystem : FileSystemT

Appendix A. Final State of the Code 58

initialFileSystem = FileSystem [initialDirectory] [initialIList] [
initialDataRegion] 0 0

lookupINode : Nat -> [IListT] -> Either INodeT ()
lookupINode i ilists =

match ilists with
[] -> Right ()
(IList (i’, inode)) +: rest ->

if i == i’ then Left inode
else lookupINode i rest

lookupFName : Text -> [DirectoryT] -> Either Nat ()
lookupFName name directories =

match directories with
[] -> Right ()
(Directory (name ’, i)) +: rest ->

if name == name ’ then Left i
else lookupFName name rest

modifyINode : Nat -> INodeT -> [IListT] -> [IListT]
modifyINode i inode ilists =

match ilists with
[] -> []
(IList (i’, inode ’)) +: rest ->

if i == i’ then (IList (i, inode)) +: rest
else (IList (i’, inode ’)) +: modifyINode i inode rest

lookupDataRegion : Nat -> [DataRegionT] -> Either Text ()
lookupDataRegion i dataRegions =

match dataRegions with
[] -> Right ()
(DataRegion (i’, text)) +: rest ->

if i == i’ then Left text
else lookupDataRegion i rest

modifyDataRegion : Nat -> Text -> [DataRegionT] -> [DataRegionT]
modifyDataRegion i text dataRegions =

match dataRegions with
[] -> []
(DataRegion (i’, text ’)) +: rest ->

if i == i’ then (DataRegion (i, (text ’ ++ text))) +:
rest

else (DataRegion (i’, text ’)) +: modifyDataRegion i text
rest

-- fread , implementation of system read
fread : Nat -> FileSystemT -> Either Text ()
fread i fs =

match fs with
FileSystem directories ilists dataRegions _ _ ->

match lookupINode i ilists with
Left inode ->

match inode with
INode _ dataRegion ->

match lookupDataRegion dataRegion
dataRegions with

Appendix A. Final State of the Code 59

Left text -> Left text
Right () -> Right ()

Right () -> Right ()

-- fwrite , writes to the file system at the given inode with the
given text

fwrite : Nat -> Text -> FileSystemT -> FileSystemT
fwrite i text fs =

match fs with
FileSystem directories ilists dataRegions _ _ ->

match lookupINode i ilists with
Left inode ->

match inode with
INode _ dataRegion ->

FileSystem directories (modifyINode i (
INode i dataRegion) ilists) (modifyDataRegion dataRegion text
dataRegions) 0 0

Right () -> fs

unique ability FileRW
where

read: Nat -> {FileRW } Text
write: (Nat, Text) -> {FileRW } ()

fileRW : Request {FileRW} a ->{State FileSystemT , Error} a
fileRW result =

match result with
{ read i -> resume } ->

let fs = get ()
text = fread i fs
match text with

Left text -> handle resume text with fileRW
Right () ->

throw FileNotFound
handle resume "" with fileRW

{ write (i, text) -> resume } ->
let fs = get ()

fs’ = fwrite i text fs
put fs’
handle resume () with fileRW

{ result } -> result

fileEcho: Request {BasicIO} a ->{State FileSystemT} a
fileEcho m = match m with

{ echo text -> resume } ->
let fs = get ()

put (fwrite 0 text fs)
handle resume () with fileEcho

{ result } -> result

fopen : Text -> FileSystemT ->{Error} Nat
fopen name fs =

match fs with
FileSystem directories ilists dataRegions dnext inext ->

Appendix A. Final State of the Code 60

match lookupFName name directories with
Left i -> i
Right () ->

throw FileNotFound
inext

has : Text -> [DirectoryT] -> Boolean
has name directories =

match directories with
[] -> false
(Directory (name ’, i)) +: rest ->

if name == name ’ then true
else has name rest

fcreate : Text -> FileSystemT -> (Nat, FileSystemT)
fcreate name fs =

match fs with
FileSystem directories ilists dataRegions dnext inext ->

-- file already exists , overwrite it
if has name directories then

let ino = (fopen name fs)
inode = lookupINode ino ilists
match inode with

Left inode ->
match inode with

INode ino loc ->
let dreg ’ = modifyDataRegion loc

"" dataRegions
(ino , FileSystem

directories ilists dreg ’ dnext inext)
Right () -> (ino, fs) -- unreacable

else
let inext ’ = inext + 1

dnext ’ = dnext + 1
inode = INode inext dnext
ilists ’ = (IList (inext , inode)) +: ilists
directories ’ = (Directory (name , inext)) +:

