
The Scope of
Algebraic Effects

Nicolas Wu
with Maciej Pirog, Tom Schrijvers, and Mauro Jaskelioff

University of Bristol

Shonan Seminar 146
26th March 2019

Effect Handlers

Effect Handlers
Syntax Semantics

Sy󰇳󰇺ax 󰇶󰇪󰇵r󰈥󰇷e󰈡t󰇪󰈧 󰇩y 󰇹󰇭e

f󰇶e󰇪 󰈩󰈣na󰈧 fo󰇶 󰇧 󰈆󰇼n󰈛󰇺or 󰇹󰇭󰇧t

󰇴󰈦󰈣vi󰈧󰇪󰈤 󰈜 si󰇫󰈡󰇧t󰇼󰇶e

Sem󰇧󰇳󰇺󰇯c󰇷 o󰈭󰇪󰈡 󰇯n 󰇹e󰈦m󰇷 󰈢󰈆 󰈜 fo󰇰󰈨 ov󰇪󰇶 t󰇬e 󰈆r󰇪󰈥 󰇲o󰈡󰇧d

Effect Handlers

data Free f a
 = Var a
 | Op (f (Free f a))

Semantics

data Or k = Or k k

Op (Or (Var 3) (Var 4))

Or

type Alg f a = f a !-> a

eval !:: Functor f !=>
 (a !-> b) !-> Alg f b !->
 Free f a !-> b
eval gen alg (Var x) = gen x
eval gen alg (Op op) =
 (alg . fmap (eval gen alg)) op

[3, 4]

3 4

!++

[3] [4]

Syntax

Syntax

data Stop k = Stop data Or k = Or k k

data (f :+ sig) a = Eff (f a) | Sig (sig a)

data Void k

Or

Or

!:: Free (Or :+ Stop :+ Void) Int
!~= Free (Stop :+ Or :+ Void) Int

4 Stop

2

Ex󰇹󰈦a l󰇧󰇳󰈪󰇼ag󰇪 󰈇󰈥a󰇺󰇻r󰈥󰇷 󰈝an
󰇨󰇪 󰈜󰈨de󰈧 󰇧󰈤 n󰈥e󰈧󰇪󰈨

Semantics

Or

3 4

list !:: Free Or a !-> [a]
list = eval gen alg where
 gen x = [x]
 alg (Or xs ys) = xs !++ ys

!++

[3] [4]

list

!== [3, 4]

once !:: Free Or a !-> a
once = eval gen alg where
 gen x = x
 alg (Or xs ys) = const xs ys
 = xs

const

3 4

once

!== 3

data Or k = Or k k

Sem󰇧󰇳󰇺󰇯c󰇷 󰇺ar󰇫󰇪󰇺
󰇯n󰈧i󰇾󰇮d󰇼a󰇰 󰈢󰇵󰈥ra󰇹󰇮󰈣󰈡s

Chained Handlers

Chained Handlers

Or

Or

4 Stop

2

Or

Or

Just 4 Nothing

Just 2

stop

list . stop

list

!++

Just 4 Nothing

Just 2

!++

Nondeterminism

list !:: Functor f !=> Free (Or :+ f) a !-> Free f [a]
list = eval gen (embed alg) where
 gen x = Var [x]
 alg (Or mx my) = do xs !<- mx
 ys !<- my
 Var (xs !++ ys)

listOr

3 4

!++

[3] [4]

!== [3] !++ [4]

data Or k = Or k k

list
42 [42]

Exceptions

stop !:: Functor f !=> Free (Stop :+ f) a !-> Free f (Maybe a)
stop = eval gen (embed alg) where
 gen x = Var (Just x)
 alg !:: Alg (Stop) (Free f (Maybe a))
 alg Stop = Var (Nothing)

stop

data Stop k = Stop

42 Just 42

stop
Stop Nothing

Void

run !:: Free Void a !-> a
run = eval gen alg where
 gen = id
 alg = error "unreachable"

run

data Void k

42 42

Local and Global Exceptions

Or

Or

4 Stop

2

Nothing
run . global

[Just 4, Nothing, Just 2]
run . local

global !:: Functor sig !=>
 Free (Or :+ Stop :+ sig) a !-> Free sig (Maybe [a])
global = stop . list

local !:: Functor sig !=>
 Free (Stop :+ Or :+ sig) a !-> Free sig [Maybe a]
local = list . stop

😊

Local and Global Exceptions

Or

Or

4 Stop

2

Nothing
run . global

[Just 4, Nothing, Just 2]
run . local

global !:: Functor sig !=>
 Free (Or :+ Stop :+ sig) a !-> Free sig (Maybe [a])
global = stop . list

local !:: Functor sig !=>
 Free (Stop :+ Or :+ sig) a !-> Free sig [Maybe a]
local = list . stop

😊

provisional

persistent

Effects Everywhere!
There are lots of algebraic effects, each with various

handlers that deal with them

So … di󰈧 󰈠󰈢󰇼 s󰇴o󰇺 t󰇬󰇪 fi󰈡󰈥 de󰇹󰇧󰇯󰇱s 󰇹󰇭at 󰇰󰇪󰈜󰈨
to 󰈇󰇧󰇯󰇱ur󰇪 󰇯󰇳 󰇵ra󰇫󰈩󰇧t󰇯󰈛 󰇵ro󰇫󰈦󰇧m󰇲󰇯󰈡g?

Effec󰇹󰈤 ar󰇪 󰇬󰈜󰈡d󰇰e󰈨 󰇧l󰇫󰈥󰇩ra󰇮󰈛󰈜󰇱l󰈂

Han󰈧󰇱󰇪r󰇷 mi󰇫󰇭t 󰇳󰈢󰇺 b󰈥!

Effect Handlers
Exceptions catch

Nondeterminism every, once
Reader local
Writer flush
State exec, run

Threads spawn, fork

The Fine Print
once !:: Functor f !=> Free (Or :+ f) a !-> Free f a
once = eval gen (embed alg) where
 gen x = Var x
 alg (Or x y) = const x y
 = x

onceOr

3 4

const

3 4

!== 3

Just 4

Just 4

Or

Or

4 Stop

2

run . stop . once

run . once . stop

Scoped Operations

Algebraicity

Or

Or

1 2

Or

5 6

!==!!>>= Or

x x+1

x

Or

1 5

The 󰇨󰇮󰈡d
󰈣󰇴e󰈦󰇧t󰇯o󰇳
(!!>>=)

is va󰇶󰇮󰈜󰇩le
󰇷󰇻󰇩s󰇹󰇯󰇺ut󰇮󰈣󰇳

Algebraicity

Or

Or

1 2

Or

5 6

!==!!>>= Or

x x+1

x

Or

1 5

or(p1, p2) !!>>= k !== or(p1 !!>>= k, p2 !!>>= k)

The or operation is algebraic because
it behaves well with substitution:

The 󰇨󰇮󰈡d
󰈣󰇴e󰈦󰇧t󰇯o󰇳
(!!>>=)

is va󰇶󰇮󰈜󰇩le
󰇷󰇻󰇩s󰇹󰇯󰇺ut󰇮󰈣󰇳

Once

!!=!!>>= Or

x x+1

x

Or

1 5

Once Or

Or

1 2

Or

5 6

Once

Once

!!>>= Or

x x+1

x

Or

1 2

Once

Or

Or

1 2

Or

5 6

Once

Or

Or

1 2

Or

5 6

Once

!==

Once

Or

Or

1 2

Or

5 6

!==!!>>= Or

x x+1

x

Or

1 2

!!>>= Or

x x+1

x

Or

1 2

Once
Or

Or

1 2

Or

5 6

Once

!==

Once

XX:4 Syntax and Handlers for Operations with Scopes

(that is, the �ú-algebras ÈA, aÍ for which a · ÷ = id and a · µ = a · �ú
a), and the adjunction

F ‰ U is essentially the Eilenberg–Moore adjunction of �ú. This fact is useful for technical
purposes, but it also gives us an intuitive understanding of the category of �-algebras as the
category of interpretations (models) of syntax.

3 Scopes via Explicit Substitutions

We want to extend the notion of syntax in order to encompass operations which delimit a
scope. There is a well-studied notion of syntax which has a notion a scope: variable binding.
Binder constructs bound a variable over a fixed scope and usually have to deal with the
manipulation of variable names; the paradigmatic example being lambda abstraction. In our
case we only want to model scope, but we can reuse and adapt ideas from this area.

In this section, we introduce a monad that formalises syntax with both algebraic operations
and operations which delimit scope. Our monad is a generalisation of Ghani et al.’s [10]
monad of explicit substitutions. In order to motivate this construction, we go through an
informal example.

Consider two algebraic operations for nondeterminism: binary or and nullary fail.
Additionally, consider a binary operation once. These operations just define syntax, but
the intended meaning is that or non-deterministically chooses a computation, fail is the
computation that fails (for example, if no solution is found), and once, just as a Prolog
operation with the same name, chooses the first solution from its first argument and continues
with the second argument. More concretely, consider the expression

once(or(or(x, fail), x
Õ), k) : EA.

Here, the operation once has a computation or(or(x, fail), x
Õ) as it first argument, and a

continuation k as its second argument. Substitution—that is, sequential composition with
another computation—should a�ect only the continuation. Because of that, the type of
the first argument should not depend on the type EA of the whole expression. Instead,
it should be a type EX for some existentially quantified X. This type parametrises the
continuation, which has the type X æ EA. This is shown in the following syntax tree with
type annotations:

once : EA

or : EX

or : EX

x : X fail : EX

x
Õ : X

k : X æ EA

(4)

Interpreting once as extracting the first solution would yield k x : EA. Another possible
interpretation of once is as performing substitution (monadic bind), e�ectively forgetting
that the scope exists. In this case the expression would apply the continuation to every X in
the first argument and yield or(or(k x, fail), k x

Õ).
In the example above we see that we have two kinds of operations: ordinary algebraic

operations (or and fail), and operations which create a scope (once). Consequently, we will
distinguish them by using two di�erent endofunctors: � for representing algebraic operations,
and � for operations that create a scope. Importantly, � captures only the arguments that

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelio� XX:5

are in the scope; the continuation is added by the construction of the monad E. Thus, from
this point onward, we treat once as a unary operation, and so the signature that consists
only of the operation once is represented by the identity endofunctor Id. The signature with
a single operation catch is represented by �X = X ◊ X.

