Making Equations Great Again

Danel Ahman

presenting

what iiga Luksic and Matija Pretnar have been up to

Shonan, 25 March 2019

Local Algebraic Effect Theories

Danel Ahman

presenting

what iiga Luksic and Matija Pretnar have been up to

Shonan, 25 March 2019

2009

We type effect terms as I'; A+ T, where A consists of effect variables w: (at),
according to the following rules:

I'Fva

7[’; A (o) (w:(a) € A)

I'tv:B Lo ; AT, (i=1,...,n)
I Al opy(@i:e.T;);

(op:Bs 0, ... an € Ter) -

Next, conditional equations have the form I'; A = Ty = T (), assuming that
I ART, I A Ty, and I' - p:form. Finally, a conditional effect theory € is
a collection of such equations; it would be interesting to develop an equational
logic for such theories [18].

2016

5.2 Capturing algebraic equations in an effect system
Matija Pretnar (University of Ljubljana, SI)

License @ Creative Commons BY 3.0 Unported license
© Matija Pretnar

Equational theories

The main premise of algebraic effects is that effects can be described with an equational

theory consisting of a set of operations and equations between them [7]. For example,

non-determinism can be described by an operation choose and three equations stating its
idempotency, commutativity and associativity. Computations returning values from X are
then interpreted as elements of the free model of such a theory.

16112

2018

3.11 Make Equations Great Again!
Matija Pretnar (University of Ljubljana, SI)

License @ Creative Commons BY 3.0 Unported license
Matija Pretnar
Joint work of Ziga Luksié, Matija Pretnar

Algebraic effects have originally been presented with equational theories, i.e. a set of
operations and a set of equations they satisfy. Since a significant portion of computationally
interesting handlers overrides the effectful behaviour in a way that invalidates the equations,
most approaches nowadays assume an empty set of equations.

At the Dagstuhl Seminar 16112, I presented an idea in which the equations are represented
locally in computation types [1]. In this way, handlers that do not respect all equations
are not rejected but receive a weaker type. In the talk, I presented the progress made and
questions that remain open.

References
1 Matija Pretnar. Capturing algebraic equations in an effect system. In Dagstuhl Seminar
16112, pages 55-57. 2016. DOI: 10.4230/DagRep.6.3.44

2019

‘ ZU064-05-FPR main 22 March 2019 9:32

Under consideration for publication in J. Functional Programming

Local Algebraic Effect Theories

Ziga Luksi¢ and Matija Pretnars
University of Ljubljana, Faculty of Mathematics and Physics, Slovenia

(e-mail: ziga.luksicOfmf .uni-1j.si, matija.pretnar®fmf.uni-1j.si)

Abstract

Algebraic effects are computational effects that can be described with a set of basic operations and
equations between them. As many interesting effect handlers do not respect these equations, most
approaches assume a trivial theory, sacrificing both reasoning power and safety.

‘We present an alternative approach where the type system tracks equations that are observed
in subparts of the program, yielding a sound and flexible logic, and paving a way for practical
optimizations and reasoning tools.

Idea

MEGA: Make Equations Great Again!

Reintroduce equations into algebraic effects and handlers by
including them in types.

C=AlX/E

Operations of type C either return a value of type A or call an
operation from X in the effect theory &.

Equations in & tell us what computations we deem equal.

Term Syntax (nothing new)

values v = x variable
| () unit constant
| true|false boolean constants
| funxc function
|

handler (ret x > ¢,; h) handler

computations ¢ ::= if v then ¢; else o conditional
| viw application
| retv returned value
| op(v; y.c) operation call
| dox« ¢ in o sequencing
| with v handle ¢ handling

operation clauses h = 0| hU {op(x; k) = Cop}

Type Syntax (mostly old stuff)

(value) type A/B = unit unit type
| bool boolean type
| A->C function type
| C=D handler type
computation type C,D = AlX /&

signature ¥ = 0| XU {op:A— B}

Type Syntax (new stuff)

value context I' == Q| T, x:A

template context Z 01Z, z:A— =

template T zZv
if v then T1 else T,

op(v; y.T)

0| EU{T;Zr Ty ~ Ty}

(effect) theory &

The any type = used in template types can be instantiated to any
computation type so that we can reuse templates.

Example of an (effect) equation

Iz = (x:string,y:string); (z:unit — *)

Ir;z+ print(x; ,.print(y; _z ())) ~ print(x“y; _z ())

Example

We have written a program using nondeterministic choice
choose : () — bool

We obtain a binary non-deterministic choice from the abbreviation:

def
ca1d o = choose((); y.if y then ¢ else)

We didn’t pay any attention to the order of arguments of & so we
wish to make sure that the arguments commute when evaluated

0;z1,22+z21® 20 ~20® 21 (COMM)

and so we give our program the type

nondetProg : int ! {choose} / (COMM)

Example ctd.

