UNIVERSITY OF

OXFORD

Just do It:

Simple Monadic Equational Reasoning

Jeremy Gibbons (jww Ralf Hinze)
Shonan, March 2019

do

1. Reasoning with effects?

equational
FP _
reasoning

monads ?

© : 2

do

2. Monads In Haskell

An interface for effectful computation:

class Monad m where
return::a I ma
> 'mal! al®mb "mb

Unit and associativity laws:

return x = Kk Kk X
mx = return mXx
mx= k > k! mx=> xTkx> Kk

Two abbreviations:

skip :: Monad m) m > cMonadm))mal®mb?®Imb
skip return mx=my mx=>= const my

do

2.1. Imperative functional programming

do feg e
do fx e;esg e> x ¥ do fesg
do fe;esg e > do fesg

do flet decls;esg let decls in do fesg

‘Haskell 1s the world’s best imperative programming language.’ (SPJ)

Just do it 5

3. A counter example

The Monad interface provides general-purpose plumbing.
For any particular class of effect, we need additional operations.

class Monad m) MonadCount m where
tick :: m
Then, for example, Towers of Hanoi:
hanoi :: MonadCount m) Int ¥ m

hanoi O do fskipg
hanoi n 1 do fhanoi n;tick; hanoi ng

Just do it

3.1. Correctness

We claim that
hanoin do frep 2" 1 tickg
where

rep:Monadm)>)Int I m I m
rep O mx do fskipg
reo n 1 mx dofmx;rep n mxg

Note that

rep 1 mx do fmxg
repc m n mx dofrep mmx;rep n mxg

do

3.2. Reasoning

Proof by induction. Base case trivial:
hanoi 0 do fskipg dofrep 2° 1 tickg
For inductive step,

hanoi n 1
definition of hanoi
do fhanoi n;tick; hanoi ng
inductive hypothesis; rep 1
do frep 2" 1 tick;rep 1tick;rep 2" 1 tickg
rep promotes through addition
dofrep 2" 1 1 2" 1 tickg
arithmetic
dofrep 2" 1 1 tickg

A particularly simple example, because MonadCount algebra is free.

do

4. Failure, choice and nondeterminism

A class of possibly failing computations:

class Monad m) MonadFail m where
fail :ma

such that fail is a left zero of sequential composition:
fail >m fail

(but not a right zero!).

Useful shorthand:

guard :: MonadFail m) Bool ¥ m
guard b if b then skip else fail

do

4.1. Choice

A class of computations that make choices:

class MonadAlt m where
(I mmaf¥fmalma

such that [J is associative, and composition distributes leftwards over it:

mOn Op mO nOp
mIOn > k m=>= Kk [n> Kk

(but not rightwards!).

do

4.2. Nondeterminism

...as a combination of failure and choice:
class MonadFail m; MonadAlt m) MonadNondet m
No additional operations. But two additional unit laws:
fail Omx mx mx O fail

Finite lists, bags, and sets are instances
(the latter two adding commutativity and idempotence of [, respectively).

Just do it

4.3. Permutations

For example,

perms: MonadNondetm) a Im a

perms
pPerms xs

where

do freturn
dof y;ys

g
select xs;zs permsys;return y:zs ¢

select : MonadNondet m) a ¥ m a; a

select
select x:Xxs

do ffailg

do freturn x;xs g O

dof y;ys

select xs;return y;x:ys g

11

do

5. State

A class of computations exploiting updatable state:

class Monad m) MonadStates mjm ¥ s where

get :ms
put:s I m

with four axioms:

put s = put s’

put s = get

get > put

get> s M get> ks

put s’

put s = returns
skip

get> s YT Kss

Just do it

5.1. Eight queens

Queen at r;c threatens up-diagonal r ¢ and down-diagonal r c:

The essence of queen safety:

test:: Int;Int ¥ Int ; Int ¥ Bool; Int ; Int
test c;r ups;downs u@ ups ™~ de& downs; u:ups;d:downs
where u;d r c;r c

13

Just do it

5.2. Eight queens, purely

The safety test for a candidate layout:

safe;:: Int ; Int ¢ Int;Int

I Bool; Int : Int

safe; foldr step,; start; where
start,; updowns True; updowns

step, cr restOK;updowns
where thisOK; updowns’

Then generate and test:

queens :: MonadNondet m) Int

thisOK " restOK; updowns’
test cr updowns

Im Int

queensn dofrs perms 1::n ;
guard fst safe; empty placenrs ;returnrsg

placenrs zip 1::n rs
empty :

14

do

5.3. Safety testing, statefully

Maintain the checked diagonals statefully:

safe, :: MonadState Int ; Int m) Int;Int ¥ m Bool
safe, foldr step, start, where
start, do freturn Trueg
step, cr kK do frestOK k;updowns get;
let thisOK;updowns’ test cr updowns;
put updowns’; return thisOK ™ restOK g

Simple proof using axioms of get and put that

safe, crs
do fupdowns get;
let ok;updowns’ safe; updowns crs;
put updowns’; return okg

do

6. Combining effects

Nondeterminism for permutations, state for safety testing:

class MonadState s m; MonadNondet m) MonadStateNondetsmjm ¥ s
Again, no new operations, but some additional laws—fail also a right zero:

m = fail fail
and composition distributes also rightwards over choice:

m=>= x ¥ ky x[ksyX m= ki 0 m=>=> ky

That is, local or backtrackable state. (Each choice point entails a clean slate.)
In particular, guards commute with anything:

guard b>m m=> x ¥ guard b > return x

do

6.1. Queens, nondeterministically and statefully

Using get = put skip and commuting guards, calculate

queensn dofrs perms 1::n ;

guard fst safe; empty placenrs ;returnrsg
dofs get;rs perms 1::n ;put empty;

ok safe, place nrs ;puts;guard ok;return rsg
dofs get;rs perms 1::n ;putempty;

ok safe, place nrs ;guard ok;put s;returnrsg
dofs get;rs perms 1::n ;put empty;

safe; place nrs ;put s;returnrsg

where safe; crs safe, crs = guard. Then calculate that
safe; crs foldr step; startz where step; i) starts

by plain ordinary equational reasoning.

do

7. Think locally, act globally

state and failure combine, in two ways

local state: s ¥ Maybe a;s

global state: s ¥ Maybe a;s

different interactions between the two theories

state and nondeterminism combine nicely locally: s ¥ a;s

but sometimes you want global state

eg Prolog evaluator, or playing Sudoku

however,s ¥ a :s isS not a monad

what is the equational theory? and implementation?

59k 712 | |3

48132|7|56C
25| |8 AL
716 711/%/8
28 qS 47|
Bl1pR 759 B2
%@gsﬁsmq
3121016716 F 5|

8. Summary

e computational effects as algebraic theories
e the axioms are important! as with type classes etc too
e theories combine—trivially, or with interaction

e making equations great again

e personal bugbear:
language designers are
compiler writers

=

.

£ ‘.‘_':‘.- ._g‘
e
. | B

e Just do it,
JG and Ralf Hinze,
ICFP 2011

.-’-’) ‘E'; g
<3
ok .

] L
-0

"