We formalise the intuition about the existential type using a coend. In other words, given
endofunctors �, � : C æ C , we want a monad E over C to be a fixed point of the following
equation:

EA ≥= A + �(EA) +
⁄ XœC

�(EX) ◊ (EA)X

Note that the coend computes a pointwise left Kan extension. This means that we can
rewrite the equation above as follows (for the details, we refer to [10]):

EA ≥= A + �(EA) + �(E(EA))

More formally, consider the category C C with endofunctors1 on C as objects and natural
transformations as morphisms. This category inherits coproducts from C . We define an
endofunctor G : C C æ C C with the following mapping of objects:

GH = Id + �H + �HH

The action on morphisms is given by appropriate horizontal compositions. If G has an initial
algebra µG, its carrier is the endofunctor part of the monad E. That is,

E = µG.

The monadic structure of E is given by substitution in the ‘Id’ component. We discuss it
formally in Section 4.

Sometimes, if we need to be explicit about the involved signatures, we write them as
superscripts, i.e. E

�,�. Ghani et al.’s [10] monad can be obtained by instantiating � to Id,
that is, as E

�,Id, while the free monad generated by � is given by E
�,K0 , where K0 is the

constant endofunctor K0X = 0.
So, how does the monad E help us to model scope? Well, instead of variables A,

the leaves of scoped operations now contain values of type EA, which correspond to the
continuations for the scoped construct. Take the case of the operation once, which is
represented by the endofunctor Id. Then, the operation has the type E(EA) æ EA, where
the outer E represents the scope of the operation and the inner EA is the continuation. For
the first interpretation mentioned above, where we extract the first solution, the appropriate
continuation is x : EATOM: I am puzzled by the use of x here at a di�erent type than in
the previous example., found at the left-most leaf after following nested or constructs. The
second interpretation of once mentioned above, in which the operation is interpreted as
substitution, is obtained by giving it semantics using the multiplication of the monad E.

4 Handlers for Syntax with Scopes

Now that we have defined syntax for operations with scopes, we show how to define semantics
for such syntax, that is, how to define handlers. The most obvious idea is to mimic the

1
Strictly speaking, in order to account for size issues, this should be a category of small endofunctors [6].

On󰈛e 󰇮󰈤 Γ = Id
fo󰇶 󰈤󰇮m󰇴󰇱󰇯ci󰇹󰈠

Our goal is to treat once like an operation:

Mor󰇪 󰇶󰈥a󰇱󰇮s󰇹󰇯󰈝al󰇰󰈠, Γ co󰇻󰇰󰈨 b󰈥 an if/t󰇬e󰈡/el󰇷󰇪 co󰇳󰈤t󰇶󰇻󰈝t 󰈣󰇶  a t󰇶󰈠/ca󰇹󰈝h b󰇰o󰈝k

Scoped Free

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelio� XX:5

are in the scope; the continuation is added by the construction of the monad E. Thus, from
this point onward, we treat once as a unary operation, and so the signature that consists
only of the operation once is represented by the identity endofunctor Id. The signature with
a single operation catch is represented by �X = X ◊ X.

We formalise the intuition about the existential type using a coend. In other words, given
endofunctors �, � : C æ C , we want a monad E over C to be a fixed point of the following
equation:

EA ≥= A + �(EA) +
⁄ XœC

�(EX) ◊ (EA)X

Note that the coend computes a pointwise left Kan extension. This means that we can
rewrite the equation above as follows (for the details, we refer to [10]):

EA ≥= A + �(EA) + �(E(EA))

More formally, consider the category C C with endofunctors1 on C as objects and natural
transformations as morphisms. This category inherits coproducts from C . We define an
endofunctor G : C C æ C C with the following mapping of objects:

GH = Id + �H + �HH

The action on morphisms is given by appropriate horizontal compositions. If G has an initial
algebra µG, its carrier is the endofunctor part of the monad E. That is,

E = µG.

The monadic structure of E is given by substitution in the ‘Id’ component. We discuss it
formally in Section 4.

Sometimes, if we need to be explicit about the involved signatures, we write them as
superscripts, i.e. E

�,�. Ghani et al.’s [10] monad can be obtained by instantiating � to Id,
that is, as E

�,Id, while the free monad generated by � is given by E
�,K0 , where K0 is the

constant endofunctor K0X = 0.
So, how does the monad E help us to model scope? Well, instead of variables A,

the leaves of scoped operations now contain values of type EA, which correspond to the
continuations for the scoped construct. Take the case of the operation once, which is
represented by the endofunctor Id. Then, the operation has the type E(EA) æ EA, where
the outer E represents the scope of the operation and the inner EA is the continuation. For
the first interpretation mentioned above, where we extract the first solution, the appropriate
continuation is x : EATOM: I am puzzled by the use of x here at a di�erent type than in
the previous example., found at the left-most leaf after following nested or constructs. The
second interpretation of once mentioned above, in which the operation is interpreted as
substitution, is obtained by giving it semantics using the multiplication of the monad E.

4 Handlers for Syntax with Scopes

Now that we have defined syntax for operations with scopes, we show how to define semantics
for such syntax, that is, how to define handlers. The most obvious idea is to mimic the

1
Strictly speaking, in order to account for size issues, this should be a category of small endofunctors [6].

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelio� XX:5

are in the scope; the continuation is added by the construction of the monad E. Thus, from
this point onward, we treat once as a unary operation, and so the signature that consists
only of the operation once is represented by the identity endofunctor Id. The signature with
a single operation catch is represented by �X = X ◊ X.

We formalise the intuition about the existential type using a coend. In other words, given
endofunctors �, � : C æ C , we want a monad E over C to be a fixed point of the following
equation:

EA ≥= A + �(EA) +
⁄ XœC

�(EX) ◊ (EA)X

Note that the coend computes a pointwise left Kan extension. This means that we can
rewrite the equation above as follows (for the details, we refer to [10]):

EA ≥= A + �(EA) + �(E(EA))

More formally, consider the category C C with endofunctors1 on C as objects and natural
transformations as morphisms. This category inherits coproducts from C . We define an
endofunctor G : C C æ C C with the following mapping of objects:

GH = Id + �H + �HH

The action on morphisms is given by appropriate horizontal compositions. If G has an initial
algebra µG, its carrier is the endofunctor part of the monad E. That is,

E = µG.

The monadic structure of E is given by substitution in the ‘Id’ component. We discuss it
formally in Section 4.

Sometimes, if we need to be explicit about the involved signatures, we write them as
superscripts, i.e. E

�,�. Ghani et al.’s [10] monad can be obtained by instantiating � to Id,
that is, as E

�,Id, while the free monad generated by � is given by E
�,K0 , where K0 is the

constant endofunctor K0X = 0.
So, how does the monad E help us to model scope? Well, instead of variables A,

the leaves of scoped operations now contain values of type EA, which correspond to the
continuations for the scoped construct. Take the case of the operation once, which is
represented by the endofunctor Id. Then, the operation has the type E(EA) æ EA, where
the outer E represents the scope of the operation and the inner EA is the continuation. For
the first interpretation mentioned above, where we extract the first solution, the appropriate
continuation is x : EATOM: I am puzzled by the use of x here at a di�erent type than in
the previous example., found at the left-most leaf after following nested or constructs. The
second interpretation of once mentioned above, in which the operation is interpreted as
substitution, is obtained by giving it semantics using the multiplication of the monad E.

4 Handlers for Syntax with Scopes

Now that we have defined syntax for operations with scopes, we show how to define semantics
for such syntax, that is, how to define handlers. The most obvious idea is to mimic the

1
Strictly speaking, in order to account for size issues, this should be a category of small endofunctors [6].

The coend equation for our explicit substitution is:

it can be reduced to:

and this has an easy implementation:
data Prog f g a = Var a
 | Op (f (Prog f g a))
 | Scope (g (Prog f g (Prog f g a)))

However, the algebras are problematic:Or

Or

1 2

Or

5 6

Once

alg !:: g (Prog f g a) !-> a
t󰇬i󰈤 v󰇮󰈣󰇰a󰇺󰇪s 󰇷󰇺󰈥p-
b󰈂-s󰇹e󰇵 r󰇪󰈧󰇼󰈝ti󰈢󰇳

󰈤t󰇶󰈜󰇺eg󰈂!

Indexed Carriers

Once Again

Consider this example:

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelio� XX:9

I Example 4. Consider the set-up from Example 2. The expression

once(or(return 1, return 5)) >>= ⁄x. or(return x, return (x + 1)) (6)

can be intuitively understood as the following structure:

once Ù

or

Û

or

1 2

Û

or

5 6

If we interpret or as accumulating results and once as selecting the first result, the left-
hand side of the bind operator in (6) becomes the singleton [1], so the whole expression is
interpreted as [1] >>= ⁄x. or(return x, return (x + 1)), which obviously becomes [1, 2]. Indeed,
this is what we obtain by interpreting the variables as singletons and applying the scoped
algebra from Example 2:

once Ù

or

Û

or

[1] [2]

Û

or

[5] [6]

a

once Ù

or

Û

[1, 2]

Û

[5, 6]

p

once Ù

or

[[1, 2]] [[5, 6]]

a
once Ù

[[1, 2], [5, 6]]

d [1, 2]

I Example 5. The signature for exceptions with the nullary throw can be expressed as
�A = 1, for the terminal object 1. The catch operation is binary (recall that we do not
count the continuation as an argument of the operation), which gives us �A = A ◊ A,
where, intuitively, the second component is the code that handles exceptions. We can
give the obvious semantics in Set by the algebra with the carrier An = Maybe

n+1
X, for

a set X, where Maybe B = B + 1, together with the associated morphisms defined as:
an = inr : 1 æ Maybe

n
X + 1, together with pn = inl : Maybe

n+1
X æ Maybe

n+1
X + 1, and

dn : (Maybe
n+1

X + 1) ◊ (Maybe
n+1

X + 1) æ Maybe
n+1

X given as:

dn(inl a, x) = a dn(inr ú, x) = x

MACIEJ: discuss Benton and Kennedy here?? Benton and Kennedy [4]

5 Equivalence of the Two Monads

At this point, we have two monads on C that we can use to represent syntax with scopes:
the ‘explicit substitution’ monad E and the ‘indexed objects’ monad ⇡M�. As it turns out,
they are essentially the same monad:

I Theorem 6. The monads E and ⇡M� are isomorphic in the category of monads on C and
monad morphisms.