directories
(inext , FileSystem directories ’ ilists ’

dataRegions dnext ’ inext ’)

unique ability FileCO
where

create: Text -> Nat
open: Text -> Nat

fileCO : Request {FileCO} a ->{FileRW , State FileSystemT , Error} a
fileCO result =

match result with
{ create name -> resume } ->

let fs = get ()
(ino, fs’) = fcreate name fs
put fs’
handle resume ino with fileCO

{ open name -> resume } ->
let fs = get ()

Appendix A. Final State of the Code 61

ino = fopen name fs
put fs
handle resume ino with fileCO

{ result } -> result

flink: Text -> Text -> FileSystemT ->{Error} FileSystemT
flink src dest fs =

match fs with
FileSystem directories ilists dataRegions dnext inext ->

if has dest directories then
fs -- error , file exists

else
let ino = lookupFName src directories

match ino with
Left ino ->

let directories ’ = (Directory (dest , ino
)) +: directories

inode = lookupINode ino ilists
match inode with

Left inode ->
match inode with

INode ino loc ->
let loc’ = loc + 1

inode ’ = INode
ino loc’

ilists ’ =
modifyINode ino inode ’ ilists

FileSystem
directories ’ ilists ’ dataRegions dnext inext

Right () ->
throw FileExists
fs -- unreachable , we know

the file exists
Right () ->

throw FileNotFound
fs -- no such file src

removeINode : Nat -> [IListT] -> [IListT]
removeINode i ilists =

match ilists with
[] -> []
(IList (i’, inode)) +: rest ->

if i == i’ then rest
else (IList (i’, inode)) +: removeINode i rest

removeDataRegion : Nat -> [DataRegionT] -> [DataRegionT]
removeDataRegion i dataRegions =

match dataRegions with
[] -> []
(DataRegion (i’, text)) +: rest ->

if i == i’ then rest
else (DataRegion (i’, text)) +: removeDataRegion i rest

removeDirectory : Text -> [DirectoryT] -> [DirectoryT]
removeDirectory name directories =

match directories with

Appendix A. Final State of the Code 62

[] -> []
(Directory (name ’, i)) +: rest ->

if name == name ’ then rest
else (Directory (name ’, i)) +: removeDirectory name rest

funlink: Text -> FileSystemT -> FileSystemT
funlink name fs =

match fs with
FileSystem directories ilists dataRegions dnext inext ->

if has name directories then
let ino = lookupFName name directories

match ino with
Left ino ->

let directories ’ = removeDirectory name
directories

inode = lookupINode ino ilists
match inode with

Left inode ->
match inode with

INode ino loc ->
if loc > 1 then

let loc’ =
loc - 1

inode ’ =
INode ino loc’

ilists ’
= modifyINode ino inode ’ ilists

FileSystem directories ’ ilists ’ dataRegions dnext inext
else

let ilists ’
= removeINode ino ilists

dataRegions ’ = removeDataRegion loc dataRegions

FileSystem directories ’ ilists ’ dataRegions ’ dnext inext
Right () -> fs --

unreachable , we know the file exists
Right () -> fs -- no such file src

else
fs -- no such file

unique ability FileLU
where

link: (Text , Text) -> {FileLU } ()
unlink: Text -> {FileLU } ()

fileLU : Request {FileLU} a ->{FileRW , State FileSystemT , Error} a
fileLU result =

match result with
{ link (src, dest) -> resume } ->

let fs = get ()
fs’ = flink src dest fs
put fs’
handle resume () with fileLU

Appendix A. Final State of the Code 63

{ unlink name -> resume } ->
let fs = get ()

fs’ = funlink name fs
put fs’
handle resume () with fileLU

{ result } -> result

fileIO m = handle (handle (handle !m with fileRW) with fileCO) with
fileLU

{-
pipes
======

-}

unique ability Await a
where

await: () -> a

unique ability Yield b
where

yield: b -> ()

pipe : (’{Yield b, e} a) -> (’{Await b, e} a) ->{e} a
pipe p c = handle c () with

