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We type effect terms as I'; A+ T, where A consists of effect variables w: (at),
according to the following rules:

I'Fva

7[’; A (o) (w:(a) € A)

I'tv:B Lo ; AT, (i=1,...,n)
I Al opy(@i:e.T;);

(op:Bs 0, ... an € Ter) -

Next, conditional equations have the form I'; A = Ty = T (), assuming that
I ART, I A Ty, and I' - p:form. Finally, a conditional effect theory € is
a collection of such equations; it would be interesting to develop an equational
logic for such theories [18].
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Equational theories

The main premise of algebraic effects is that effects can be described with an equational

theory consisting of a set of operations and equations between them [7]. For example,

non-determinism can be described by an operation choose and three equations stating its
idempotency, commutativity and associativity. Computations returning values from X are
then interpreted as elements of the free model of such a theory.
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Algebraic effects have originally been presented with equational theories, i.e. a set of
operations and a set of equations they satisfy. Since a significant portion of computationally
interesting handlers overrides the effectful behaviour in a way that invalidates the equations,
most approaches nowadays assume an empty set of equations.

At the Dagstuhl Seminar 16112, I presented an idea in which the equations are represented
locally in computation types [1]. In this way, handlers that do not respect all equations
are not rejected but receive a weaker type. In the talk, I presented the progress made and
questions that remain open.
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Abstract

Algebraic effects are computational effects that can be described with a set of basic operations and
equations between them. As many interesting effect handlers do not respect these equations, most
approaches assume a trivial theory, sacrificing both reasoning power and safety.

‘We present an alternative approach where the type system tracks equations that are observed
in subparts of the program, yielding a sound and flexible logic, and paving a way for practical
optimizations and reasoning tools.




Idea

MEGA: Make Equations Great Again!

Reintroduce equations into algebraic effects and handlers by
including them in types.

C=AlX/E

Operations of type C either return a value of type A or call an
operation from X in the effect theory &.

Equations in & tell us what computations we deem equal.



Term Syntax (nothing new)

values v = x variable
| () unit constant
| true|false boolean constants
| funxc function
|

handler (ret x > ¢,; h) handler

computations ¢ ::= if v then ¢; else o conditional
| viw application
| retv returned value
|  op(v; y.c) operation call
| dox« ¢ in o sequencing
| with v handle ¢ handling

operation clauses h = 0| hU {op(x; k) = Cop}



Type Syntax (mostly old stuff)

(value) type A/B = unit unit type
| bool boolean type
| A->C function type
| C=D handler type
computation type C,D = AlX /&

signature ¥ = 0| XU {op:A— B}



Type Syntax (new stuff)

value context I' == Q| T, x:A

template context Z 01Z, z:A— =

template T zZv
if v then T1 else T,

op(v; y.T)

0| EU{T;Zr Ty ~ Ty}

(effect) theory &

The any type = used in template types can be instantiated to any
computation type so that we can reuse templates.



Example of an (effect) equation

Iz = (x:string,y:string); (z:unit — *)

Ir;z+ print(x; ,.print(y; _z ())) ~ print(x“y; _z ())



Example

We have written a program using nondeterministic choice
choose : () — bool

We obtain a binary non-deterministic choice from the abbreviation:

def
ca1d o = choose((); y.if y then ¢ else )

We didn’t pay any attention to the order of arguments of & so we
wish to make sure that the arguments commute when evaluated

0;z1,22+z21® 20 ~20® 21 (COMM)

and so we give our program the type

nondetProg : int ! {choose} / (COMM)



Example ctd.

Now we want to play with our program, but don't want to write all
the handlers ourselves!!!

So we find a library for working with
yield : int — unit
and in that library a handler
sumYielded : unit ! {yield} / (ORDER) = int ! 0 / 0

which doesn’t care about the order of yielded values, as expressed
by

x,y; z v yield (x; _.yield(y; _.z)) ~ yield(y; _.yield(x; -.z)) ~ (ORDER)



Example ctd. ctd.