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelio� XX:9

I Example 4. Consider the set-up from Example 2. The expression

once(or(return 1, return 5)) >>= ⁄x. or(return x, return (x + 1)) (6)

can be intuitively understood as the following structure:

once Ù

or

Û

or

1 2

Û

or

5 6

If we interpret or as accumulating results and once as selecting the first result, the left-
hand side of the bind operator in (6) becomes the singleton [1], so the whole expression is
interpreted as [1] >>= ⁄x. or(return x, return (x + 1)), which obviously becomes [1, 2]. Indeed,
this is what we obtain by interpreting the variables as singletons and applying the scoped
algebra from Example 2:

once Ù

or

Û

or

[1] [2]

Û

or

[5] [6]

a

once Ù

or

Û

[1, 2]

Û

[5, 6]

p

once Ù

or

[[1, 2]] [[5, 6]]

a
once Ù

[[1, 2], [5, 6]]

d [1, 2]

I Example 5. The signature for exceptions with the nullary throw can be expressed as
�A = 1, for the terminal object 1. The catch operation is binary (recall that we do not
count the continuation as an argument of the operation), which gives us �A = A ◊ A,
where, intuitively, the second component is the code that handles exceptions. We can
give the obvious semantics in Set by the algebra with the carrier An = Maybe

n+1
X, for

a set X, where Maybe B = B + 1, together with the associated morphisms defined as:
an = inr : 1 æ Maybe

n
X + 1, together with pn = inl : Maybe

n+1
X æ Maybe

n+1
X + 1, and

dn : (Maybe
n+1

X + 1) ◊ (Maybe
n+1

X + 1) æ Maybe
n+1

X given as:

dn(inl a, x) = a dn(inr ú, x) = x

MACIEJ: discuss Benton and Kennedy here?? Benton and Kennedy [4]

5 Equivalence of the Two Monads

At this point, we have two monads on C that we can use to represent syntax with scopes:
the ‘explicit substitution’ monad E and the ‘indexed objects’ monad ⇡M�. As it turns out,
they are essentially the same monad:

I Theorem 6. The monads E and ⇡M� are isomorphic in the category of monads on C and
monad morphisms.

As a tree, this becomes:

Or

Or

1 2

Or

5 6

Once

≅
t󰇬e 󰈤t󰇶󰇻󰈝t󰇼󰇶e

is fl󰇧󰇹󰇺󰈥ne󰈧 󰇧󰇺 t󰇬󰈥
󰇾al󰇻󰈥 󰇰e󰇾󰇪l

t󰈂󰇵e 󰇮n󰈧󰈥󰈁es
󰇲󰇧󰇯󰈡ta󰇮󰇳 󰇺h󰈥

󰇷󰇺ru󰈛󰇺󰇻r󰈥

Once Again

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelio� XX:9

I Example 4. Consider the set-up from Example 2. The expression

once(or(return 1, return 5)) >>= ⁄x. or(return x, return (x + 1)) (6)

can be intuitively understood as the following structure:

once Ù

or

Û

or

1 2

Û

or

5 6

If we interpret or as accumulating results and once as selecting the first result, the left-
hand side of the bind operator in (6) becomes the singleton [1], so the whole expression is
interpreted as [1] >>= ⁄x. or(return x, return (x + 1)), which obviously becomes [1, 2]. Indeed,
this is what we obtain by interpreting the variables as singletons and applying the scoped
algebra from Example 2:

once Ù

or

Û

or

[1] [2]

Û

or

[5] [6]

a

once Ù

or

Û

[1, 2]

Û

[5, 6]

p

once Ù

or

[[1, 2]] [[5, 6]]

a
once Ù

[[1, 2], [5, 6]]

d [1, 2]

I Example 5. The signature for exceptions with the nullary throw can be expressed as
�A = 1, for the terminal object 1. The catch operation is binary (recall that we do not
count the continuation as an argument of the operation), which gives us �A = A ◊ A,
where, intuitively, the second component is the code that handles exceptions. We can
give the obvious semantics in Set by the algebra with the carrier An = Maybe

n+1
X, for

a set X, where Maybe B = B + 1, together with the associated morphisms defined as:
an = inr : 1 æ Maybe

n
X + 1, together with pn = inl : Maybe

n+1
X æ Maybe

n+1
X + 1, and

dn : (Maybe
n+1

X + 1) ◊ (Maybe
n+1

X + 1) æ Maybe
n+1

X given as:

dn(inl a, x) = a dn(inr ú, x) = x

MACIEJ: discuss Benton and Kennedy here?? Benton and Kennedy [4]

5 Equivalence of the Two Monads

At this point, we have two monads on C that we can use to represent syntax with scopes:
the ‘explicit substitution’ monad E and the ‘indexed objects’ monad ⇡M�. As it turns out,
they are essentially the same monad:

I Theorem 6. The monads E and ⇡M� are isomorphic in the category of monads on C and
monad morphisms.

Starting from the bottom, step-by-step:

⟨A, a : ΣA → A, d : Γ ◃ A → A, p : ▹ A → A⟩

data Alg f g a = Alg { a !:: forall n . f (a n) !-> a n
 , p !:: forall n . a n !-> a (S n)
 , d !:: forall n . g (a (S n)) !-> a n

e󰇧c󰇬 󰇱󰈥ve󰇰 󰇮󰈤 in󰈧󰇪󰈁󰈥d b󰈂 a 󰈡󰇻m󰇨󰈥󰈦

Σ + Γ ◃ + ▹ : 𝒞|ℕ| → 𝒞|ℕ|

data Nat = Z | S Nat

We can interpret the tree with these three algebras:
The 󰇹󰈠p󰇪 󰈛󰇭󰈜n󰇫e󰈤 󰇧󰈭󰈥r !<|an󰈧 !|>

Indexed Carriers

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelio� XX:7

promote the current value of the type An to the type An+1, and, dually, one demotes a value
of the type An+1 to An when interpreting the operation that creates the scope.

To formalise this, we work in the category of N-indexed C -objects. Let |N| be the discrete
category of natural numbers, in which objects are given by natural numbers, while the
only morphisms are trivial identities. Our category of interest is then C |N|, that is, the
category of functors of the type |N| æ C with natural transformations as morphisms. More
explicitly, an object in C |N| is an N-indexed family of C -objects A = {An}nœN. A morphism
between A and B = {Bn}nœN is an N-indexed family of C -morphisms {fn : An æ Bn}nœN.
In particular, there are no coherence conditions for the components of morphisms at di�erent
indices. Moreover, as a functor category, C |N| inherits the coproducts from C , defined as
(A + B)n = An + Bn.

As the next step in our construction, we define two endofunctors on C |N|. The first one
is called shift left, denoted Ù. It moves every component one notch ‘to the left’, forgetting
the object at index 0:

(ÙA)i = Ai+1

The other endofunctor, shift right, denoted Û, moves every component one notch ‘to the
right’, sticking the initial object 0 at index 0:

(ÛA)0 = 0 (ÛA)i+1 = Ai

The actions on morphisms are obvious. Additionally, we can lift every endofunctor � on C
to an endofunctor � on C |N| by applying it at each index:

(�A)n = �(An)

With this, we define scoped algebras as follows:

I Definition 1. Given two endofunctors � and �, a scoped algebra is a quadruple

ÈA, a : �A æ A, d : �ÙA æ A, p : A æ ÙAÍ,

where A is an object in C |N|, while a, d (‘demote’) , and p (‘promote’) are morphisms in
C |N|.

I Example 2. Assume we work in the category Set, and consider the binary operation or

together with the operation once discussed in Section 3. Thus, we obtain �X = X ◊ X and
�X = X. The algebra that interprets or as collecting possible results on a list, and once

as selecting the first result of the expression within the scope can be given as follows. For
a set X, the carrier is given as An = NList

n+1
X, where NList

n is the n-fold composition
of the non-empty list endofunctor. The interpretation of or is given as concatenation:
an(x, x

Õ) = x ++ x
Õ for all indices n œ N. The promotion morphism is given as the singleton:

pn(x) = [x]. The demotion selects the first element: dn([x, . . .]) = x.

The definition of scoped algebras can be reformulated by noticing the simple fact that the
functor Û is a left adjoint to Ù. It follows that ‘promotion’ morphisms A æ ÙA are in a 1-1
correspondence with morphisms ÛA æ A. Thus, scoped algebras are simply algebras for the
endofunctor � + �Ù + Û : C |N| æ C |N|, and therefore objects in the category (� + �Ù + Û)-Alg.

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelio� XX:7

promote the current value of the type An to the type An+1, and, dually, one demotes a value
of the type An+1 to An when interpreting the operation that creates the scope.

To formalise this, we work in the category of N-indexed C -objects. Let |N| be the discrete
category of natural numbers, in which objects are given by natural numbers, while the
only morphisms are trivial identities. Our category of interest is then C |N|, that is, the
category of functors of the type |N| æ C with natural transformations as morphisms. More
explicitly, an object in C |N| is an N-indexed family of C -objects A = {An}nœN. A morphism
between A and B = {Bn}nœN is an N-indexed family of C -morphisms {fn : An æ Bn}nœN.
In particular, there are no coherence conditions for the components of morphisms at di�erent
indices. Moreover, as a functor category, C |N| inherits the coproducts from C , defined as
(A + B)n = An + Bn.

