Effect handlers for a low-level stack
machine

Andreas Rossberg

(joint work with Daan, Daniel, Jonathan, KC, Matija, Sam, Stephen)

Shonan Meeting on Effects 2019

WebAssembly
a.k.a. Wasm

a virtual instruction set architecture
a universal low-level virtual machine
near-native performance

can be embedded anywhere

strategic roadmap

v1 (2017): support low-level languages

v2 (2019+): support high-level languages

big new features

tail calls
exceptions
garbage collection
continuations

(threads — stalled by Spectre)

design goals & constraints

— = ———

e—independ@ compact
(@p) e ——— 43
O : O
s platform-independent ‘= easy to generate
E £
;C_) hardware-independent D fast to decode
(fast to execute) O fast to validate
safe to execute fast to compile
deterministic streamable

easy to reason about parallelisable

stack machine

(local.get $x) . g = [($x)
(iI32.const 42) 32 } e 2 37

(i32.add))) (32

structured control flow

Sl e
(block \ (t1X 2t < (lOOP $ (s —)

(br $1) o o e (br $1) s e

() -

switch (X) {
case O: A; break;
case 1: B; break;

)

(block $switch (g = €)
(block $casel (e = €)
(block $casel (¢ = €)
(local.get $x)
(br_table $case0 $case1 $switch)

)
(A) (br $switch)

)
(B) (br $switch)

)

exception proposal

nominal exceptions, im/exportable
throw, try-catch, br_on_exn

type of exn packages

(exception $e t*)
(throw $e)

(try (t1* = t2%)

catch

)

(br on_exn $| $e)

e D

L > D

exn 2 bL”

P EX T exn

(iff $I : t*)

(exception $e1i32)
(exception $e2 32 i32)

(i32.const 1) (i32.const 1) (throw $e2)
(try $1 (132 = i32)

(call $f) = §f 32 = i32
catch

(exception $e1i32)
(exception $e2 32 i32)

(i32.const 1) (i32.const 1) (throw $e2)

(try $I (i32 = i32)
(call $f) - ¢ 132 = 132
catch
(block $11 (exn = i32)
(block $12 (exn = 132 i32)
(br_on_exn $|1 $e1)
(br_on_exn $12 $e2)

- handle $e2

- handle $e1

(exception $e1i32)
(exception $e2 32 i32)

(i32.const 1) (i32.const 1) (throw $e2)

(try $I (i32 = i32)
(call $f) - S 37 8
catch
(block $11 (exn = i32)
(block $12 (exn = 132 i32)
(br_on_exn $11 $e1)
(br_on_exn $12 $e2)

)
(i32.add) (br $I) :: handle $e2

)
(i32.neg) (br $I) ;; handle $e1

(exception $e1i32)
(exception $e2 32 i32)

(i32.const 1) (i32.const 1) (throw $e2)

(try $I (i32 = i32)

(call $f) - ¢ 132 = 132
catch

(block $11 (exn = i32)

(block $12 (exn = 132 i32)
(br_on_exn $|1 $e1)
(br_on_exn $12 $e2)
(rethrow) ;; propagate

)

(i32.add) (br $I) :: handle $e2

)
(i32.neg) (br $I) ;; handle $e1

effect handlers

enable compilation of control abstractions
sell as a generalisation of exceptions
that provides efficient stack switching

don’t mention “algebraic” :)

(exception $e t*)
(throw $e)

(try (t1* = t2%)

catch

)

(br_on_exn $!| $e)

G e

e T

fexn > tH~

e 2 exn

(iff $I : t*)

(exception $e (t* — t'%))
(throw $e) e > |
(try (t1* = 5

e T

catch
fexn > tH~

)

(br on_exn $| $e) : exn = exn

(iff $I : t*)

(exception $e (t* — t'%))
(throw $e) ol
(try (t1* = 5

e T

catch
fexn > tH~

)

(br on_exn $| $e) : exn = exn

(iff $I : t*)

(exception $e (t* — t'%))
(throw $e) L md
(try (t1* = T

e T

catch
fexn > "

)

(br_on_exn $| $e) : exn — exn

(iff $I : t*)

(resume)

(exception $e (t* — t'%))
(throw $e) L md
(try (t1* = T

e T

catch
fexn > tH~

)

(br_on_exn $| $e) : exn — exn

(iff $I : t*)

(resume) L D))t

(exception $e (t* — t'%))
(throw $e) L md
(try (t1* = T

e T

catch
fexn > tH~

)

(br on_exn $| $e) : exn = exn
@it (cont (t'* — t,*))

(resume) LT)t

(exception $e (t* — t'%))
(throw $e) o
(try (t1* = T

e T
catch

e tt) >

)

(br on_exn $| $e) : (exn t2*) = (exn t,*)
il (cont (t'™* — 1,%)))

(resume) L D))t

operational smantics

we have defined an operational semantics

handlers are shallow
(already have recursion/loops)

continuations are affine
(cheaper, engines cannot always copy stacks)

open design choices

lacks return clause, not properly algebraic
(how important is it in this setting?)

catch clause is catch-all
(should probably add a filter list)

implementation &
performance

try needs to create new stack upon entry
to enable delayed resumption

want to pay only when necessary

additional annotations

(exception resumable $e (t* — t'*))

(throw resumable $e)

(try resumable (t1* = to*)

catch
. (exn resumable t,*) = ty*

)

(br on_exn $| $e) : (exn resumable t,*) = (exn
R (cont (t* — %))

(resume) L D))t

implementation &
performance

at this point, effects are almost entirely a
separate from exceptions...

(effect $e (t* — t'%))

(perform $e)

(run (t;* = %)

h;ndle

eliL”) >

)

(br on _eff $| $e) : (eff t,*) = (eff t,*)
@it (cont (t'* — t,*))

(resume) L D))t

