
Just do It:

Simple Monadic Equational Reasoning

Jeremy Gibbons (jww Ralf Hinze)

Shonan, March 2019

Just do it 2

1. Reasoning with effects?

FP
equational

reasoning
//

monads

��

©

?

��
© ?

// ?

Just do it 3

2. Monads in Haskell

An interface for effectful computation:

class Monad m where

return :: a !m a

�>>�� :: m a ! �a !m b�!m b

Unit and associativity laws:

return x >>� k � k x

mx >>� return �mx

�mx >>� k� >>� k0 �mx >>� ��x ! k x >>� k0�

Two abbreviations:

skip :: Monad m)m �� �>>� :: Monad m)m a !m b !m b

skip � return �� mx >>my �mx >>� const my

Just do it 4

2.1. Imperative functional programming

do feg � e

do fx e; esg � e>>� �x ! do fesg
do fe; esg � e>> do fesg
do flet decls; esg � let decls in do fesg

‘Haskell is the world’s best imperative programming language.’ (SPJ)

Just do it 5

3. A counter example

The Monad interface provides general-purpose plumbing.
For any particular class of effect, we need additional operations.

class Monad m) MonadCount m where

tick :: m ��

Then, for example, Towers of Hanoi:

hanoi :: MonadCount m) Int !m ��
hanoi 0 � do fskipg
hanoi �n� 1� � do fhanoi n; tick; hanoi ng

Just do it 6

3.1. Correctness

We claim that

hanoi n � do frep �2n � 1� tickg

where

rep :: Monad m) Int !m ��!m ��
rep 0 mx � do fskipg
rep �n� 1�mx � do fmx; rep n mxg

Note that

rep 1 mx � do fmxg
rep �m� n�mx � do frep m mx; rep n mxg

Just do it 7

3.2. Reasoning

Proof by induction. Base case trivial:

hanoi 0 � do fskipg � do frep �20 � 1� tickg

For inductive step,

hanoi �n� 1�
� �� definition of hanoi ��

do fhanoi n; tick; hanoi ng
� �� inductive hypothesis; rep 1 ��

do frep �2n � 1� tick; rep 1 tick; rep �2n � 1� tickg
� �� rep promotes through addition ��

do frep �2n � 1� 1� 2n � 1� tickg
� �� arithmetic ��

do frep �2n�1 � 1� tickg

A particularly simple example, because MonadCount algebra is free.

Just do it 8

4. Failure, choice and nondeterminism

A class of possibly failing computations:

class Monad m) MonadFail m where

fail :: m a

such that fail is a left zero of sequential composition:

fail >>m � fail

(but not a right zero!).

Useful shorthand:

guard :: MonadFail m) Bool !m ��
guard b � if b then skip else fail

Just do it 9

4.1. Choice

A class of computations that make choices:

class MonadAlt m where

��� :: m a !m a !m a

such that � is associative, and composition distributes leftwards over it:

�m � n� � p �m � �n � p�
�m � n� >>� k � �m>>� k� � �n>>� k�

(but not rightwards!).

Just do it 10

4.2. Nondeterminism

. . . as a combination of failure and choice:

class �MonadFail m;MonadAlt m�) MonadNondet m

No additional operations. But two additional unit laws:

fail � mx �mx �mx � fail

Finite lists, bags, and sets are instances
(the latter two adding commutativity and idempotence of ���, respectively).

