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The problem of interest

let x : ∀α.(α list) ref = ref [] 
in 

x := [1]; 
if (head !x) then … else …

α := int   

α := bool   

Integer 1 will be used as Boolean

Polymorphic effects 
(ML references, continuations, etc.)

let-polymorphism 
[Milner 1978]+

Type safety is broken
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Type Inference for Polymorphic References 

MADS TOFTE 

Laboratory for Foundations of Computer Science, 
Department of Computer Science, 

University of Edinburgh, 
Mayfield Road, Edinburgh EH9 3JZ, Scotland 

The HindIey/Milner discipline for polymorphic type inference in functional 
programming languages is not sound if used on functions that can create and 
update references (pointers). We have found that the reason is a simple technical 
point concerning the capture of free type variables in store typings. We present a 
modified type inference system and prove its soundness using operational semantics. 
It is decidable whether, given an expression e, any type can be inferred for e. I f  
some type can be inferred for e then a PRINCIPAL TYPE can be inferred. Principal 
types are found using unification. The ideas extend to polymorphic exceptions and 
have been adopted in the definition of the programming language STANDARD 
ML. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

It has been known for at least a decade that the Hindley/Milner type 
discipline for polymorphic type inference in functional programming 
languages is not sound if used on functions that can create assignable 
locations. (An example of a program that would type check but leads to a 
run-time type error will be shown below.) It has proved surprisingly 
diflicult to understand precisely why this is so and to find a sound 
polymorphic type discipline. 

The practical implication is that it has been hard to combine 
“imperative” language features such as references, assignment, arrays and 
even exceptions with the benefits of the Hindley/Milner polymorphism. The 
type discipline we shall present is identical to Milner’s type discipline as far 
as purely applicative programs are concerned, but in addition it allows 
polymorphic use of references. The ideas extend to polymorphic exceptions 
and arrays. To give an example, we admit the following STANDARD ML 
program, which reverses lists in linear time, 

fun fast-reverse(l)= 
let valleft=reflandright=refnil 
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Polymorphic type inference and assignment

Xavier Leroy*
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Abstract

We present a new approach to the polymorphic typing
of data accepting in-place modification in ML-like lan-
guages. This approach is based on restrictions over type
generalization, and a refined typing of functions. The
type system given here leads to a better integration of
imperative programming style with the purely applica-
tive kernel of ML. In particular, generic functions that
allocate mutable data can safely be given fully polymor-
phic types. We show the soundness of this type system,
and give a type reconstruction algorithm.

1 Introduction

Polymorphic type disciplines originate in the study of }-
calculus and its connections to constructive logic [7, 14],
so it is no surprise it fits very nicely within purely
applicative languages, without side effects. However,
polymorphism becomes problematic when we move to-
ward conventional imperative languages (Algol, Pas-
cal), and allow physical modification of data structures.
The problem appeared at an early stage of the design of
ML [8, p. 52], when assignment operators were provided
for the primitive data types of references and vectors.
Consider the following example, in MLI:

let r =ref [] in
r := [1];
if head(!r) then . . . else . . .

If we naively give type ‘#a. a list ref to the reference r,
we can first use it with type int list ref, and store in it

*Authors’ address: B. P.105, 78153 Le Chesnay, France.
E-maik xleroy@marge.ux. inria. fr, weis@margaux. inria. fr.

1Survival kit for the reader unfamiliar with ML: [ ] is the (poly-
morphic) empty list, [al; . ;an] the list with elements al . . . aw.
ref z allocates a new reference (indirection cell), initialized to z.
r := x updates the contents of reference r by x. !r returns the
current contents of reference r.
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the list with 1 as single element — an int list, indeed.
Given its type, we can also consider T as having type
bool list Tef, hence head(!r) has type bool, and the if
statement is well-typed. However, head (! r) evaluates
to 1, which is not a valid boolean. This example shows
that physical modification of data compromises type
safety, since it can invalidate static typing assumptions.

As demonstrated here, the use of polymorphic mu-
table data (that is, data structures that can be mod-
ified in place) must be restricted. An obvious way to
tackle this problem, used in early implementations of
ML [3], is to require all such data to have monomor-
phic, statically-known types. This restriction trivially
solves the problem, but it also makes it impossible to
write polymorphic functions that create mutable values.
This fact has unfortunate consequences.