As the next step in our construction, we define two endofunctors on C |N|. The first one
is called shift left, denoted Ù. It moves every component one notch ‘to the left’, forgetting
the object at index 0:

(ÙA)i = Ai+1

The other endofunctor, shift right, denoted Û, moves every component one notch ‘to the
right’, sticking the initial object 0 at index 0:

(ÛA)0 = 0 (ÛA)i+1 = Ai

The actions on morphisms are obvious. Additionally, we can lift every endofunctor � on C
to an endofunctor � on C |N| by applying it at each index:

(�A)n = �(An)

With this, we define scoped algebras as follows:

I Definition 1. Given two endofunctors � and �, a scoped algebra is a quadruple

ÈA, a : �A æ A, d : �ÙA æ A, p : A æ ÙAÍ,

where A is an object in C |N|, while a, d (‘demote’) , and p (‘promote’) are morphisms in
C |N|.

I Example 2. Assume we work in the category Set, and consider the binary operation or

together with the operation once discussed in Section 3. Thus, we obtain �X = X ◊ X and
�X = X. The algebra that interprets or as collecting possible results on a list, and once

as selecting the first result of the expression within the scope can be given as follows. For
a set X, the carrier is given as An = NList

n+1
X, where NList

n is the n-fold composition
of the non-empty list endofunctor. The interpretation of or is given as concatenation:
an(x, x

Õ) = x ++ x
Õ for all indices n œ N. The promotion morphism is given as the singleton:

pn(x) = [x]. The demotion selects the first element: dn([x, . . .]) = x.

The definition of scoped algebras can be reformulated by noticing the simple fact that the
functor Û is a left adjoint to Ù. It follows that ‘promotion’ morphisms A æ ÙA are in a 1-1
correspondence with morphisms ÛA æ A. Thus, scoped algebras are simply algebras for the
endofunctor � + �Ù + Û : C |N| æ C |N|, and therefore objects in the category (� + �Ù + Û)-Alg.

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelio� XX:7

promote the current value of the type An to the type An+1, and, dually, one demotes a value
of the type An+1 to An when interpreting the operation that creates the scope.

To formalise this, we work in the category of N-indexed C -objects. Let |N| be the discrete
category of natural numbers, in which objects are given by natural numbers, while the
only morphisms are trivial identities. Our category of interest is then C |N|, that is, the
category of functors of the type |N| æ C with natural transformations as morphisms. More
explicitly, an object in C |N| is an N-indexed family of C -objects A = {An}nœN. A morphism
between A and B = {Bn}nœN is an N-indexed family of C -morphisms {fn : An æ Bn}nœN.
In particular, there are no coherence conditions for the components of morphisms at di�erent
indices. Moreover, as a functor category, C |N| inherits the coproducts from C , defined as
(A + B)n = An + Bn.

As the next step in our construction, we define two endofunctors on C |N|. The first one
is called shift left, denoted Ù. It moves every component one notch ‘to the left’, forgetting
the object at index 0:

(ÙA)i = Ai+1

The other endofunctor, shift right, denoted Û, moves every component one notch ‘to the
right’, sticking the initial object 0 at index 0:

(ÛA)0 = 0 (ÛA)i+1 = Ai

The actions on morphisms are obvious. Additionally, we can lift every endofunctor � on C
to an endofunctor � on C |N| by applying it at each index:

(�A)n = �(An)

With this, we define scoped algebras as follows:

I Definition 1. Given two endofunctors � and �, a scoped algebra is a quadruple

ÈA, a : �A æ A, d : �ÙA æ A, p : A æ ÙAÍ,

where A is an object in C |N|, while a, d (‘demote’) , and p (‘promote’) are morphisms in
C |N|.

I Example 2. Assume we work in the category Set, and consider the binary operation or

together with the operation once discussed in Section 3. Thus, we obtain �X = X ◊ X and
�X = X. The algebra that interprets or as collecting possible results on a list, and once

as selecting the first result of the expression within the scope can be given as follows. For
a set X, the carrier is given as An = NList

n+1
X, where NList

n is the n-fold composition
of the non-empty list endofunctor. The interpretation of or is given as concatenation:
an(x, x

Õ) = x ++ x
Õ for all indices n œ N. The promotion morphism is given as the singleton:

pn(x) = [x]. The demotion selects the first element: dn([x, . . .]) = x.

The definition of scoped algebras can be reformulated by noticing the simple fact that the
functor Û is a left adjoint to Ù. It follows that ‘promotion’ morphisms A æ ÙA are in a 1-1
correspondence with morphisms ÛA æ A. Thus, scoped algebras are simply algebras for the
endofunctor � + �Ù + Û : C |N| æ C |N|, and therefore objects in the category (� + �Ù + Û)-Alg.

We can lift the signatures easily enough:

XX:8 Syntax and Handlers for Operations with Scopes

4.3 Syntax Induced by Scoped Algebras
Since scoped algebras are simply algebras for an endofunctor on C |N|, assuming enough
initial algebras exist, we know that the forgetful functor U : (� + �Ù + Û)-Alg æ C |N| has a
left adjoint F , and this adjunction gives rise to the free monad

M = UF = (� + �Ù + Û)ú : C |N| æ C |N|

Moreover, we can obtain a monad on the base category C by noticing the following fact:

I Theorem 3. Consider the forgetful functor ⇡ : C |N| æ C that projects on C the value at
the first index, that is,

⇡A = A0.

It has a left adjoint � : C æ C |N| given as

(�X)0 = X (�X)n+1 = 0.

Since adjunctions compose, we obtain an adjunction between C and (� + �Ù + Û)-Alg,
and, as a consequence, a monad ⇡M� = ⇡UF� on C , as shown in the following diagram:

C ‹ C |N| ‹ (� + �Ù + Û)-Alg

�

⇡

F

U

M = UF
= (� + �Ù + Û)ú

⇡M�
(5)

For a better intuitive understanding of the monad ⇡M�, we first discuss the monad M .
Intuitively, for an object A in C |N| and an index n œ N, we think of a value of (MA)n as
encoding a (sub)term whose root is in n nested scopes. Specifically, for n > 0, the object MA

at n is given via Lambek’s lemma as follows:

(MA)n
≥= (A + �MA + �ÙMA + ÛMA)n = An + �(MA)n + �(MA)n+1 + (MA)n≠1

This could be read as if there were four constructors used to obtain the values of the
type (MA)n. The first one is a variable An. The second one is an algebraic operation given
by the signature � with arguments of the type (MA)n, which means that they are situated
in the same number of nested scopes. The third constructor gives us a scoped operation
from the signature �. This operation creates a new scope (it is an ‘opening bracket’), so its
arguments are of the type (MA)n+1, which means that they are surrounded by n + 1 scopes.
The last constructor is a ‘closing bracket’, which means that its argument (MA)n≠1 is a part
of the continuation, so it is outside of the n-th scope, hence it is surrounded by n ≠ 1 nested
scopes.

For n = 0, the following holds:

(MA)0 ≥= A0 + �(MA)0 + �(MA)1 + 0 ≥= A0 + �(MA)0 + �(MA)1

This means that at index 0 (‘no surrounding scopes’), we cannot put a closing bracket, which
guarantees that every closing bracket matches an opening one.

Thus, we can think of an expression of the shape ÙMÛ as M put in brackets that delimit
the scope. (Coincidentally, the symbols ‘Ù’ and ‘Û’ look a bit like opening and closing angle
brackets.) Since (⇡A)n = 0, for all n > 0, by sandwiching the monad M in the adjunction
� ‰ ⇡, we ensure that there are no variables at indices n > 0, that is, within at least one
scope. This is because we substitute only in the continuation; in other words, when we are
not in a scope.

We are working in an indexed category:

These endofunctors provide a way of
moving between levels:

Lifting to

XX:8 Syntax and Handlers for Operations with Scopes

4.3 Syntax Induced by Scoped Algebras
Since scoped algebras are simply algebras for an endofunctor on C |N|, assuming enough
initial algebras exist, we know that the forgetful functor U : (� + �Ù + Û)-Alg æ C |N| has a
left adjoint F , and this adjunction gives rise to the free monad

M = UF = (� + �Ù + Û)ú : C |N| æ C |N|

Moreover, we can obtain a monad on the base category C by noticing the following fact:

I Theorem 3. Consider the forgetful functor ⇡ : C |N| æ C that projects on C the value at
the first index, that is,

⇡A = A0.

It has a left adjoint � : C æ C |N| given as

(�X)0 = X (�X)n+1 = 0.

Since adjunctions compose, we obtain an adjunction between C and (� + �Ù + Û)-Alg,
and, as a consequence, a monad ⇡M� = ⇡UF� on C , as shown in the following diagram:

C ‹ C |N| ‹ (� + �Ù + Û)-Alg

�

⇡

F

U

M = UF
= (� + �Ù + Û)ú

⇡M�
(5)

For a better intuitive understanding of the monad ⇡M�, we first discuss the monad M .
Intuitively, for an object A in C |N| and an index n œ N, we think of a value of (MA)n as
encoding a (sub)term whose root is in n nested scopes. Specifically, for n > 0, the object MA

at n is given via Lambek’s lemma as follows:

(MA)n
≥= (A + �MA + �ÙMA + ÛMA)n = An + �(MA)n + �(MA)n+1 + (MA)n≠1

This could be read as if there were four constructors used to obtain the values of the
type (MA)n. The first one is a variable An. The second one is an algebraic operation given
by the signature � with arguments of the type (MA)n, which means that they are situated
in the same number of nested scopes. The third constructor gives us a scoped operation
from the signature �. This operation creates a new scope (it is an ‘opening bracket’), so its
arguments are of the type (MA)n+1, which means that they are surrounded by n + 1 scopes.
The last constructor is a ‘closing bracket’, which means that its argument (MA)n≠1 is a part
of the continuation, so it is outside of the n-th scope, hence it is surrounded by n ≠ 1 nested
scopes.

