
Making Equations Great Again

Danel Ahman

presenting

what Žiga Lukšič and Matija Pretnar have been up to

Shonan, 25 March 2019

Local Algebraic Effect Theories

Danel Ahman

presenting

what Žiga Lukšič and Matija Pretnar have been up to

Shonan, 25 March 2019

2009

We type e↵ect terms as � ;� ` T , where � consists of e↵ect variables w : (↵),
according to the following rules:

� ` v :↵
(w : (↵) 2 �)

� ;� ` w(v)

� ` v :� �,xi :↵i;� ` Ti (i = 1, . . . , n)
(op:�;↵1, . . . ,↵n 2 ⌃e↵)

� ;� ` opv(xi :↵i.Ti)i

.

Next, conditional equations have the form � ;� ` T1 = T2 ('), assuming that
� ;� ` T1, � ;� ` T2, and � ` ' : form. Finally, a conditional e↵ect theory E is
a collection of such equations; it would be interesting to develop an equational
logic for such theories [18].

Example 1. To describe a set E of exceptions, the base signature consists of a
base type exc and a constant function symbol e : () ! exc for each e 2 E.
We interpret exc by E and functional symbols by their corresponding elements.
The e↵ect signature consists of an operation symbol raise : exc; 0, while the
e↵ect theory is empty. Then, omitting empty parentheses, raisee represents the
computation that raises the exception e.

Example 2. For nondeterminism, we take the empty base signature, the empty
interpretation, the e↵ect signature with a single nondeterministic choice opera-
tion symbol or :2, and the e↵ect theory for a semi-lattice, which states that or is
idempotent, commutative, and associative.

Example 3. For state, the base signature contains a base type loc of memory
locations, an arity type dat of data, and appropriate function and relation sym-
bols to represent the locations and data. We interpret loc by a finite set L and
dat by a countable set D. The e↵ect signature consists of operation symbols
lookup : loc;dat and update : loc,dat; 1, while the e↵ect theory consists of seven
conditional equations [9, 18]. As an example term, lookupl(d :dat.updatel0,d(w))
represents the computation that copies d from l to l0 and then proceeds as w.

Each e↵ect theory E gives rise to a standard (possibly infinitary) equational
theory [19]. For each op:�;↵1, . . . ,↵n 2 ⌃e↵ and b 2 [[�]], we take an operation
symbol opb of countable arity

P
i |[[↵i]]|. Then each term � ;� ` T and each

c 2 [[�]] give rise to a term �0 ` Tc, where �0 consists of variables wa for each
w : (↵) 2 � and a 2 [[↵]]. The equations of the theory are �0 ` Tc = Tc0 for any
equation � ;� ` T = T 0 (') in E and any c 2 [[']].

A model of the e↵ect theory is a set M together with a family of maps
{opM : [[�]] ⇥ Q

i M [[↵i]] ! M}op:�;↵1,...,↵n2⌃eff
, such that the corresponding

maps opM (b,�), where b 2 [[�]], satisfy the equations of the induced infinitary
e↵ect theory. A homomorphism between models M and N is a map f : M ! N
such that opN � (id[[�]] ⇥

Q
i f [[↵i]]) = f � opM holds.

Models and homomorphisms form a category ModE, equipped with the for-
getful functor U : ModE ! Set, which maps a model to its underlying set and a

5

2016

Andrej Bauer, Martin Hofmann, Matija Pretnar, and Jeremy Yallop 55

Other setups

1. In Haskell we could do everything inside a fixed monad. This is still not entirely easy,
even if we figure out what it means for f to be “pure”.

2. Moving to a total language is probably helpful. However, keep in mind that µ does not
exist in pure ⁄-calculus, so straight Agda or some such system is out of the question.

3. Other e�ects can be used to implement a candidate µ, but it seems like they should be
local (local references, local exceptions, delimited control) or else f has access to them.

5.1.3 Open problem

At first sight it seems that the above implementations of µ work, but as soon as we try to
formulate exactly what it is that we want to prove, it becomes clear that not everything is
clear, so the first problem is:

Explain what it means to realize “all functions are continuous” in a realizability model
based on a programming language with computational e�ects.

One has to find a good notion of a realizer that uses e�ects in a “benign way”. For instance,
asking for purity in the sense of [1] seems too restrictive. Once it is clear what problem we
are trying to solve, we may attempt to prove that the modulus is really there:

Identify computational e�ects which allow realization of the modulus of continuity,
and prove rigorously that the realizer works.