A first drawback is that it is not possible to provide
generic, eflicient implementations of most data struc-
tures (vectors, hash tables, graphs, B-trees, . . . ), as
they require physical modification. Even a trivial func-
tion such as taking a vector of an arbitrary type and
returning a copy of it is not well-typed with the policy
above, since it creates a vector with a statically un-
known type.

Another drawback is that polymorphic mutable val-
ues are prohibited even if they are not returned, but
used for internal computation only. As a consequence,
most generic functions cannot be written in an impera-
tive style, with references holding intermediate results.
Consider the familiar map functional:

let rec applicative-map ~ 1 =
if null 1 then [] else

f (head 1):: applicative. map ~ (tad 1)

Here is an alternate implementation of map in impera-
tive style:

let imperative. map f 1 =
let argument = ref 1 and result = ref. [] in

while not (nuil !argument) do
result := f (head !argument) :: !r-esult;
argument := tail !aryument

done;
reverse !7-esu/t
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Standard ML-N J weak polymorphism and imperative constructs 
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Abstract 
Standard ML of New Jersey (SML-NJ) uses “weak 
type variables” to restrict the polymorphic use of 
functions that may allocate reference cells, manip- 
ulate continuations, or use exceptions. However, the 
type system used in the SML-NJ compiler has not 
been presented in a form other than source code and 
has not been proved correct. We present a type sys- 
tem, in the form of typing rules and an equivalent 
algorithm, that appears to subsume the implemented 
algorithm. Both use type variables of only a slightly 
more general nature than the compiler. One insight in 
the analysis is that the indexed type of a free variable 
is used in two ways, once in describing the applicative 
behavior of the variable itself, and once in describ- 
ing the larger term containing the variable. Taking 
this into account, we formulate an application rule 
that is more general than SMGNJ for applications of 
polymorphic functions to imperative arguments. The 
soundness of the type system is proved for imperative 
code using operational semantics, by a technique that 
involves equivalence classes of related type variables. 

1 Introduction 
In the absence of side effects and so-called control ef- 
fects (continuations and exceptions), Curry/Hindley/ 
Milner type inference [CF58, Hin69, Mil781 provides 
an effective and useful method for detecting type er- 
rors at compile time. For any typable untyped ex- 
pression, the type inference algorithm computes a 
single most general type, from which all other types 
of the expression may be derived easily. Although 
the worst-case complexity is high [KMMSl], the al- 
gorithm has been found efficient in practice. More 

importantly, experience suggests that it is possible 
for a programmer to predict, with relative ease, the 
type that the algorithm will produce. This is impor- 
tant since it allows programs to be written naturally, 
in the idioms accepted by the type-checker, without 
significant revision of the program except when er- 
rors are detected. In addition, it allows a form of 
error detection that is unfamiliar to explicitly-typed 
programming. Even when a declaration is typable, 
the programmer may detect an error by noticing that 
the type inferred by the compiler differs from the type 
expected by the programmer (c.f. Poe921). 

Unfortunately, the straight forward, predictable 
polymorphic typing algorithm fails for programs with 
side-effects or control effects. To illustrate the prob- 
lems involved, we use a lambda calculus extended 
with let-expressions (for polymorphism) and imper- 
ative operators ref , ! and : = . Briefly, ref allo- 
cates a new cell, initialized to z , r: = z updates the 
contents of reference r by z , and !r returns the cur- 
rent contents of reference r . The inadequacy of pure 
polymorphic typing is illustrated by the program 

let r = ref (Xz.z) in  r : = Xz. z + 1 ; !r true 

where ; is the usual sequencing operator (definable 
by lambda abstraction under call-by-value). If we 
naively apply the Milner type algorithm, we give r 
type Va.[(a+ a) ref], where r ref is the type of 
references to values of type 7 .  Both expressions 
in the body of the declaration are well-typed, un- 
der this assumption, since we can take the instances 
(int + int) ref and (bod  + bool) ref for the two 
occurrences of r , respectively. However, since the 
assignment changes the value of r from a polymor- 
phic function to an integer function, the subsequent 
function application results in a run-time type error. 

Lucille M. Davis Faculty Scholarship. tions, as illustrated in [HL91, WF921, we restrict our 
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Abstract. This paper describes a simple extension of the Hindley-Milner polymorphic type discipline to call- 
by-value languages that incorporate imperative features like references, exceptions, and continuations. This 
extension sacrifices the ability to type every purely functional expression that is typable in the Hindley-Milner 
system. In return, it assigns the same type to functional and imperative implementations of the same abstraction. 
Hence with a module system that separates specifications from implementations, imperative features can be 
freely used to implement polymorphie specifications. A study of a number of ML programs shows that the 
inability to type all Hindley-Milner typable expressions seldom impacts realistic programs. Furthermore, most 
programs that are rendered untypable by the new system can be easily repaired. 