For n = 0, the following holds:

(MA)0 ≥= A0 + �(MA)0 + �(MA)1 + 0 ≥= A0 + �(MA)0 + �(MA)1

This means that at index 0 (‘no surrounding scopes’), we cannot put a closing bracket, which
guarantees that every closing bracket matches an opening one.

Thus, we can think of an expression of the shape ÙMÛ as M put in brackets that delimit
the scope. (Coincidentally, the symbols ‘Ù’ and ‘Û’ look a bit like opening and closing angle
brackets.) Since (⇡A)n = 0, for all n > 0, by sandwiching the monad M in the adjunction
� ‰ ⇡, we ensure that there are no variables at indices n > 0, that is, within at least one
scope. This is because we substitute only in the continuation; in other words, when we are
not in a scope.

XX:8 Syntax and Handlers for Operations with Scopes

4.3 Syntax Induced by Scoped Algebras
Since scoped algebras are simply algebras for an endofunctor on C |N|, assuming enough
initial algebras exist, we know that the forgetful functor U : (� + �Ù + Û)-Alg æ C |N| has a
left adjoint F , and this adjunction gives rise to the free monad

M = UF = (� + �Ù + Û)ú : C |N| æ C |N|

Moreover, we can obtain a monad on the base category C by noticing the following fact:

I Theorem 3. Consider the forgetful functor ⇡ : C |N| æ C that projects on C the value at
the first index, that is,

⇡A = A0.

It has a left adjoint � : C æ C |N| given as

(�X)0 = X (�X)n+1 = 0.

Since adjunctions compose, we obtain an adjunction between C and (� + �Ù + Û)-Alg,
and, as a consequence, a monad ⇡M� = ⇡UF� on C , as shown in the following diagram:

C ‹ C |N| ‹ (� + �Ù + Û)-Alg

�

⇡

F

U

M = UF
= (� + �Ù + Û)ú

⇡M�
(5)

For a better intuitive understanding of the monad ⇡M�, we first discuss the monad M .
Intuitively, for an object A in C |N| and an index n œ N, we think of a value of (MA)n as
encoding a (sub)term whose root is in n nested scopes. Specifically, for n > 0, the object MA

at n is given via Lambek’s lemma as follows:

(MA)n
≥= (A + �MA + �ÙMA + ÛMA)n = An + �(MA)n + �(MA)n+1 + (MA)n≠1

This could be read as if there were four constructors used to obtain the values of the
type (MA)n. The first one is a variable An. The second one is an algebraic operation given
by the signature � with arguments of the type (MA)n, which means that they are situated
in the same number of nested scopes. The third constructor gives us a scoped operation
from the signature �. This operation creates a new scope (it is an ‘opening bracket’), so its
arguments are of the type (MA)n+1, which means that they are surrounded by n + 1 scopes.
The last constructor is a ‘closing bracket’, which means that its argument (MA)n≠1 is a part
of the continuation, so it is outside of the n-th scope, hence it is surrounded by n ≠ 1 nested
scopes.

For n = 0, the following holds:

(MA)0 ≥= A0 + �(MA)0 + �(MA)1 + 0 ≥= A0 + �(MA)0 + �(MA)1

This means that at index 0 (‘no surrounding scopes’), we cannot put a closing bracket, which
guarantees that every closing bracket matches an opening one.

Thus, we can think of an expression of the shape ÙMÛ as M put in brackets that delimit
the scope. (Coincidentally, the symbols ‘Ù’ and ‘Û’ look a bit like opening and closing angle
brackets.) Since (⇡A)n = 0, for all n > 0, by sandwiching the monad M in the adjunction
� ‰ ⇡, we ensure that there are no variables at indices n > 0, that is, within at least one
scope. This is because we substitute only in the continuation; in other words, when we are
not in a scope.

XX:8 Syntax and Handlers for Operations with Scopes

4.3 Syntax Induced by Scoped Algebras
Since scoped algebras are simply algebras for an endofunctor on C |N|, assuming enough
initial algebras exist, we know that the forgetful functor U : (� + �Ù + Û)-Alg æ C |N| has a
left adjoint F , and this adjunction gives rise to the free monad

M = UF = (� + �Ù + Û)ú : C |N| æ C |N|

Moreover, we can obtain a monad on the base category C by noticing the following fact:

I Theorem 3. Consider the forgetful functor ⇡ : C |N| æ C that projects on C the value at
the first index, that is,

⇡A = A0.

It has a left adjoint � : C æ C |N| given as

(�X)0 = X (�X)n+1 = 0.

Since adjunctions compose, we obtain an adjunction between C and (� + �Ù + Û)-Alg,
and, as a consequence, a monad ⇡M� = ⇡UF� on C , as shown in the following diagram:

C ‹ C |N| ‹ (� + �Ù + Û)-Alg

�

⇡

F

U

M = UF
= (� + �Ù + Û)ú

⇡M�
(5)

For a better intuitive understanding of the monad ⇡M�, we first discuss the monad M .
Intuitively, for an object A in C |N| and an index n œ N, we think of a value of (MA)n as
encoding a (sub)term whose root is in n nested scopes. Specifically, for n > 0, the object MA

at n is given via Lambek’s lemma as follows:

(MA)n
≥= (A + �MA + �ÙMA + ÛMA)n = An + �(MA)n + �(MA)n+1 + (MA)n≠1

This could be read as if there were four constructors used to obtain the values of the
type (MA)n. The first one is a variable An. The second one is an algebraic operation given
by the signature � with arguments of the type (MA)n, which means that they are situated
in the same number of nested scopes. The third constructor gives us a scoped operation
from the signature �. This operation creates a new scope (it is an ‘opening bracket’), so its
arguments are of the type (MA)n+1, which means that they are surrounded by n + 1 scopes.
The last constructor is a ‘closing bracket’, which means that its argument (MA)n≠1 is a part
of the continuation, so it is outside of the n-th scope, hence it is surrounded by n ≠ 1 nested
scopes.

For n = 0, the following holds:

(MA)0 ≥= A0 + �(MA)0 + �(MA)1 + 0 ≥= A0 + �(MA)0 + �(MA)1

This means that at index 0 (‘no surrounding scopes’), we cannot put a closing bracket, which
guarantees that every closing bracket matches an opening one.

Thus, we can think of an expression of the shape ÙMÛ as M put in brackets that delimit
the scope. (Coincidentally, the symbols ‘Ù’ and ‘Û’ look a bit like opening and closing angle
brackets.) Since (⇡A)n = 0, for all n > 0, by sandwiching the monad M in the adjunction
� ‰ ⇡, we ensure that there are no variables at indices n > 0, that is, within at least one
scope. This is because we substitute only in the continuation; in other words, when we are
not in a scope.

XX:8 Syntax and Handlers for Operations with Scopes

4.3 Syntax Induced by Scoped Algebras
Since scoped algebras are simply algebras for an endofunctor on C |N|, assuming enough
initial algebras exist, we know that the forgetful functor U : (� + �Ù + Û)-Alg æ C |N| has a
left adjoint F , and this adjunction gives rise to the free monad

M = UF = (� + �Ù + Û)ú : C |N| æ C |N|

Moreover, we can obtain a monad on the base category C by noticing the following fact:

I Theorem 3. Consider the forgetful functor ⇡ : C |N| æ C that projects on C the value at
the first index, that is,

⇡A = A0.

It has a left adjoint � : C æ C |N| given as

(�X)0 = X (�X)n+1 = 0.

Since adjunctions compose, we obtain an adjunction between C and (� + �Ù + Û)-Alg,
and, as a consequence, a monad ⇡M� = ⇡UF� on C , as shown in the following diagram:

C ‹ C |N| ‹ (� + �Ù + Û)-Alg

�

⇡

F

U

M = UF
= (� + �Ù + Û)ú

⇡M�
(5)

For a better intuitive understanding of the monad ⇡M�, we first discuss the monad M .
Intuitively, for an object A in C |N| and an index n œ N, we think of a value of (MA)n as
encoding a (sub)term whose root is in n nested scopes. Specifically, for n > 0, the object MA

at n is given via Lambek’s lemma as follows:

(MA)n
≥= (A + �MA + �ÙMA + ÛMA)n = An + �(MA)n + �(MA)n+1 + (MA)n≠1

This could be read as if there were four constructors used to obtain the values of the
type (MA)n. The first one is a variable An. The second one is an algebraic operation given
by the signature � with arguments of the type (MA)n, which means that they are situated
in the same number of nested scopes. The third constructor gives us a scoped operation
from the signature �. This operation creates a new scope (it is an ‘opening bracket’), so its
arguments are of the type (MA)n+1, which means that they are surrounded by n + 1 scopes.
The last constructor is a ‘closing bracket’, which means that its argument (MA)n≠1 is a part
of the continuation, so it is outside of the n-th scope, hence it is surrounded by n ≠ 1 nested
scopes.

For n = 0, the following holds:

(MA)0 ≥= A0 + �(MA)0 + �(MA)1 + 0 ≥= A0 + �(MA)0 + �(MA)1

This means that at index 0 (‘no surrounding scopes’), we cannot put a closing bracket, which
guarantees that every closing bracket matches an opening one.

Thus, we can think of an expression of the shape ÙMÛ as M put in brackets that delimit
the scope. (Coincidentally, the symbols ‘Ù’ and ‘Û’ look a bit like opening and closing angle
brackets.) Since (⇡A)n = 0, for all n > 0, by sandwiching the monad M in the adjunction
� ‰ ⇡, we ensure that there are no variables at indices n > 0, that is, within at least one
scope. This is because we substitute only in the continuation; in other words, when we are
not in a scope.