(cases
{ x } -> x
{ await () -> resume } -> copipe (resume) p)

copipe : (b -> {Await b, e} a) -> (’{Yield b, e} a) ->{e} a
copipe c p = handle p () with

(cases
{ x } -> x
{ yield y -> resume } -> pipe resume ’(c y))

{-
Process Syncronization
======================

-}

unique ability Co
where

ufork: Nat
wait: Nat -> ()
uinterrupt: ()
nice: Nat -> Int
renice: Nat -> Int -> ()

unique type Proc a e = Proc (Sstate a e ->{e} List (Nat, a))
unique type Pstate a e = Ready (Proc a e) | Blocked Nat (Proc a e)
unique type Sstate a e = {q: List (Nat, Pstate a e), done: List (Nat

, a), pid: Nat, pnext: Nat}

runNext: Sstate a e ->{e} List (Nat, a)
runNext st =

Appendix A. Final State of the Code 64

let (Sstate q done pid pnext) = st
match q with

[] -> done
(pid’, Blocked pid’’ resume) +: q’ ->

runNext (Sstate (q’ lib.base.data.List.++ [(pid’,
Blocked pid’’ resume)]) done pid pnext)

(pid’, Ready resume) +: q’ ->
let st’ = (Sstate q’ done pid’ pnext)

Proc (resume ’) = resume
resume ’ st’

modifyQueue: Nat -> [(Nat, Pstate a e)] -> [(Nat, Pstate a e)]
modifyQueue pid q =

match q with
[] -> []
(pid’, pstate) +: rest ->

if pid == pid’ then rest
else (pid’, pstate) +: modifyQueue pid rest

lookupNice: Nat -> [(Nat, Int)] -> Int
lookupNice pid prio =

match prio with
[] -> -1 -- maybe warn here
(pid’, renice) +: rest ->

if pid’ == pid then
renice

else
lookupNice pid rest

modifyNice: Nat -> Int -> [(Nat, Int)] -> [(Nat, Int)]
modifyNice pid renice prio =

match prio with
[] -> [(pid, renice)]
(pid’, renice ’) +: rest ->

if pid’ == pid then
(pid, renice) +: rest

else
(pid’, renice ’) +: modifyNice pid renice rest

lowestNiceInQueue: [(Nat, Int)] -> [(Nat, Pstate a e)] -> Either (
Nat, Pstate a e) ()

lowestNiceInQueue niceValues q =
match q with

[] -> Right ()
(pid, Blocked pid’ resume) +: rest ->

lowestNiceInQueue niceValues rest
(pid, Ready resume) +: rest ->

let nextnice = lookupNice pid niceValues
match lowestNiceInQueue niceValues rest with

Left (pid’, pstate) ->
let nextnice ’ = lookupNice pid’ niceValues

if nextnice < nextnice ’ then
Left (pid, Ready resume)

else
Left (pid’, pstate)

Right () ->

Appendix A. Final State of the Code 65

Left (pid, Ready resume)

runNextNice: Sstate a e -> [(Nat, Int)] ->{e} List (Nat, a)
runNextNice st niceValues =

let (Sstate q done pid pnext) = st
match q with

[] -> done
(pid’, Blocked pid’’ resume) +: q’ ->

runNextNice (Sstate (q’ lib.base.data.List.++ [(pid
’, Blocked pid’’ resume)]) done pid pnext) niceValues

(pid’, Ready resume) +: q’ ->
match lowestNiceInQueue niceValues q with

Left (pid’, Ready resume) ->
let st’ = (Sstate q’ done pid’ pnext)

Proc (resume ’) = resume
resume ’ st’

Left (pid’, Blocked pid’’ resume) ->
-- unreachable

let st’ = (Sstate q’ done pid’ pnext)
Proc (resume ’) = resume
resume ’ st’