Keywords: Continuations, functional programming, polymorphism, references, state 

1. Polymorphism, Imperative Features, and Modules 

The Hindley-Milner polymorphic type discipline [7], [12] is an elegant and flexible type 
system for functional programming languages. Many call-by-value languages include 
imperative features like references, exceptions, and continuations that facilitate concise 
and efficient programs. Several solutions to integrating imperative features with Hindley- 
Milner polymorphism in call-by-value languages have been devised [1], [3], [4], [8], [9], 
[11], [17], [18], [19]. These solutions range in complexity from Tofte's relatively simple 
method that Standard ML adopted to Talpin's sophisticated system that infers types, re- 
gions, and effects. All of these solutions assign types to all purely functional expressions 
that are typable by the Hindley-Milner system (henceforth called HM-typable expres- 
sions). However, they assign different types to imperative and functional polymorphic 
procedures that implement the same mathematical abstraction. 

For example, in Standard ML [14] we may define a polymorphic procedure that sorts 
lists of any kind, given an ordering function for elements: 

val sort = fn less => fn list => ... sort. 

A functional implementation of this procedure has type: 

vs. -+ boo0 list) list) 
in the ordinary Hindley-Milner type system. An imperative implementation of s o r t  that 
places elements of the list in a temporary reference cell or array may be more efficient 
or more concise. But such an imperative version of s o r t  has the following imperative 
types in Tofte's system [18], MacQueen's system [1], and Leroy's system [9], [11]: 

* This research was supported in part by the United States Department of Defense under a National Defense 
Science and Engineering Graduate Fellowship. 

 Common key idea: Restrict let expressions

Is it necessary to restrict  
let expressions for all effects?

Question 🤔 

No! There are effects that can occur 
safely in nonrestricted let expressions 

Answer 🤨



Our approach
To restrict definitions of polymorphic effects 
used in let expressions

• Effects with properly restricted definitions can 

occur safely in unrestricted let expressions

• Complementary to the known approaches that 

restrict let expressions



This work
• Design of a λ-calculus where:

• Polymorphic effects are given by  

algebraic effects & handlers 
• The type system restricts handlers so that 

effect defs don’t interfere with each other

• Proof of type soundness of the calculus



Outline
1. Introduction

2. Background: algebraic effects & handlers 
• Resumption 
• Extended with polymorphism 

3. A lesson from a counterexample

4. Our work, formally



Algebraic effects & handlers 
[Plotkin & Pretnar ’09, ’13]

• Abstract mechanism to define control effects 
(a.k.a. to use continuations in a “well-structured” manner)


• Separate interfaces and implementations  
of effects

• Invoked via operations

• Interpreted by handlers 

• Handlers give the ability to call continuations 
• Easily extendable to polymorphic effects 

together with, e.g., value restriction



Example
effect fail : str → unit 

let div (x:int) (y:int) = 
  if y = 0 then (#fail “div0”; -1) 
  else x / y 

let f (x:int) = 
  handle (div 42 x) with 
    return (y:int) → Right y 
    fail   (y:str) → Left y  
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Declare fail operation
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Invoke fail

Inject interpretation into effects 
invoked in “div 42 x” 



Example
effect fail : str → unit 

let div (x:int) (y:int) = 
  if y = 0 then (#fail “div0”; -1) 
  else x / y 

let f (x:int) = 
  handle (div 42 x) with 
    return (y:int) → Right y 
    fail   (y:str) → Left y  

Declare fail operation

Invoke fail

Inject interpretation into effects 
invoked in “div 42 x” 

f 0     Left “div0” ⟶

Interpretation of 
fail operation 



Example
effect fail : str → unit 

let div (x:int) (y:int) = 
  if y = 0 then (#fail “div0”; -1) 
  else x / y 

let f (x:int) = 
  handle (div 42 x) with 
    return (y:int) → Right y 
    fail   (y:str) → Left y  

Declare fail operation

Invoke fail

f 7     Right 6 ⟶f 0     Left “div0” ⟶

Inject interpretation into effects 
invoked in “div 42 x” 