XX:8 Syntax and Handlers for Operations with Scopes

4.3 Syntax Induced by Scoped Algebras
Since scoped algebras are simply algebras for an endofunctor on C |N|, assuming enough
initial algebras exist, we know that the forgetful functor U : (� + �Ù + Û)-Alg æ C |N| has a
left adjoint F , and this adjunction gives rise to the free monad

M = UF = (� + �Ù + Û)ú : C |N| æ C |N|

Moreover, we can obtain a monad on the base category C by noticing the following fact:

I Theorem 3. Consider the forgetful functor ⇡ : C |N| æ C that projects on C the value at
the first index, that is,

⇡A = A0.

It has a left adjoint � : C æ C |N| given as

(�X)0 = X (�X)n+1 = 0.

Since adjunctions compose, we obtain an adjunction between C and (� + �Ù + Û)-Alg,
and, as a consequence, a monad ⇡M� = ⇡UF� on C , as shown in the following diagram:

C ‹ C |N| ‹ (� + �Ù + Û)-Alg

�

⇡

F

U

M = UF
= (� + �Ù + Û)ú

⇡M�
(5)

For a better intuitive understanding of the monad ⇡M�, we first discuss the monad M .
Intuitively, for an object A in C |N| and an index n œ N, we think of a value of (MA)n as
encoding a (sub)term whose root is in n nested scopes. Specifically, for n > 0, the object MA

at n is given via Lambek’s lemma as follows:

(MA)n
≥= (A + �MA + �ÙMA + ÛMA)n = An + �(MA)n + �(MA)n+1 + (MA)n≠1

This could be read as if there were four constructors used to obtain the values of the
type (MA)n. The first one is a variable An. The second one is an algebraic operation given
by the signature � with arguments of the type (MA)n, which means that they are situated
in the same number of nested scopes. The third constructor gives us a scoped operation
from the signature �. This operation creates a new scope (it is an ‘opening bracket’), so its
arguments are of the type (MA)n+1, which means that they are surrounded by n + 1 scopes.
The last constructor is a ‘closing bracket’, which means that its argument (MA)n≠1 is a part
of the continuation, so it is outside of the n-th scope, hence it is surrounded by n ≠ 1 nested
scopes.

For n = 0, the following holds:

(MA)0 ≥= A0 + �(MA)0 + �(MA)1 + 0 ≥= A0 + �(MA)0 + �(MA)1

This means that at index 0 (‘no surrounding scopes’), we cannot put a closing bracket, which
guarantees that every closing bracket matches an opening one.

Thus, we can think of an expression of the shape ÙMÛ as M put in brackets that delimit
the scope. (Coincidentally, the symbols ‘Ù’ and ‘Û’ look a bit like opening and closing angle
brackets.) Since (⇡A)n = 0, for all n > 0, by sandwiching the monad M in the adjunction
� ‰ ⇡, we ensure that there are no variables at indices n > 0, that is, within at least one
scope. This is because we substitute only in the continuation; in other words, when we are
not in a scope.

XX:8 Syntax and Handlers for Operations with Scopes

4.3 Syntax Induced by Scoped Algebras
Since scoped algebras are simply algebras for an endofunctor on C |N|, assuming enough
initial algebras exist, we know that the forgetful functor U : (� + �Ù + Û)-Alg æ C |N| has a
left adjoint F , and this adjunction gives rise to the free monad

M = UF = (� + �Ù + Û)ú : C |N| æ C |N|

Moreover, we can obtain a monad on the base category C by noticing the following fact:

I Theorem 3. Consider the forgetful functor ⇡ : C |N| æ C that projects on C the value at
the first index, that is,

⇡A = A0.

It has a left adjoint � : C æ C |N| given as

(�X)0 = X (�X)n+1 = 0.

Since adjunctions compose, we obtain an adjunction between C and (� + �Ù + Û)-Alg,
and, as a consequence, a monad ⇡M� = ⇡UF� on C , as shown in the following diagram:

C ‹ C |N| ‹ (� + �Ù + Û)-Alg

�

⇡

F

U

M = UF
= (� + �Ù + Û)ú

⇡M�
(5)

For a better intuitive understanding of the monad ⇡M�, we first discuss the monad M .
Intuitively, for an object A in C |N| and an index n œ N, we think of a value of (MA)n as
encoding a (sub)term whose root is in n nested scopes. Specifically, for n > 0, the object MA

at n is given via Lambek’s lemma as follows:

(MA)n
≥= (A + �MA + �ÙMA + ÛMA)n = An + �(MA)n + �(MA)n+1 + (MA)n≠1

This could be read as if there were four constructors used to obtain the values of the
type (MA)n. The first one is a variable An. The second one is an algebraic operation given
by the signature � with arguments of the type (MA)n, which means that they are situated
in the same number of nested scopes. The third constructor gives us a scoped operation
from the signature �. This operation creates a new scope (it is an ‘opening bracket’), so its
arguments are of the type (MA)n+1, which means that they are surrounded by n + 1 scopes.
The last constructor is a ‘closing bracket’, which means that its argument (MA)n≠1 is a part
of the continuation, so it is outside of the n-th scope, hence it is surrounded by n ≠ 1 nested
scopes.

For n = 0, the following holds:

(MA)0 ≥= A0 + �(MA)0 + �(MA)1 + 0 ≥= A0 + �(MA)0 + �(MA)1

This means that at index 0 (‘no surrounding scopes’), we cannot put a closing bracket, which
guarantees that every closing bracket matches an opening one.

Thus, we can think of an expression of the shape ÙMÛ as M put in brackets that delimit
the scope. (Coincidentally, the symbols ‘Ù’ and ‘Û’ look a bit like opening and closing angle
brackets.) Since (⇡A)n = 0, for all n > 0, by sandwiching the monad M in the adjunction
� ‰ ⇡, we ensure that there are no variables at indices n > 0, that is, within at least one
scope. This is because we substitute only in the continuation; in other words, when we are
not in a scope.

Our computations are in the underlying category

Implementation

XX:12 Syntax and Handlers for Operations with Scopes

Now we can express the program from Example 4 in Haskell as

example4 :: NDProg Int

example4 = do x Ω once (or (return 1) (return 5))

or (return x) (return (x + 1))

using these three smart constructor functions:

fail :: NDProg a

fail = Op Fail

or :: NDProg a æ NDProg a æ NDProg a

or x y = Op (Or x y)

once :: NDProg a æ NDProg a

once x = Scope (Once (fmap return x))

6.2 Implementation of Semantics
As Section 4.1 observes, the right notion of interpretation for Prog f g is not apparent.
Fortunately, by way of the ⇡M� monad we can derive the appropriate type of algebras, Alg:

data Nat = Zero | Succ Nat

data Alg f g a = A {a :: ’n. f (a n) æ a n

, d :: ’n. g (a (Succ n)) æ a n

, p :: ’n. a n æ a (Succ n)}

The three functions involve a Nat-indexed carrier type. This use of indexed types is a
complicating factor, which requires the non-standard GHC-Haskell DataKinds extension. It
also shows up in the fold function that uses an algebra to interpret a whole program.

fold :: (Functor f , Functor g) ∆ Alg f g a æ Prog f g (a n) æ a n

fold alg (Var x) = x

fold alg (Op op) = a alg (fmap (fold alg) op)

fold alg (Scope sc) = d alg (fmap (fold alg ¶ fmap (p alg ¶ fold alg)) sc)

For practical use, it is convenient to use a generator function to turn a program’s unindexed
return type r into the indexed carrier type a Zero before folding over the structure.

run :: (Functor f , Functor g) ∆ (r æ a Zero) æ Alg f g a æ (Prog f g r æ a Zero)

run gen alg prog = fold alg (fmap gen prog)

I Example 8. For our nondeterminism example we require a carrier type CarrierND :: ú æ
Nat æ ú such that CarrierND a Zero ≥= [a], CarrierND a (Succ Zero) ≥= [[a]], and so
on. That is, the carrier should be such that CarrierND a n ≥= [a]n+1. This datatype can be
represented in Haskell as:

data CarrierND a n = ND [CarrierND
Õ

a n]

data CarrierND
Õ

a :: Nat æ úwhere
CZND :: a æ CarrierND

Õ
a Zero

CSND :: [CarrierND
Õ

a n] æ CarrierND
Õ

a (Succ n)

XX:12 Syntax and Handlers for Operations with Scopes

Now we can express the program from Example 4 in Haskell as

example4 :: NDProg Int

example4 = do x Ω once (or (return 1) (return 5))

or (return x) (return (x + 1))

using these three smart constructor functions:

fail :: NDProg a

fail = Op Fail

or :: NDProg a æ NDProg a æ NDProg a

or x y = Op (Or x y)

once :: NDProg a æ NDProg a

once x = Scope (Once (fmap return x))

6.2 Implementation of Semantics
As Section 4.1 observes, the right notion of interpretation for Prog f g is not apparent.
Fortunately, by way of the ⇡M� monad we can derive the appropriate type of algebras, Alg:

data Nat = Zero | Succ Nat

data Alg f g a = A {a :: ’n. f (a n) æ a n

, d :: ’n. g (a (Succ n)) æ a n

, p :: ’n. a n æ a (Succ n)}

The three functions involve a Nat-indexed carrier type. This use of indexed types is a
complicating factor, which requires the non-standard GHC-Haskell DataKinds extension. It
also shows up in the fold function that uses an algebra to interpret a whole program.

fold :: (Functor f , Functor g) ∆ Alg f g a æ Prog f g (a n) æ a n

fold alg (Var x) = x

fold alg (Op op) = a alg (fmap (fold alg) op)

fold alg (Scope sc) = d alg (fmap (fold alg ¶ fmap (p alg ¶ fold alg)) sc)

For practical use, it is convenient to use a generator function to turn a program’s unindexed
return type r into the indexed carrier type a Zero before folding over the structure.

run :: (Functor f , Functor g) ∆ (r æ a Zero) æ Alg f g a æ (Prog f g r æ a Zero)

run gen alg prog = fold alg (fmap gen prog)