Right () ->
let st’ = (Sstate q’ done pid’ pnext)

Proc (resume ’) = resume
resume ’ st’

minNice : Int
minNice = -20

schedAging: Sstate a e -> Request {Co, e} a ->{e, State [(Nat, Int)
]} List (Nat, a)

schedAging st request = match request with
{result} ->

let (Sstate q done pid pnext) = st
done ’ = done lib.base.data.List.++ [(pid, result)]
runNextNice (Sstate q done ’ pid pnext) !get

{ ufork -> resume } ->
let resume ’ = (Proc (st -> handle resume 0 with scheduler st

))
(Sstate q done pid pnext) = st
nicevalue = lookupNice pid !get

-- simple heuristic to avoid starvation , switch back to
round robin if we reach min nice

if nicevalue - +1 <= minNice then
let q’ = q lib.base.data.List.++ [(pid, Ready resume

’)]
pid’ = pnext
pnext ’ = pnext + 1
handle resume pid’ with scheduler (Sstate q’

done pid pnext ’)
else

put (modifyNice pnext nicevalue !get)
put (modifyNice pnext (nicevalue - +1) !get)

pid’ = pnext

Appendix A. Final State of the Code 66

pnext ’ = pnext + 1

q’ = q lib.base.data.List.++ [(pid’, Ready resume ’)]
handle resume pid’ with schedAging (Sstate q’ done

pid pnext)

{ nice pid -> resume } ->
let (Sstate q done pid pnext) = st

nicevalue = lookupNice pid !get
handle resume nicevalue with schedAging st

{ renice pid newNice -> resume} ->
let resume ’ = (Proc (st -> handle resume () with scheduler

st))
(Sstate q done pid pnext) = st
put (modifyNice pid newNice !get)
runNextNice (Sstate q done pid pnext) !get

{ wait pid -> resume } ->
let resume ’ = (Proc (st -> handle resume () with scheduler

st))
(Sstate q done pid pnext) = st
q’ = if processExists pid q then

q lib.base.data.List.++ [(pid, Blocked pid
resume ’)]

else q lib.base.data.List.++ [(pid, Ready resume ’)]
runNextNice (Sstate q’ done pid pnext) !get

{ uinterrupt -> resume } ->
let resume ’ = (Proc (st -> handle resume () with scheduler

st))
(Sstate q done pid pnext) = st
q’ = q lib.base.data.List.++ [(pid, Ready resume ’)]
runNextNice (Sstate q’ done pid pnext) !get

scheduler: Sstate a e -> Request {Co, e} a ->{e} List (Nat, a)
scheduler st request = match request with

{ result } ->
let (Sstate q done pid pnext) = st

done ’ = done lib.base.data.List.++ [(pid, result)]
runNext (Sstate q done ’ pid pnext)

{ ufork -> resume } ->
let resume ’ = (Proc (st -> handle resume 0 with scheduler st

))
(Sstate q done pid pnext) = st
pid’ = pnext
pnext ’ = pnext + 1
q’ = q lib.base.data.List.++ [(pid’, Ready resume ’)]
handle resume pid’ with scheduler (Sstate q’ done pid

pnext ’)
{ wait pid -> resume } ->

let resume ’ = (Proc (st -> handle resume () with scheduler
st))

(Sstate q done pid pnext) = st
q’ = if processExists pid q then

q lib.base.data.List.++ [(pid, Blocked pid
resume ’)]

Appendix A. Final State of the Code 67

else q lib.base.data.List.++ [(pid, Ready resume ’)]
runNext (Sstate q’ done pid pnext)

{ nice pid -> resume } ->
handle resume +0 with scheduler st

{renice pid newNice -> resume} ->
handle resume () with scheduler st

{ uinterrupt -> resume } ->
let resume ’ = (Proc (st -> handle resume () with scheduler

st))
(Sstate q done pid pnext) = st
q’ = q lib.base.data.List.++ [(pid, Ready resume ’)]
runNext (Sstate q’ done pid pnext)

processExists: Nat -> [(Nat, Pstate a e)] -> Boolean
processExists pid processes =

match processes with
[] -> false
(pid’, process) +: rest ->

if pid == pid’ then true
else processExists pid rest

timeshare2 : ’{g, Co} a ->{g} List (Nat, a)
timeshare2 m = handle !m with scheduler (Sstate [] [] 1 2)

init: ’{e} a ->{e, Co} ()
init main = let pid = ufork

if pid == 0 then
let a = main ()