Just do it 11

4.3. Permutations

For example,

perms :: MonadNondet m) �a�!m �a�
perms � � � do freturn � �g
perms xs � do f�y;ys� select xs; zs perms ys; return �y : zs�g

where

select :: MonadNondet m) �a�!m �a; �a��
select � � � do ffailg
select �x : xs� � do freturn �x; xs�g �

do f�y;ys� select xs; return �y; x : ys�g

Just do it 12

5. State

A class of computations exploiting updatable state:

class Monad m) MonadState s m jm! s where

get :: m s

put :: s !m ��

with four axioms:

put s >> put s0 � put s0

put s >> get � put s >> return s

get >>� put � skip

get >>� �s ! get >>� k s � get >>� �s ! k s s

Just do it 13

5.1. Eight queens

Queen at �r; c� threatens up-diagonal r�c and down-diagonal r�c:

()

The essence of queen safety:

test :: �Int; Int�! ��Int �; �Int ��! �Bool; ��Int �; �Int ���
test �c; r� �ups;downs� � �u 62 ups ^ d 62 downs; �u : ups;d : downs��

where �u;d� � �r�c; r�c�

Just do it 14

5.2. Eight queens, purely

The safety test for a candidate layout:

safe1 :: ��Int �; �Int ��! ��Int; Int��! �Bool; ��Int �; �Int ���
safe1 � foldr step1 � start1 where

start1 updowns � �True;updowns�
step1 cr �restOK;updowns� � �thisOK ^ restOK;updowns0�

where �thisOK;updowns0� � test cr updowns

Then generate and test:

queens :: MonadNondet m) Int !m �Int �
queens n � do frs perms �1 : :n�;

guard �fst �safe1 empty �place n rs���; return rsg
place n rs � zip �1 : :n� rs

empty � �� �; � ��

Just do it 15

5.3. Safety testing, statefully

Maintain the checked diagonals statefully:

safe2 :: MonadState ��Int �; �Int ��m) ��Int; Int��!m Bool

safe2 � foldr step2 start2 where

start2 � do freturn Trueg
step2 cr k � do frestOK k; updowns get;

let �thisOK;updowns0� � test cr updowns;

put updowns0; return �thisOK ^ restOK�g

Simple proof using axioms of get and put that

safe2 crs

� do fupdowns get;

let �ok;updowns0� � safe1 updowns crs;

put updowns0; return okg

Just do it 16

6. Combining effects

Nondeterminism for permutations, state for safety testing:

class �MonadState s m;MonadNondet m�) MonadStateNondet s m jm! s

Again, no new operations, but some additional laws—fail also a right zero:

m>> fail � fail

and composition distributes also rightwards over choice:

m>>� �x ! k1 x � k2 x � �m>>� k1� � �m>>� k2�

That is, local or backtrackable state. (Each choice point entails a clean slate.)
In particular, guards commute with anything:

guard b >>m �m>>� �x ! guard b >> return x

Just do it 17

6.1. Queens, nondeterministically and statefully

Using get >>� put � skip and commuting guards, calculate

queens n � do frs perms �1 : :n�;
guard �fst �safe1 empty �place n rs���; return rsg

� do fs get; rs perms �1 : :n�; put empty;

ok safe2 �place n rs�; put s; guard ok; return rsg
� do fs get; rs perms �1 : :n�; put empty;

ok safe2 �place n rs�; guard ok; put s; return rsg
� do fs get; rs perms �1 : :n�; put empty;

safe3 �place n rs�; put s; return rsg

where safe3 crs � safe2 crs >>� guard. Then calculate that

safe3 crs � foldr step3 start3 where step3 � :::; start3 � :::

by plain ordinary equational reasoning.

Just do it 18

7. Think locally, act globally

• state and failure combine, in two ways

• local state: s ! Maybe �a; s�

• global state: s ! �Maybe a; s�

• different interactions between the two theories

• state and nondeterminism combine nicely locally: s ! ��a; s��

• but sometimes you want global state

• eg Prolog evaluator, or playing Sudoku

• however, s ! ��a�; s� is not a monad

• what is the equational theory? and implementation?

Just do it 19

8. Summary

• computational effects as algebraic theories

• the axioms are important! as with type classes etc too

• theories combine—trivially, or with interaction

• making equations great again

• personal bugbear:
language designers are
compiler writers

• Just do it,
JG and Ralf Hinze,
ICFP 2011