I Example 8. For our nondeterminism example we require a carrier type CarrierND :: ú æ
Nat æ ú such that CarrierND a Zero ≥= [a], CarrierND a (Succ Zero) ≥= [[a]], and so
on. That is, the carrier should be such that CarrierND a n ≥= [a]n+1. This datatype can be
represented in Haskell as:

data CarrierND a n = ND [CarrierND
Õ

a n]

data CarrierND
Õ

a :: Nat æ úwhere
CZND :: a æ CarrierND

Õ
a Zero

CSND :: [CarrierND
Õ

a n] æ CarrierND
Õ

a (Succ n)

in Haskell we implement this as follows, where the carrier is indexed:

the fold for this is as expected, using p and d where required:

Once Implementation
Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelio� XX:13

The corresponding generator and algebra that give semantics to the syntax defined in
Example 7 using CarrierND are:

genND :: a æ CarrierND a Zero

genND x = ND [CZND x]

algND :: Alg Choice Once (CarrierND a)

algND = A { . .} where
a :: ’n a. Choice (CarrierND a n) æ CarrierND a n

a Fail = ND []

a (Or (ND l) (ND r)) = ND (l ++ r)

d :: ’n a. Once (CarrierND a (Succ n)) æ CarrierND a n

d (Once (ND [])) = ND []

d (Once (ND (CSND l: _))) = ND l

p :: ’n a. CarrierND a n æ CarrierND a (Succ n)

p (ND l) = ND [CSND l]

Now we can tie everything together in a main function and interpret example4.

main :: [Int]

main = toList (run genND algND example4)

where
toList :: CarrierND a Zero æ [a]

toList (ND l) = map (⁄(CZND x) æ x) l

which does indeed yield the expected result [1, 2].

7 Alternative Solutions

One can think of several variations on the problem and the solution discussed in this paper.
For example, we can generalise the signatures � and � to N-indexed functors, which expresses
that di�erent operations are available at di�erent levels. For instance, we can allow throwing
exceptions only inside a catch, or we can allow throwing to a particular catch above, not
necessarily the immediately surrounding one.

More interestingly, we can augment the level information from N to a list of some data,
for example, to capture what kind of scope there is at each level. This could be useful for
modularity, when we have n di�erent e�ects in play. In such a case, we could use objects
indexed by lists of labels coming from the set {1, . . . , n}, denoting the e�ect to which a
particular scope belongs. One could also try to replace Û ‰ Ù with other adjunctions. We
leave filling in the details as future work.

An alternative monad that one could use to formalise syntax with scoped operations is
to allow variables in scopes. This can be obtained with the monad given by the following
endofunctor defined as a carrier of an initial algebra over C C :

T = µF. Id + �F + �F (Id + F)

Eilenberg–Moore algebras of T need to respect structural properties in the scope, but it
is not clear whether they have a nicer, ‘algebraic’ presentation. Moreover, variables in scopes
do not seem to add anything to the examples that we considered.

XX:12 Syntax and Handlers for Operations with Scopes

Now we can express the program from Example 4 in Haskell as

example4 :: NDProg Int

example4 = do x Ω once (or (return 1) (return 5))

or (return x) (return (x + 1))

using these three smart constructor functions:

fail :: NDProg a

fail = Op Fail

or :: NDProg a æ NDProg a æ NDProg a

or x y = Op (Or x y)

once :: NDProg a æ NDProg a

once x = Scope (Once (fmap return x))

6.2 Implementation of Semantics
As Section 4.1 observes, the right notion of interpretation for Prog f g is not apparent.
Fortunately, by way of the ⇡M� monad we can derive the appropriate type of algebras, Alg:

data Nat = Zero | Succ Nat

data Alg f g a = A {a :: ’n. f (a n) æ a n

, d :: ’n. g (a (Succ n)) æ a n

, p :: ’n. a n æ a (Succ n)}

The three functions involve a Nat-indexed carrier type. This use of indexed types is a
complicating factor, which requires the non-standard GHC-Haskell DataKinds extension. It
also shows up in the fold function that uses an algebra to interpret a whole program.

fold :: (Functor f , Functor g) ∆ Alg f g a æ Prog f g (a n) æ a n

fold alg (Var x) = x

fold alg (Op op) = a alg (fmap (fold alg) op)

fold alg (Scope sc) = d alg (fmap (fold alg ¶ fmap (p alg ¶ fold alg)) sc)

For practical use, it is convenient to use a generator function to turn a program’s unindexed
return type r into the indexed carrier type a Zero before folding over the structure.

run :: (Functor f , Functor g) ∆ (r æ a Zero) æ Alg f g a æ (Prog f g r æ a Zero)

run gen alg prog = fold alg (fmap gen prog)

I Example 8. For our nondeterminism example we require a carrier type CarrierND :: ú æ
Nat æ ú such that CarrierND a Zero ≥= [a], CarrierND a (Succ Zero) ≥= [[a]], and so
on. That is, the carrier should be such that CarrierND a n ≥= [a]n+1. This datatype can be
represented in Haskell as:

data CarrierND a n = ND [CarrierND
Õ

a n]

data CarrierND
Õ

a :: Nat æ úwhere
CZND :: a æ CarrierND

Õ
a Zero

CSND :: [CarrierND
Õ

a n] æ CarrierND
Õ

a (Succ n)

E = ⇃M↾

XX:20 Syntax and Handlers for Operations with Scopes

B.1 Distributive law
To verify that ⁄ is indeed a distributive law of the monad M over the endofunctor Ù, we
show that it can be obtained using the correspondence between distributive laws and liftings
to categories of algebras.

First, we define the endofunctor ÂÙ on (� + �Ù + Û)-Alg as ÂÙÈA, a, d, pÍ = ÈÙA, a
Õ
, d

Õ
, p

ÕÍ,
where:

a
Õ =

1
�ÙA = Ù�A

Ùa≠æ ÙA

2

d
Õ =

1
�ÙÙA = Ù�ÙA

Ùd≠æ ÙA

2

p
Õ =

1
ÛÙA

‘≠æ A = ÙÛA
Ùp≠æ ÙA

2

The endofunctor ÂÙ is a lifting, that is, UÂÙ = ÙU for the forgetful functor U : (� + �Ù +
Û)-Alg æ C |N|. Because of the monadicity of F ‰ U , the functor ÂÙ is therefore a lifting
to (� + �Ù + Û)ú-EMAlg, where by T -EMAlg we mean the category of Eilenberg–Moore
algebras for a monad T . Such liftings are in 1-1 correspondence with distributive laws of the
type MÙ = (� + �Ù + Û)ú

Ù æ Ù(� + �Ù + Û)ú = ÙM .
In general, given an endofunctor G, a monad T , and a lifting ÂG : T -EMAlg æ

T -EMAlg, the distributive law is given as TG
T G÷T

≠≠≠≠æ TGT
m≠æ GT , where ÂGÈTA, µ

T
AÍ =

ÈGTA, mA : TGTA æ GTAÍ.
In the case of the lifting ÂÙ, it is the case that ÂÙÈMA, cons, cons, consÍ = ÈÙMA, ⁄

�
, ⁄

Ù
, ⁄

ÛÍ
as defined in the main part of the paper. By monadicity, we obtain m = fold([id, ⁄

�
, ⁄

Ù
, ⁄

Û]) :
MÙM æ ÙM , and so m · MÙ÷

M = fold([÷M
, ⁄

�
, ⁄

Ù
, ⁄

Û]) = ⁄.

B.2 First Inverse
First, we notice that the morphism k = fold([kvar

, k
�

, k
Ù
, k

Û]) : M�A æ E
+

A factors as

k =
1

M�A Mkvar
≠≠≠≠æ ME

+
A

‚k≠æ E
+

A

2

for the morphism ‚k = fold([id, k
�

, k
Ù
, k

Û]) : ME
+

A æ E
+

A. Notice that ‚k is natural in A.
Moreover, since M is a free monad, and thanks to the monadicity of F ‰ U , the morphism ‚k
for each A is an Eilenberg–Moore algebra for M .

Similarly with ⁄, which factors as

⁄ =
1

MÙ
MÙ÷M

≠≠≠≠æ MÙM
‚⁄≠æ ÙM

2

for ‚⁄ given as fold([id, ⁄
�

, ⁄
Ù
, ⁄

Û]).

I Lemma 9. Ù‚k · ⁄E
+ = ‚kE : (MÙE

+ = ME
+

E) æ (ÙE
+ = E

+
E)

Proof. Since ‚k is defined using the universal property of initial algebras (that is, it is a
fold), it is enough to show that Ù‚k · ⁄E

+ is an appropriate homomorphism, that is, that the
following diagram commutes. Then, the equality follows from the uniqueness of folds.

ÙE
+ + �MÙE

+ + �ÙMÙE
+ + ÛMÙE

+

ÙE
+ + �ÙE

+ + �ÙÙE
+ + ÛÙE

+

MÙE
+

ÙE
+

[÷M , cons, cons, cons]

id + �(Ù‚k · ⁄E+) + �Ù(Ù‚k · ⁄E+) + Û(Ù‚k · ⁄E+) Ù‚k · ⁄E+

[id, k�E, kÙE, kÛE]

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelio� XX:21

We proceed component-wisely.
The first component (ÙE æ ÙE) follows from the following diagram.