Evaluated with  
the value of “div 42 x”

Interpretation of 
fail operation 



Resumption
Handlers support resumption of the computation 
from the point of the effect invocation

• Reminiscent of delimited continuation

effect choose : int × int → int 

handle #choose(1,2) +  
       #choose(10,20) with 
 return (x:int)       → x 
 choose (x:int,y:int) → resume x



Resumption
Handlers support resumption of the computation 
from the point of the effect invocation

• Reminiscent of delimited continuation

effect choose : int × int → int 

handle #choose(1,2) +  
       #choose(10,20) with 
 return (x:int)       → x 
 choose (x:int,y:int) → resume x

x := 1

Return x as  
the result of #choose 
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Resumption
Handlers support resumption of the computation 
from the point of the effect invocation

• Reminiscent of delimited continuation

effect choose : int × int → int 

handle      1       +  
       #choose(10,20) with 
 return (x:int)       → x 
 choose (x:int,y:int) → resume x

Return x as  
the result of #choose 



Resumption

effect choose : int × int → int 

handle      1       +  
           10         with 
 return (x:int)       → x 
 choose (x:int,y:int) → resume x

Handlers support resumption of the computation 
from the point of the effect invocation

• Reminiscent of delimited continuation

Return x as  
the result of #choose 



Resumption, formally

handle E[#op v] with h   

e[v/x][Eh/resume]
(if op(x)→e ∈ h and E doesn’t handle #op)   

Replace “resume e” with  
“let y = e in handle E[y] with h”

• “resume e“ calls the delimited continuation E 
from the point of the effect invocation up to  
the handle—with expression



Resumption example, formally
effect choose : int × int → int 

handle #choose(1,2) +  
       #choose(10,20) with 
 return (x:int)       → x 
 choose (x:int,y:int) → resume x

(resume x)[1/x,2/y][Eh/resume]

E ≡ [] + #choose(10,20) 
h ≡ return (x)   → x 

= handle E[#choose(1,2)] with h



Resumption example, formally
effect choose : int × int → int 

handle #choose(1,2) +  
       #choose(10,20) with 
 return (x:int)       → x 
 choose (x:int,y:int) → resume x

(resume 1)         [Eh/resume]

E ≡ [] + #choose(10,20) 
h ≡ return (x)   → x 

= handle E[#choose(1,2)] with h

= handle E[1] with h

= handle 1 + #choose(10,20) with h
(resume x)[10/x,20/y][(1+[])h/resume]

= handle 1 + 10 with h 11

Replace “resume v” with  
“handle E[v] with h”



Polymorphic effects

effect choose : ∀α. α × α → α 

handle if #choose(true,false) 
       then #choose(1,2) 
       else #choose(10,20) with 
    return (x:int)   → x 
 Λα.choose (x:α,y:α) → resume x



Polymorphic effects

effect choose : ∀α. α × α → α 

handle if #choose(true,false) 
       then #choose(1,2) 
       else #choose(10,20) with 
    return (x:int)   → x 
 Λα.choose (x:α,y:α) → resume x

Polymorphic signature
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effect choose : ∀α. α × α → α 

handle if #choose(true,false) 
       then #choose(1,2) 
       else #choose(10,20) with 
    return (x:int)   → x 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Polymorphic effects

effect choose : ∀α. α × α → α 

handle if #choose(true,false) 
       then #choose(1,2) 
       else #choose(10,20) with 
    return (x:int)   → x 
 Λα.choose (x:α,y:α) → resume x

α := bool  

Abstracted 
over types

Polymorphic signature

α := int  
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3. A lesson from a counterexample 
4. Our work, formally



Our observation

Type safety is broken if multiple resumptions 
share type information via type variables 



Counterexample to type safety
effect get_id : ∀α. unit → (α → α) 

handle 
  let id : ∀α. α → α = 
    #get_id () 
  in  
  if (id true) 
  then (id 1) else 2 
with 
     return (x:int)  → x 
  Λα.get_id (x:unit) →  
     resume (λy:α. resume (λz:α.y); y)
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Counterexample to type safety
effect get_id : ∀α. unit → (α → α) 
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handle 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Counterexample to type safety
effect get_id : ∀α. unit → (α → α) 

handle 
  let id : ∀α. α → α = 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Replaces “resume λz.true” with  
“handle E[λz.true] with h”