()
else

wait pid

{-
Permissions
============

-}

unique type Permission = Read | Write | AddUser | Grant | Revoke |
Execute

all : [Permission]
all = [Read , Write , AddUser , Grant , Revoke , Execute]

unique ability Permit
where

grant: Text -> Permission -> ()
revoke: Text -> Permission -> ()

checkPermission : User -> Permission -> [(Text , [Permission])] ->{e,
Error , IO, Exception} ()

checkPermission user required perms =
match perms with

[] -> throw PermissionDenied

Appendix A. Final State of the Code 68

(user ’, perms ’) +: rest ->
if userToText user == user ’ then

if allowed required perms ’ then
()

else
throw PermissionDenied

else checkPermission user required rest

permissions: User -> Request {e, Permit , Session , FileRW , FileLU ,
FileCO , Co} a ->{e, Session , FileRW , FileLU , FileCO , Co, Error ,
State [(Text , [Permission])], IO, Exception} a

permissions user request =
match request with

-- Permissions
{grant user ’ perm -> resume} ->

checkPermission user Grant !get
existingPerms = lookupPermission user ’ !get
newPerms = perm +: existingPerms
put (modifyPermission user ’ newPerms !get)
handle resume () with permissions user

{revoke user ’ perm -> resume} ->
checkPermission user Revoke !get
newPerms = removePermission perm (lookupPermission user ’

!get)
put (modifyPermission user ’ newPerms !get)
handle resume () with permissions user

-- Users
{ask var -> resume} ->

checkPermission user Read !get
answer = ask var
handle resume answer with permissions user

{su user ’ -> resume} ->
su user ’
handle resume () with permissions (Username user ’)

{adduser user ’ -> resume} ->
checkPermission user AddUser !get
adduser user ’
handle resume () with permissions user

{setvar var val -> resume} ->
checkPermission user Write !get
setvar var val
handle resume () with permissions user

-- Files
{read i -> resume} ->

checkPermission user Read !get
text = read i
handle resume text with permissions user

{write (i, text) -> resume} ->
checkPermission user Write !get
write (i, text)
handle resume () with permissions user

Appendix A. Final State of the Code 69

{link (src, dest) -> resume} ->
checkPermission user Write !get
link (src, dest)
handle resume () with permissions user

{unlink name -> resume} ->
checkPermission user Write !get
unlink name
handle resume () with permissions user

{create name -> resume} ->
checkPermission user Write !get
ino = create name
handle resume ino with permissions user

{open name -> resume} ->
checkPermission user Read !get
ino = open name
handle resume ino with permissions user

{ufork -> resume} ->
checkPermission user Execute !get
let pid = ufork

handle resume pid with permissions user

{nice pid -> resume} ->
checkPermission user Execute !get
let nicevalue = nice pid

handle resume nicevalue with permissions user

{renice pid newnice -> resume} ->
checkPermission user Execute !get
renice pid newnice
handle resume () with permissions user

{wait pid -> resume} ->
checkPermission user Execute !get
wait pid
handle resume () with permissions user

{uinterrupt -> resume} ->
checkPermission user Execute !get
uinterrupt
handle resume () with permissions user

{result} -> result

lookupPermission: Text -> [(Text , [Permission])] -> [Permission]
lookupPermission var perms =

match perms with
[] -> []
(var’, perms ’) +: rest ->

if var == var’ then perms ’
else lookupPermission var rest

Appendix A. Final State of the Code 70

modifyPermission: Text -> [Permission] -> [(Text , [Permission])] ->
[(Text , [Permission])]

modifyPermission var perms perms ’ =
match perms ’ with

[] -> [(var, perms)]
(var’, perms ’’) +: rest ->

if var == var’ then (var, perms) +: rest
else (var’, perms ’’) +: modifyPermission var perms rest