Attacking the problem ought to improve our ability to argue about higher-type computation
in the presence of computational e�ects.

References
1 Andrej Bauer, Martin Hofmann and Aleksandr Karbyshev. On Monadic Parametricity of

Second-Order Functionals. Foundations of Software Science and Computation Structures –
16th International Conference, FOSSACS 2013, 225–240, 2013.

2 Ulrich Berger. Computability and Totality in Domains. Mathematical Structures in Com-
puter Science 12(3), 281–294, 2002.

3 Anne Troelstra and Dirk van Dalen. Constructivism in mathematics, volume 2. Elsevier,
1988.

5.2 Capturing algebraic equations in an e�ect system
Matija Pretnar (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Matija Pretnar

Equational theories

The main premise of algebraic e�ects is that e�ects can be described with an equational
theory consisting of a set of operations and equations between them [7]. For example,
non-determinism can be described by an operation choose and three equations stating its
idempotency, commutativity and associativity. Computations returning values from X are
then interpreted as elements of the free model of such a theory.

16112

2018

KC Sivaramakrishnan, Daan Leijen, Matija Pretnar, and Tom Schrijvers 119

3.10 Experiences with structuring e�ectful code in Haskell
Andres Löh (Well-Typed LLP, DE)

License Creative Commons BY 3.0 Unported license
© Andres Löh

E�ectful Haskell code that is written using monad transformers can easily become di�cult
to maintain. However, it is unclear whether algebraic e�ects doenot su�er from the same
problem. Both approaches seem to encourage specifying a minimal amount of e�ects for
each code fragment, leading to e�ect constraints being propagated in a bottom-up fashion
throughout the program, often without much thought for control. In this talk, I argue that
sometimes, it is better to be less general, by identifying just a few meaningful interfaces in
a program, corresponding to di�erent sets of available e�ects, and keeping testing in mind.
These interfaces are then pushed down, and code is merely checked to not use e�ects that
are outside of the allowed subset.

3.11 Make Equations Great Again!
Matija Pretnar (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Matija Pretnar

Joint work of éiga Luköi�, Matija Pretnar

Algebraic e�ects have originally been presented with equational theories, i.e. a set of
operations and a set of equations they satisfy. Since a significant portion of computationally
interesting handlers overrides the e�ectful behaviour in a way that invalidates the equations,
most approaches nowadays assume an empty set of equations.

At the Dagstuhl Seminar 16112, I presented an idea in which the equations are represented
locally in computation types [1]. In this way, handlers that do not respect all equations
are not rejected but receive a weaker type. In the talk, I presented the progress made and
questions that remain open.

References
1 Matija Pretnar. Capturing algebraic equations in an e�ect system. In Dagstuhl Seminar

16112, pages 55–57. 2016. DOI: 10.4230/DagRep.6.3.44

3.12 Quirky handlers
Matija Pretnar (University of Ljubljana, SI) and éiga Luköi� (University of Ljubljana, SI)

License Creative Commons BY 3.0 Unported license
© Matija Pretnar and éiga Luköi�

Programming language terms are usually represented with an inductive type that lists all
their possible constructors. It turns out that most functions on such a type are routine. For
example, the set of free variables in a given arithmetic expression is almost always the union
of free variables in subterms (except if the expression itself is a variable). Still, we must treat
every single case in the function definition, and this quickly becomes annoying.

18172

2019

ZU064-05-FPR main 22 March 2019 9:32

Under consideration for publication in J. Functional Programming 1

Local Algebraic Effect Theories

Žiga Lukšič and Matija Pretnar⇤
University of Ljubljana, Faculty of Mathematics and Physics, Slovenia

(e-mail: ziga.luksic@fmf.uni-lj.si, matija.pretnar@fmf.uni-lj.si)

Abstract

Algebraic effects are computational effects that can be described with a set of basic operations and
equations between them. As many interesting effect handlers do not respect these equations, most
approaches assume a trivial theory, sacrificing both reasoning power and safety.

We present an alternative approach where the type system tracks equations that are observed
in subparts of the program, yielding a sound and flexible logic, and paving a way for practical
optimizations and reasoning tools.