Counterexample to type safety
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E ≡ let id : ∀α.α→α = [] in 
    if (id true) then (id 1) else 2 

h ≡ return (x:int)     → x 
    Λα.get_id (x:unit) →  
     resume (λy. resume (λz.y); y) 



Counterexample to type safety
effect get_id : ∀α. unit → (α → α) 

handle 
  let id : ∀α. α → α = 
    λy.(resume (λz.y))[Eh/resume]; y  
  in  
  if handle E[λz.true] with h;      true 
  then (id 1) else 2 
with 
     return (x:int)  → x 
  Λα.get_id (x:unit) →  
     resume (λy:α. resume (λz:α.y); y)

E ≡ let id : ∀α.α→α = [] in 
    if (id true) then (id 1) else 2 

h ≡ return (x:int)     → x 
    Λα.get_id (x:unit) →  
     resume (λy. resume (λz.y); y) 

= let id : ∀α.α→α = λz.true in  
if (id true) then (id 1) else 2 



Counterexample to type safety
effect get_id : ∀α. unit → (α → α) 

handle 
  let id : ∀α. α → α = 
    λy.(resume (λz.y))[Eh/resume]; y  
  in  
  if handle E[λz.true] with h;      true 
  then (id 1) else 2 
with 
     return (x:int)  → x 
  Λα.get_id (x:unit) →  
     resume (λy:α. resume (λz:α.y); y)

E ≡ let id : ∀α.α→α = [] in 
    if (id true) then (id 1) else 2 

h ≡ return (x:int)     → x 
    Λα.get_id (x:unit) →  
     resume (λy. resume (λz.y); y) 

= let id : ∀α.α→α = λz.true in 
if (id true) then (id 1) else 2



Our observation
Type safety is broken if multiple resumptions 

share type information via type variables 
• For clause “resume (λy:α. resume (λz:α.y); y)”, 

function (λz:α.y) is injected into a polymorphic context 
after replacing α with bool and y with true

Type safety is achieved if 
resumptions do not share type variables 

• This ensures resumptions do not interfere with each other



Our idea  
prohibition of sharing type variables
effect get_id : ∀α. unit → (α → α) 

handle 
  let id : ∀α. α → α = 
    #get_id () 
  in  
  if (id true) 
  then (id 1) else 2 
with 
     return (x:int)  → x 
  Λα.get_id (x:unit) →  
     resume (λy:β. resume (λz:γ.y); y)

The argument of a resumption 
must have a type obtained by 

The argument of a resumption must have a type 
obtained by renaming α to a fresh type variable



effect get_id : ∀α. unit → (α → α) 

handle 
  let id : ∀α. α → α = 
    #get_id () 
  in  
  if (id true) 
  then (id 1) else 2 
with 
     return (x:int)  → x 
  Λα.get_id (x:unit) →  
     resume (λy:β. resume (λz:γ.y); y)

The argument of a resumption 
must have a type obtained by 

The argument of a resumption must have a type 
obtained by renaming α to a fresh type variable

Check: its type is β→β  

REJECTED

Check: its type is γ→γ 

Our idea  
prohibition of sharing type variables



effect get_id : ∀α. unit → (α → α) 

handle 
  let id : ∀α. α → α = 
    #get_id () 
  in  
  if (id true) 
  then (id 1) else 2 
with 
     return (x:int)  → x 
  Λα.get_id (x:unit) →  
     resume (λy:β. resume (λz:γ.z); y)

Typed at γ→γ 

ACCEPTED

Acceptable polymorphic effects: 
random choice, failure exception, etc.

Our idea  
prohibition of sharing type variables



Outline
1. Introduction

2. Background: algebraic effects & handlers

3. A lesson from a counterexample

4. Our work, formally



Summary
• We define a statically typed λ-calculus where:

• The body of a type abstractions is evaluated

• Algebraic effects & handlers are polymorphic

• Resumption arguments are typechecked 

with assignment of fresh type variables

• We prove type safety of the calculus

Support for  
let-polymorphism



Syntax
A, B (types) ::= α | A →ε B | int | bool | …

ε (effects)   ::= { opi }i

e (terms)    ::= x A | c | λx.e | e1 e2  
                    | let x = Λα.e |  
                    | #op(A,e)  
                    | handle e with h  
                    | resume Λα.e

h (handlers) ::= return x→e | h; Λα.op(x)→e

A1 … A2

Λα1 … Λα2

    Allocate fresh 
type variables
≈



Semantics
e1          e2  

E (evaluation contexts) ::= [] | E e2 | v1 E | … 
                                        | let x = Λα.E 
                                        