removePermission: Permission -> [Permission] -> [Permission]
removePermission perm perms =

match perms with
[] -> []
perm ’ +: rest ->

if permEquals perm perm ’ then rest
else perm ’ +: removePermission perm rest

allowed: Permission -> [Permission] -> Boolean
allowed perm perms =

match perms with
[] -> false
perm ’ +: rest ->

if permEquals perm perm ’ then true
else allowed perm rest

permEquals : Permission -> Permission -> Boolean
permEquals perms1 perms2 =

match perms1 with
Read ->

match perms2 with
Read -> true
_ -> false

Write ->
match perms2 with

Write -> true
_ -> false

AddUser ->
match perms2 with

AddUser -> true
_ -> false

Grant ->
match perms2 with

Grant -> true
_ -> false

Revoke ->
match perms2 with

Revoke -> true
_ -> false

Execute ->
match perms2 with

Execute -> true
_ -> false

initialPermissions : [(Text , [Permission])]
initialPermissions = [("root", all)]

Appendix A. Final State of the Code 71

{-
Errors

-}

unique type EType = PermissionDenied | FileNotFound | FileExists |
UserExists | NoSuchUser | UnknownError

toText: EType -> Text
toText = cases

PermissionDenied -> "Permission denied"
FileNotFound -> "File not found"
FileExists -> "File exists"
UserExists -> "User exists"
NoSuchUser -> "No such user"
UnknownError -> "Unknown error"

unique ability Error
where

throw: EType -> ()

fail : Request {e, Error} a ->{e, IO, Exception , Status} Empty
fail request =

match request with
{ throw err -> resume } ->

printLine (toText err)
exit 1

{ result } -> exit 0

warn : Request {e, Error} a ->{e, IO, Exception} a
warn request =

match request with
{ throw err -> resume } ->

printLine (toText err)
handle resume () with warn

{ result } -> result

{-
Retrofitting fork

-}

nondet2 : Request {TimeSharing} a -> [a]
nondet2 request =

match request with
{ fork -> resume } ->

let pid = ufork
handle resume (pid != 0) with nondet2

{ result } -> [result]

{-
Unix

======
-}

unix : ’{e, BasicIO , FileRW , FileCO , FileLU , Error , Session , Permit ,
Co} a ->{e, IO, Exception} [(Nat, Nat)]

Appendix A. Final State of the Code 72

unix m = handle
(handle

(handle
(handle

(handle
(handle

(handle
(handle

(handle
(handle

(handle
(handle

(handle
init m

with permissions
(Username "root"))

with runState
initialPermissions)

with env (Username "root
"))

with runState
initialUserspace)

with fileCO)
with fileLU)

with fileRW)
with runState initialFileSystem)
with interruptWrite)

with basicIO)
with warn)

with exitHandler)
with scheduler (Sstate [] [] 1 2)

Appendix B

Profiling Code

The following code was used to profile the effect oriented and conventional versions of
the code. The code was run with the timers library [22] and the results were recorded
in Section 5.2.
adduser ’: [User] -> User -> [User]
adduser ’ store user =

store :+ user

su’ : [User] -> User -> [User]
su’ store user =

match store with
[] -> store
(u +: rest) ->

let uname = userToText u
username = userToText user
if uname == username then

u +: rest
else

store

ask ’: [User] -> Text
ask’ store =

match store with
[] -> ""
(u +: rest) ->

let uname = userToText u
uname

timings _ =
Timer.start "conventional"
internal n env =

if n == 0 then
[]

else
let uname = Nat.toText (!randomNat)

addeduser = adduser ’ [] (Username uname)
newEnv = su’ addeduser (Username uname)
internal (n-1) newEnv

Timer.stop "conventional"

73

Appendix B. Profiling Code 74

report _ = printReport timings

timings ’ _ =
Timer.start "effectful"
internal n =

if n == 0 then
()

else
let uname = Nat.toText (!randomNat)

adduser uname
su uname
internal (n-1)

internal 1000
Timer.stop "effectful"

timingsHandler ’ _ = handle (handle (handle !timings ’ with env (
Username "root")) with runState initialUserspace) with warn

report ’ _ = printReport timingsHandler ’

Bibliography

[1] Gordon Plotkin and John Power. Computational effects and operations: An
overview. 2002.