To go from choose to yield, we write a handler that
yields all possible outcomes of our program

yieldAll = handler {
| choose((); k) — k true; k false
| ret x > yield(x; _.ret ())

}

It clearly has the type
int ! {choose} /| 0 = unit ! {yield} / 0
but due to the type of our program
nondetProg : int ! {choose} |/ (COMM)

any handler used on nondetProg needs to respect (COMM).



Typing rules

When handling computations, the equations in the types must
match as well.

'rv:C=D 'rce:C
I' + with v handle c: D

Most typing rules are largely unchanged.

The only interesting rule is for typing handlers.

I[Lx:Avrc:D ' h:X = D respects &
I' + handler (ret x +— ¢,; h): AlX/E = D




Handler correctness

The typing part of
I' h:X = D respects &

is as expected

r-0:0=0

'-h:x=0 I, x:Aop k:Bop = D+ cop: D opgx

' hu {op(x; k) = cop}:(ZU{op:Acp = Bop}) = D

but to get the respects part we need to use a logic...



We can use different kinds of logics

We can use any logic that implements some respects relation

> (though there are requirements on these logics for
denotational semantics to make sense)

The simplest logic we can use is the free logic, in which

I'rh:X=D

'+ h:X = D respects 0

corresponding to the conventional approach of ignoring equations.



We can use different kinds of logics ctd.

Another option is to use equational logic

['F h:2 = D respects &
L, (xi:A)i (f: B = D)+ T{[f/z); =p T;16/z);
' h:X = D respects EU {(x;:A,-),-;(zj:Bj —*)ik Ty~ T2}

'-h:X=D
' h:Z = D respects 0

where for h = {op(x; k) = Cop}op We define:
zi(v)"[fi/ 7 = fi v
(if v then T; else T2)h[f}/zj-]j = if v then Tlh[f;/zJ]J else T;[f;/zj]J
op(v; y.T)'[fi/z]]j = coplv/x. (fun y = T"[f;/z];)/k]



We can use different kinds of logics ctd. ctd.

To use the equations of the current theory, we include the rule

(xi:ADi; (zi:Bj = *)jF Ty ~ To) € &
'+ v A I'rf:B — AlX/E

I+ (T1lf;/zi1)lvi/xi)i =asse (Talfi/ zp)vi/xili




We can use different kinds of logics ctd. ctd. ctd.

We can further extend our logic with induction (and quantifiers
and hypotheses)

I'¥Yrc:AX/E [x:A|YF p(ret x)

[, x: Aops k: Bop = AIZ/E | Y, (Vy : Bop. ¢(k y)) + ¢(op(x; y.k y)) oA B
“Aop op

I'YrVc:AZ/E. ¢(c)

Sadly, proving (in such a logic) that the handler respects & has to
be done by hand (currently).



Typing yieldAll
Suppose we use the suggested logic with induction.

It is not possible to give the handler

yieldAll = handler {
| choose((); k) — k true; k false
| ret x > yield(x; _.ret ())

}

the type
int ! {choose} / (cOMM) = unit ! {yield} / 0

because the order of arguments for @ influences the order of
yielded values.



Typing yieldAll

But luckily
sumYielded : unit ! {yield} / (ORDER) = int ! 0 / 0

from the library works with the theory (ORDER) and it is possible
(in the logic with induction) to give yieldAll the type

int ! {choose} / (COMM) = wunit ! {yield} / (ORDER)



Combining the parts

We can now safely compose

nondetProg : int ! {choose} | (COMM)
yieldAll : int | {choose} / (CcOMM) = unit ! {yield} / (ORDER)

sumVYielded : unit ! {yield} / (ORDER) — int ! 0 / 0

We typed yieldAll without needing the code of either
nondetProg or sumYielded, so everything is entirely modular!



Benefits

» Equations Are Great Again!

» Reasoning becomes more modular.

> Libraries can provide tools for reasoning via equations.
» Theories are now local, which removes the drawbacks of

global theories.