E[e1]            E[e2]  
e1            e2  

Allows evaluation under 
type abstractions

E ≠ []
Evaluation rule



Reduction of effect handling

16 T. Sekiyama and A. Igarashi

Reduction rules e1  e2

c1 c2  ⇣(c1, c2) (R Const) (�x .e) v  e[v/x ] (R Beta)

let x = ⇤↵.v in e  e[⇤↵.v/x ] (R Let)
handle v with h  e[v/x ] (R Return)

(where h
return = return x ! e)

#op(A, v)  #op(A, v , [ ]) (R Op)

#op(�,w ,E) e2  #op(�,w ,E e2) (R OpApp1)

v1 #op(�,w ,E)  #op(�,w , v1 E) (R OpApp2)

#op0(AI , #op(�J ,w ,E))  #op(�J ,w , #op0(AI ,E)) (R OpOp)

handle #op(�,w ,E)with h  #op(�,w , handleE with h)
(R OpHandle)

(where op 62 ops(h))

let x = ⇤↵I .#op(�J ,w ,E) in e2  (R OpLet)
#op(8↵I .�J ,⇤↵I .w , let x = ⇤↵I .E in e2)

handle #op(8�J .AI ,⇤�J .v ,E�J
)with h  

e[handleE�J
with h/resume]8�J .AI

⇤�J .v
[AI [?/�J ]/↵I ][v [?/�J ]/x ] (R Handle)

(where h
op = ⇤↵I .op(x ) ! e)

Evaluation rules e1 �! e2

e1  e2

E [e1] �! E [e2]
E Eval

Fig. 4. Semantics of �⇤
e↵.

type variables ↵, meaning that the hole in the context appears under type ab-
stractions binding ↵. For example, let x = ⇤↵.let y = ⇤�.[ ] in e2 in e1 is denoted

by E
↵,� and, more generally, let x = ⇤�J1 .E�J2 in e is denoted by E

�J1 ,�J2 .
(Here, �J1 ,�J2 stands for the concatenation of the two sequences �J1 and �J2 .)
If ↵ is not important, we simply write E for E

↵. We often use the term “con-
tinuation” to mean “evaluation context,” especially when it is expected to be
resumed.

As usual, substitution e[w/x ] of w for x in e is defined in a capture-avoiding
manner. Since variables come along with type arguments, the case for variables
is defined as follows:

(x A)[⇤↵.v/x ]
def
= v [A/↵]

Application of substitution [⇤↵I .v/x ] to x AJ , where I 6= J , is undefined. We
define free type variables ftv(e) and ftv(E ) in e and E , respectively, as usual.

4.2 Semantics

The semantics of �⇤
e↵ is given in the small-step style and consists of two relations:

the reduction relation  , which is for basic computation, and the evaluation

• The rule is designed with care about  
type variables bound in evaluation context E


• See the paper for detail



Type system
Γ; R      e : A | ε  ⊢

Resumption type 

R (resumption types) ::= none | (α, A, B →ε C)

Effects that may occur 
in evaluation of e

Γ; R0   handle e0 with h; Λα.op(x) → e : C | ε ⊢

e0 and h are well typed 

Γ, x:A; (α, A, B →ε C)       e : C | ε 

ty(op) = ∀α.A → B

⊢

Type variables bound 
in an operation clause

Argument type of  
an effect signature

Function type 
of continuation

Typing rule for handle—with expressions



Type system
Γ; R      e : A | ε  

Resumption type 

R (resumption types) ::= none | (α, A, B →ε C)

Effects that may occur 
in evaluation of e

Type variables bound 
in an operation clause

Argument type of  
an effect signature

Function type 
of continuation

Γ,x:D; (α, A, B →ε C)    resume Λβ.e : C | ε’ ⊢
Γ, x:A[β/α];     (α, A, B →ε C)      e : B[β/α]     | ε’ ⊢

ε ⊆ ε’ 

Typing rule for resumptions



Type safety

If     ; none     e : A |     ,  
then e does not get stuck

∅ ∅



Conclusion
• Type safety is broken in a polymorphic setting if 

neither effects nor let expressions are restricted

• We take an approach to restricting effects

• Observation: there are no problem if 

effects don’t interfere with each other 

• In effect handlers, prohibition of sharing  

type variables among resumptions ensures 
the non-interference