ÙE
+

MÙE
+

ÙME
+

ÙE
+

ÙME
+

MÙME
+

a

b

c

d

÷M

⁄

Ù‚k

Ù÷M

÷M

MÙ÷M

‚⁄
id

id

a Naturality of ÷M

b Factorisation of ⁄

c ‚⁄ is an Eilenberg–Moore algebra

d ‚k is an Eilenberg–Moore algebra

The second component (�MÙE
+ æ ÙE

+):

�MÙE
+ MÙE

+

�ÙME
+ ÙME

+

�ÙE
+ ÙE

+

Ù�ME
+

Ù�E
+

cons

�⁄ ⁄

⁄�

= Ùcons

Ù�‚k�Ù‚k Ù‚k

k�

= Ùk�

a

b

c d

e

a ⁄ is a homomorphism

b Definition of ⁄�

c Identity

d ‚k is a homomorphism

e k�E = Ùk�

The third component (�ÙMÙE
+ æ ÙE

+) is analogous.
The fourth component (ÛMÙE

+ æ ÙE
+) is similar, except for the triangle at the bottom,

which becomes as follows:

ÛÙE
+

ÙS
+

ÙÛE
+

kÛE

‘E+ ÙkÛ

To see that it commutes, we consider its index-wise valuations. For 0:

(ÛÙE
+

A)0 = 0 (ÙE
+

A)0

(ÙÛE
+

A)0

(kÛEA)0

(‘E+A)0 (ÙkÛA)0
a a Uniqueness of morphisms from 0

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelio� XX:21

We proceed component-wisely.
The first component (ÙE æ ÙE) follows from the following diagram.

ÙE
+

MÙE
+

ÙME
+

ÙE
+

ÙME
+

MÙME
+

a

b

c

d

÷M

⁄

Ù‚k

Ù÷M

÷M

MÙ÷M

‚⁄
id

id

a Naturality of ÷M

b Factorisation of ⁄

c ‚⁄ is an Eilenberg–Moore algebra

d ‚k is an Eilenberg–Moore algebra

The second component (�MÙE
+ æ ÙE

+):

�MÙE
+ MÙE

+

�ÙME
+ ÙME

+

�ÙE
+ ÙE

+

Ù�ME
+

Ù�E
+

cons

�⁄ ⁄

⁄�

= Ùcons

Ù�‚k�Ù‚k Ù‚k

k�

= Ùk�

a

b

c d

e

a ⁄ is a homomorphism

b Definition of ⁄�

c Identity

d ‚k is a homomorphism

e k�E = Ùk�

The third component (�ÙMÙE
+ æ ÙE

+) is analogous.
The fourth component (ÛMÙE

+ æ ÙE
+) is similar, except for the triangle at the bottom,

which becomes as follows:

ÛÙE
+

ÙS
+

ÙÛE
+

kÛE

‘E+ ÙkÛ

To see that it commutes, we consider its index-wise valuations. For 0:

(ÛÙE
+

A)0 = 0 (ÙE
+

A)0

(ÙÛE
+

A)0

(kÛEA)0

(‘E+A)0 (ÙkÛA)0
a a Uniqueness of morphisms from 0

XX:22 Syntax and Handlers for Operations with Scopes

For n > 0:

(ÛÙE
+

A)n = (ÙE
+

A)n≠1 = (E+
A)n = E

n+1
A (ÙE

+
A)n = (E+

A)n+1 = E
n+2

A

(ÙÛE
+

A)n = (ÛE
+

A)n+1 = (E+
A)n = E

n+1
A

(kÛEA)n

(‘E+A)n = id (ÙkÛA)na

a kÛE = ÙkÛ

J

Now, to show that ⇡k · i = id, it is enough (since i is defined by structural induction) to
show that ⇡k is a homomorphism, that is

⇡k · [ivar
, i

�
, i

�] = in · (id + �⇡k + �⇡k⇡k) (7)

where in = [cons, cons, cons] : Id + �E + �EE æ E is the action of the initial algebra. (The
so-called ‘fusion law’.)

By proceeding component-wisely, we need to verify three equalities. The first two are
simple. The third one, that is, in · �⇡k⇡k = ⇡k · i

� is detailed in the following diagram:

�⇡M�⇡M� �⇡E+⇡E+

�⇡M�⇡E+

�EE

�⇡MM� �⇡ME
+

�⇡MÙÛE
+

�⇡ÙMÛE
+

�⇡MÙÛM�

�⇡ÙMÛM�

⇡�ÙMÛM� ⇡�ÙMÛE
+

⇡�ÙME
+

⇡�ÙE
+⇡MM�

⇡M� ⇡E+
E

�⇡k⇡k =

�⇡M‘M�

= =

�⇡⁄ÛE+

=

�⇡⁄ÛM�

=

⇡ cons cons �

⇡µM �
⇡k =

cons

⇡�ÙMÛk

⇡�ÙMkÛ

⇡�Ù‚k

⇡kÙ

�⇡M�⇡k

�⇡k⇡E+

�⇡M‘E+

=

a

b

c

d e

a Horizontal composition

b Naturality

c ‚k is an Eilenberg–Moore alg.

d (See below)

e Definition of kÙ

Now, using the fact that ⇡� = �⇡ and some naturality, the diagram d above is the �⇡-image

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelio� XX:23

of the following diagram:

M�⇡E+
E

+⇡E+

E
+

E

ÙE
+

ME
+

MÙÛE
+

MÙE
+

ÙME
+

ME
+⇡E+

ME
+

E

k⇡E+

M‘E+

=

MÙkÛ

⁄E+

Mkvar⇡E+

=

=

Ù‚k

‚kE

=

=
a b

c

a (See below)

b Factorisation of k

c Lemma 9

The diagram a above is the M -image of the following diagram:

�⇡E+

E
+

ÙÛE
+

ÙE
+

E
+⇡E+

E
+

E

‘E+

=
ÙkÛ

kvar⇡E+

=

=

To see that it commutes, we consider its index-wise valuations. At index 0, it becomes:

(�⇡E+
A)0 = EA

(E+
A)0 = (ÙÛE

+
A)0 = (E+

A)0 = EA

(E+⇡E+
A)0 = EEA

(E+
EA)0 = EEA

(‘E+A)0 = id

(kvar⇡E+A)0 = ÷EEA

=

(ÙkÛA)0 = (kÛA)1 = ÷EEA

At index n + 1, the domain of the diagram becomes (�⇡S+
A)n+1 = 0 (by the definition of �),

hence it trivially commutes.

B.3 Second Inverse

In what follows, we write struct to mean any structural morphism of M , that is, any
composition of µ, ÷, cons with M in its codomain. Note that since M is a free monad, every
two structural morphisms that share a domain are equal.

XX:24 Syntax and Handlers for Operations with Scopes

I Lemma 10. For n > 0, the following diagram commutes:

�ÙMÛMÙ
n

�ÙMÛÙ
n
M

�ÙMÙ
n≠1

M

= �ÙMÙ
n
ÛM

�ÙÙ
n
MÛM

= Ù
n�ÙMÛM

MÙ
n

Ù
n
M

�ÙMÛ⁄n

�ÙM‘

�Ù⁄n

⁄n

struct

Ùnstruct

Proof. Induction by n. For n = 1, the diagram above follows from the fact that ⁄ is defined
via structural induction. For n > 1, the diagram becomes as follows:

�ÙMÛMÙ
n≠1

Ù

�ÙMÛÙ
n≠1

MÙ

�ÙMÙ
n≠2

MÙ

= �ÙMÙ
n≠1

ÛMÙ

�ÙÙ
n≠1

MÛMÙ

= Ù
n≠1�ÙMÛMÙ

Ù
n≠1�ÙMÛÙM

Ù
n≠1�ÙMM

= Ù
n≠1�ÙMÙÛM

�Ù
n≠1

ÙÙMÛM

= Ù
n≠1�ÙÙMÛM

= Ù
n≠1

Ù�ÙMÛM

MÙ
n≠1

Ù

Ù
n≠1

MÙ

Ù
n≠1

ÙM

�ÙMÛÙ
n≠1

ÙM

�ÙMÙ
n≠2

ÙM

= �ÙMÙ
n≠1

ÛÙM

�ÙMÙ
n≠1

M

= �ÙMÙ
n≠1

ÙÛM

�ÙMÛ⁄n≠1

�ÙM‘

�Ù⁄n≠1

Ùn≠1�ÙMÛ⁄

Ùn≠1�ÙM‘

Ùn≠1�Ù⁄

⁄n≠1

Ùn≠1⁄

struct

Ùn≠1struct

Ùn≠1Ùstruct

�ÙMÛÙn≠1⁄

�ÙM‘

�ÙMÙn≠1‘

�ÙM⁄n≠1

�Ù⁄n

�ÙMÛ⁄n

id

a

b

c

d

e

f

a Composition of morphisms

b Induction

c Naturality

d Ù‘ = idÙ

e Composition of morphisms

f ⁄ is defined via structural induction

J

XX:26 Syntax and Handlers for Operations with Scopes

At n + 1:

(�E
+

A)n+1
= �EE

n+1
A

EE
n+1

A

E(M�A)n

�⇡M�En+1
A

= ⇡�M�En+1
A

⇡M�En+1
A

⇡M�(M�A)n

= ⇡M�⇡Ùn
M�A

�E(M⇡A)n

�⇡M�(M�A)n

= �⇡M�⇡Ùn
M�A

⇡MÙ
n
M�A

= ⇡MÙ
n+1

ÛM�A

�⇡MÙ
n
M�A

= �⇡MÙ
n+1

ÛM�A
= ⇡�MÙ

n+1
ÛM�A

⇡Ùn+1
MÛM�A

�⇡Ùn+1
MÛM�A

= ⇡�Ù
n+1

MÛM�A
= ⇡Ùn+1�MÛM�A

�⇡Ùn+1
M�A

= �(M�A)n+1
= (�M�A)n+1

⇡Ùn+1
M�A

= (M�A)n+1

k�
n+1 = cons

�i

Eqn
i� = ⇡cons

i

i
⇡M�qn

�Eqn

�i

⇡cons

�⇡M�qn

�⇡M‘⇡M‘

⇡cons

�⇡⁄n+1
⇡⁄n+1

⇡⁄� = ⇡Ùn+1cons

�⇡Ùn+1struct = ⇡Ùn+1�struct⇡Ùn+1struct

consn+1 = ⇡Ùn+1cons

a

b

c

d

e

f

g

a Naturality

b i is defined via structural induction

c Naturality

d Naturality

e Naturality

f ⁄ is defined via structural induction

g Structural morphism