[2] Daan Leijen. Koka: Programming with row polymorphic effect types. In
Paul Blain Levy and Neel Krishnaswami, editors, Proceedings 5th Workshop
on Mathematically Structured Functional Programming, MSFP@ETAPS 2014,
Grenoble, France, 12 April 2014, volume 153 of EPTCS, pages 100–126, 2014.

[3] Matija Pretnar. An introduction to algebraic effects and handlers. invited tutorial
paper. Electronic notes in theoretical computer science, 319:19–35, 2015.

[4] Dennis M Ritchie and Ken Thompson. The UNIX time-sharing system. Bell
System Technical Journal, 57(6):1905–1929, 1978.

[5] Daniel Hillerström. Foundations for programming and implementing effect han-
dlers. Ph.D Thesis, 2022.

[6] Gordon Plotkin and Matija Pretnar. Handlers of algebraic effects. In European
Symposium on Programming, pages 80–94. Springer, 2009.

[7] Daan Leijen. Implementing algebraic effects in c. Technical Report MSR-TR-
2017-23, June 2017.

[8] Dan R. Ghica, Sam Lindley, Marcos Maroñas Bravo, and Maciej Piróg. High-level
effect handlers in C++. Proc. ACM Program. Lang., 6(OOPSLA2):1639–1667,
2022.

[9] Ningning Xie and Daan Leijen. Effect handlers in haskell, evidently. In Tom
Schrijvers, editor, Proceedings of the 13th ACM SIGPLAN International Sympo-
sium on Haskell, Haskell@ICFP 2020, Virtual Event, USA, August 7, 2020, pages
95–108. ACM, 2020.

[10] Oleg Kiselyov and Hiromi Ishii. Freer monads, more extensible effects. In Ben
Lippmeier, editor, Proceedings of the 8th ACM SIGPLAN Symposium on Haskell,
Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015, pages 94–105. ACM,
2015.

[11] Nicolas Wu, Tom Schrijvers, and Ralf Hinze. Effect handlers in scope. In Wouter
Swierstra, editor, Proceedings of the 2014 ACM SIGPLAN symposium on Haskell,
Gothenburg, Sweden, September 4-5, 2014, pages 1–12. ACM, 2014.

75

Bibliography 76

[12] Sam Lindley, Conor McBride, and Craig McLaughlin. Do be do be do. In
Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
Paris, France, January 18-20, 2017, pages 500–514. ACM, 2017.

[13] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web pro-
gramming without tiers. In Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem P. de Roever, editors, Formal Methods for Components and
Objects, 5th International Symposium, FMCO 2006, Amsterdam, The Nether-
lands, November 7-10, 2006, Revised Lectures, volume 4709 of Lecture Notes in
Computer Science, pages 266–296. Springer, 2006.

[14] Daniel Hillerström and Sam Lindley. Liberating effects with rows and handlers.
In James Chapman and Wouter Swierstra, editors, Proceedings of the 1st Interna-
tional Workshop on Type-Driven Development, TyDe@ICFP 2016, Nara, Japan,
September 18, 2016, pages 15–27. ACM, 2016.

[15] Daniel Hillerström and Sam Lindley. Shallow effect handlers. In Programming
Languages and Systems: 16th Asian Symposium, APLAS 2018, Wellington, New
Zealand, December 2–6, 2018, Proceedings 16, pages 415–435. Springer, 2018.

[16] Eric S Raymond. The art of Unix programming. Addison-Wesley Professional,
2003.

[17] Oleg Kiselyov and Chung-chieh Shan. Delimited continuations in operating
systems. In Boicho N. Kokinov, Daniel C. Richardson, Thomas Roth-Berghofer,
and Laure Vieu, editors, Modeling and Using Context, 6th International and
Interdisciplinary Conference, CONTEXT 2007, Roskilde, Denmark, August 20-24,
2007, Proceedings, volume 4635 of Lecture Notes in Computer Science, pages
291–302. Springer, 2007.