Now we want to play with our program, but don't want to write all
the handlers ourselves!!!

So we find a library for working with
yield : int — unit
and in that library a handler
sumYielded : unit ! {yield} / (ORDER) = int ! 0 / 0

which doesn’t care about the order of yielded values, as expressed
by

x,y; z v yield (x; _.yield(y; _.z)) ~ yield(y; _.yield(x; -.z)) ~ (ORDER)

Example ctd. ctd.

To go from choose to yield, we write a handler that
yields all possible outcomes of our program

yieldAll = handler {
| choose((); k) — k true; k false
| ret x > yield(x; _.ret ())

}

It clearly has the type
int ! {choose} /| 0 = unit ! {yield} / 0
but due to the type of our program
nondetProg : int ! {choose} |/ (COMM)

any handler used on nondetProg needs to respect (COMM).

Typing rules

When handling computations, the equations in the types must
match as well.

'rv:C=D 'rce:C
I' + with v handle c: D

Most typing rules are largely unchanged.

The only interesting rule is for typing handlers.

I[Lx:Avrc:D ' h:X = D respects &
I' + handler (ret x +— ¢,; h): AlX/E = D

Handler correctness

The typing part of
I' h:X = D respects &

is as expected

r-0:0=0

'-h:x=0 I, x:Aop k:Bop = D+ cop: D opgx

' hu {op(x; k) = cop}:(ZU{op:Acp = Bop}) = D

but to get the respects part we need to use a logic...

We can use different kinds of logics

We can use any logic that implements some respects relation

> (though there are requirements on these logics for
denotational semantics to make sense)

The simplest logic we can use is the free logic, in which

I'rh:X=D

'+ h:X = D respects 0

corresponding to the conventional approach of ignoring equations.

We can use different kinds of logics ctd.

Another option is to use equational logic

['F h:2 = D respects &
L, (xi:A)i (f: B = D)+ T{[f/z); =p T;16/z);
' h:X = D respects EU {(x;:A,-),-;(zj:Bj —*)ik Ty~ T2}

'-h:X=D
' h:Z = D respects 0

where for h = {op(x; k) = Cop}op We define:
zi(v)"[fi/ 7 = fi v
(if v then T; else T2)h[f}/zj-]j = if v then Tlh[f;/zJ]J else T;[f;/zj]J
op(v; y.T)'[fi/z]]j = coplv/x. (fun y = T"[f;/z];)/k]

We can use different kinds of logics ctd. ctd.

To use the equations of the current theory, we include the rule

(xi:ADi; (zi:Bj = *)jF Ty ~ To) € &
'+ v A I'rf:B — AlX/E

I+ (T1lf;/zi1)lvi/xi)i =asse (Talfi/ zp)vi/xili

We can use different kinds of logics ctd. ctd. ctd.

We can further extend our logic with induction (and quantifiers
and hypotheses)

I'¥Yrc:AX/E [x:A|YF p(ret x)

[, x: Aops k: Bop = AIZ/E | Y, (Vy : Bop. ¢(k y)) + ¢(op(x; y.k y)) oA B
“Aop op

I'YrVc:AZ/E. ¢(c)

Sadly, proving (in such a logic) that the handler respects & has to
be done by hand (currently).

Typing yieldAll
Suppose we use the suggested logic with induction.

It is not possible to give the handler

yieldAll = handler {
| choose((); k) — k true; k false
| ret x > yield(x; _.ret ())

}

the type
int ! {choose} / (cOMM) = unit ! {yield} / 0

because the order of arguments for @ influences the order of
yielded values.

Typing yieldAll

But luckily
sumYielded : unit ! {yield} / (ORDER) = int ! 0 / 0

from the library works with the theory (ORDER) and it is possible
(in the logic with induction) to give yieldAll the type

int ! {choose} / (COMM) = wunit ! {yield} / (ORDER)

Combining the parts

We can now safely compose

nondetProg : int ! {choose} | (COMM)
yieldAll : int | {choose} / (CcOMM) = unit ! {yield} / (ORDER)

sumVYielded : unit ! {yield} / (ORDER) — int ! 0 / 0

We typed yieldAll without needing the code of either
nondetProg or sumYielded, so everything is entirely modular!

Benefits

» Equations Are Great Again!

» Reasoning becomes more modular.

> Libraries can provide tools for reasoning via equations.
» Theories are now local, which removes the drawbacks of

global theories.