Algebraic effects are computational effects that can be described by a signature of primitive
operations and a collection of equations between them (Plotkin & Power, 2001; Plotkin &
Power, 2003), while algebraic effect handlers are a generalization of exception handlers
to arbitrary algebraic effects (Plotkin & Pretnar, 2009; Plotkin & Pretnar, 2013). Even
though the early work considered only handlers that respect equations of the effect theory, a
considerable amount of useful handlers did not, and the restriction was dropped in most —
though not all (Ahman, 2018) — of the later work on handlers (Kammar et al., 2013; Bauer
& Pretnar, 2015; Leijen, 2017; Biernacki et al., 2018), resulting in a weaker reasoning logic
and imprecise specifications.

Our aim is to rectify this by reintroducing effect theories into the type system, tracking
equations observed in parts of a program. On one hand, the induced logic allows us to
rewrite computations into equivalent ones with respect to the effect theory, while on the
other hand, the type system enforces that handlers preserve equivalences, further specifying
their behaviour. After an informal overview in Section 1, we proceed as follows:

• The syntax of the working language, its operational semantics, and the typing rules
are given in Section 2.

• Determining if a handler respects an effect theory is in general undecidable (Plotkin
& Pretnar, 2013), so there is no canonical way of defining such a judgement. There-
fore, the typing rules are given parametric to a reasoning logic, and in Section 3, we
present some of the more interesting choices.

• Since the definition of typing judgements is intertwined with a reasoning logic, we
must be careful when defining the denotation of types and terms. Thus, in Section 4,
we first introduce a set-based denotational semantics that disregards effect theories
and prove the expected meta-theoretic properties.

⇤ This material is based upon work supported by the Air Force Office of Scientific Research under
award number FA9550-17-1-0326.

Idea

MEGA: Make Equations Great Again!

Reintroduce equations into algebraic effects and handlers by
including them in types.

C = A ! Σ / E
Operations of type C either return a value of type A or call an
operation from Σ in the effect theory E.

Equations in E tell us what computations we deem equal.

Term Syntax (nothing new)

values v ::= x variable
| () unit constant
| true | false boolean constants
| fun x 7→ c function
| handler (ret x 7→ cr ; h) handler

computations c ::= if v then c1 else c2 conditional
| v1 v2 application
| ret v returned value
| op(v ; y .c) operation call
| do x ← c1 in c2 sequencing
| with v handle c handling

operation clauses h ::= ∅ | h ∪ {op(x ; k) 7→ cop}

Type Syntax (mostly old stuff)

(value) type A,B ::= unit unit type
| bool boolean type
| A→ C function type
| C ⇒ D handler type

computation type C,D ::= A ! Σ / E

signature Σ ::= ∅ | Σ ∪ {op :A→ B}

Type Syntax (new stuff)

value context Γ ::= ∅ | Γ , x :A

template context Z ::= ∅ | Z , z :A→ ∗

template T ::= z v
| if v then T1 else T2

| op(v ; y .T)

(effect) theory E ::= ∅ | E ∪ {Γ; Z ` T1 ∼ T2}

The any type ∗ used in template types can be instantiated to any
computation type so that we can reuse templates.

Example of an (effect) equation

Γ; Z =
(
x :string, y :string

)
;
(
z :unit→ ∗)

Γ; Z ` print (x ; .print
(
y ; .z ())) ∼ print

(
xˆy ; .z ())

Example

We have written a program using nondeterministic choice

choose : () → bool

We obtain a binary non-deterministic choice from the abbreviation:

c1 ⊕ c2
def
= choose((); y .if y then c1 else c2)

We didn’t pay any attention to the order of arguments of ⊕ so we
wish to make sure that the arguments commute when evaluated

∅; z1, z2 ` z1 ⊕ z2 ∼ z2 ⊕ z1 (comm)
and so we give our program the type

nondetProg : int ! {choose} / (comm)

Example ctd.

Now we want to play with our program, but don’t want to write all
the handlers ourselves!!!

So we find a library for working with

yield : int→ unit

and in that library a handler

sumYielded : unit ! {yield} / (order) =⇒ int ! ∅ / ∅

which doesn’t care about the order of yielded values, as expressed
by

x, y ; z ` yield (
x ; .yield(y ; .z)) ∼ yield

(
y ; .yield(x ; .z)) (order)

Example ctd. ctd.

To go from choose to yield , we write a handler that
yields all possible outcomes of our program

yieldAll = handler {
| choose((); k) 7→ k true; k false

| ret x 7→ yield(x ; .ret ())
}

It clearly has the type

int ! {choose} / ∅ =⇒ unit ! {yield} / ∅

but due to the type of our program

nondetProg : int ! {choose} / (comm)

any handler used on nondetProg needs to respect (comm).