[18] Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. ACM
SIGPLAN Notices, 48(9):145–158, 2013.

[19] Robin Milner. Processes: A mathematical model of computing agents. In H.E.
Rose and J.C. Shepherdson, editors, Logic Colloquium ’73, volume 80 of Studies
in Logic and the Foundations of Mathematics, pages 157–173. Elsevier, 1975.

[20] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Quéma,
and Alexandra Fedorova. The linux scheduler: a decade of wasted cores. In
Proceedings of the Eleventh European Conference on Computer Systems, EuroSys
’16, New York, NY, USA, 2016. Association for Computing Machinery.

[21] Unison Computing. User-defined abilities · Unison programming language
https://www.unison-lang.org/docs/language-reference/
user-defined-abilities/.

[22] Rúnar Bjarnason. Unison timers library.
https://share.unison-lang.org/@runarorama/timers.

[23] Marius Müller, Philipp Schuster, Jonathan Lindegaard Starup, Klaus Ostermann,
and Jonathan Immanuel Brachthäuser. From capabilities to regions: Enabling

https://www.unison-lang.org/docs/language-reference/user-defined-abilities/
https://www.unison-lang.org/docs/language-reference/user-defined-abilities/
https://share.unison-lang.org/@runarorama/timers

Bibliography 77

efficient compilation of lexical effect handlers. Proc. ACM Program. Lang.,
7(OOPSLA2), oct 2023.

[24] Naoya Furudono, Youyou Cong, Hidehiko Masuhara, and Daan Leijen. Towards
efficient adjustment of effect rows. In Trends in Functional Programming: 23rd
International Symposium, TFP 2022, Virtual Event, March 17–18, 2022, Revised
Selected Papers, page 169–191, Berlin, Heidelberg, 2023. Springer-Verlag.

[25] Georgios Karachalias, Filip Koprivec, Matija Pretnar, and Tom Schrijvers. Ef-
ficient compilation of algebraic effect handlers. Proc. ACM Program. Lang.,
5(OOPSLA), oct 2021.

	Introduction
	Motivation
	Aims
	Objectives
	Outline

	Background
	Algebraic Effects and Effect Handlers
	Example in Unison

	The State of Effect-Oriented Programming
	Library Based Effects
	First-Class Effects

	Shallow vs. Deep Effect Handlers
	Affine and `Multi-Shot' Handlers
	UNIX
	The UNIX Philosophy

	Effect Based File Systems
	Effect Handlers and UNIX

	Base Implementation
	A Basic UNIX Implementation
	Program Status
	Unique vs. Structural Types
	The Handler
	The Request Type

	Basic I/O
	IO and Exception abilities
	Defining Multiple Handlers

	Users and Environment
	The Apostrophe in Unison
	Environment as a handler
	Remark on Handlers as State

	Nondeterminism
	Remark on Joining Lists in Unison

	Scheduling
	Serial File System
	State
	Definitions
	Types
	Initial File System
	Effect Types and Operations
	File System Handlers
	Unlisted Functions

	Pipes
	Cat
	Find
	Pipe and Copipe Handler

	Unix Fork
	Process ID's
	Effect Signature
	Types
	Running a process
	The handler

	Extensions
	Error Handling
	Environment Variables
	Getting and Setting Environment Variables
	Remark on Storing Environment Variables
	Updated Environment Handler
	Unlisted Functions

	Generic Users
	Effect Operation
	Changes to the Handler

	Permissions
	Remark on Multihandlers Handlers in Unison

	An Alternate Scheduler
	Effect Signature
	Priority Queue
	An Aging Scheduler
	Simple Starvation Heuristic
	Remark on Switching Handlers

	Evaluation and Discussion
	Unison
	Typechecker
	Multihandler Pattern Matching
	Effect Variables in Definitions

	Effect Oriented vs Conventional Programming
	Modularity
	Composition
	Performance

	Conclusion and Future Work
	Base Implementation
	Summary
	Future Work

	Extended Implementation
	Summary
	Future Work

	Evaluation
	Summary
	Future Work

	Final State of the Code
	Base Implementation
	Extended Implementation

	Profiling Code
	Bibliography