Typing rules

When handling computations, the equations in the types must
match as well.

Γ ` v :C ⇒ D Γ ` c :C

Γ ` with v handle c :D

Most typing rules are largely unchanged.

The only interesting rule is for typing handlers.

Γ, x :A ` cr :D Γ ` h :Σ ⇀⇁ D respects E
Γ ` handler (ret x 7→ cr ; h) :A!Σ/E ⇒ D

Handler correctness

The typing part of

Γ ` h :Σ ⇀⇁ D respects E

is as expected

Γ ` ∅ :∅ ⇀⇁ D

Γ ` h :Σ ⇀⇁ D Γ, x :Aop, k :Bop → D ` cop :D op < Σ

Γ ` h ∪ {op(x ; k) 7→ cop} : (Σ ∪ {op :Aop → Bop})⇀⇁ D

but to get the respects part we need to use a logic...

We can use different kinds of logics

We can use any logic that implements some respects relation

I (though there are requirements on these logics for
denotational semantics to make sense)

The simplest logic we can use is the free logic, in which

Γ ` h :Σ ⇀⇁ D

Γ ` h :Σ ⇀⇁ D respects ∅

corresponding to the conventional approach of ignoring equations.

We can use different kinds of logics ctd.

Another option is to use equational logic

Γ ` h :Σ ⇀⇁ D respects E
Γ, (xi :Ai)i, (fj :Bj → D)j ` T h

1 [fj/zj]j ≡D T h
2 [fj/zj]j

Γ ` h :Σ ⇀⇁ D respects E ∪ {(xi :Ai)i ; (zj :Bj → ∗)j ` T1 ∼ T2

}
Γ ` h :Σ ⇀⇁ D

Γ ` h :Σ ⇀⇁ D respects ∅

where for h = {op(x ; k) 7→ cop}op we define:

zi (v)h[fj/zj]j = fi v

(if v then T1 else T2)h[fj/zj]j = if v then T h
1 [fj/zj]j else T h

2 [fj/zj]j
op(v ; y .T)h[fj/zj]j = cop[v/x, (fun y 7→ T h[fj/zj]j)/k]

We can use different kinds of logics ctd. ctd.

To use the equations of the current theory, we include the rule((xi :Ai)i ; (zj :Bj → ∗)j ` T1 ∼ T2
) ∈ E

Γ ` vi :Ai Γ ` fj :Bj → A!Σ/E
Γ ` (T1[fj/zj]j)[vi/xi]i ≡A!Σ/E (T2[fj/zj]j)[vi/xi]i

We can use different kinds of logics ctd. ctd. ctd.

We can further extend our logic with induction (and quantifiers
and hypotheses)

Γ | Ψ ` c :A!Σ/E Γ, x :A | Ψ ` ϕ(ret x)[
Γ, x :Aop, k :Bop → A!Σ/E | Ψ, (∀y :Bop . ϕ(k y)) ` ϕ(op(x ; y .k y))

]
op:Aop→Bop ∈Σ

Γ | Ψ ` ∀c :A!Σ/E . ϕ(c)

Sadly, proving (in such a logic) that the handler respects E has to
be done by hand (currently).

Typing yieldAll

Suppose we use the suggested logic with induction.

It is not possible to give the handler

yieldAll = handler {
| choose((); k) 7→ k true; k false

| ret x 7→ yield(x ; .ret ())
}

the type

int ! {choose} / (comm) =⇒ unit ! {yield} / ∅

because the order of arguments for ⊕ influences the order of
yielded values.

Typing yieldAll

But luckily

sumYielded : unit ! {yield} / (order) =⇒ int ! ∅ / ∅

from the library works with the theory (order) and it is possible
(in the logic with induction) to give yieldAll the type

int ! {choose} / (comm) =⇒ unit ! {yield} / (order)

Combining the parts

We can now safely compose

nondetProg : int ! {choose} / (comm)

yieldAll : int ! {choose} / (comm) =⇒ unit ! {yield} / (order)

sumYielded : unit ! {yield} / (order) =⇒ int ! ∅ / ∅

We typed yieldAll without needing the code of either
nondetProg or sumYielded , so everything is entirely modular!

Benefits

I Equations Are Great Again!

I Reasoning becomes more modular.

I Libraries can provide tools for reasoning via equations.

I Theories are now local, which removes the drawbacks of
global theories.

