
Modal Effect Types
Wenhao Tang

The University of Edinburgh

EHOP Workshop, 18th Aug 2025

(Joint work with Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, Anton Lorenzen)

A Recap of Traditional Effect Types 📚
a function of type A ->{E} B may perform effects E when applied

Pure Functions
A first-order pure function

A higher-order pure function

inc : Int ->{} Int
inc x = x + 1

app1 : (Int ->{} 1) * Int ->{} 1
app1 (f, x) = f x

Effects
An effect with one operation

A first-order effectful function

A higher-order effectful function

effect Gen = yield : Int => 1

gen : Int ->{Gen} 1
gen x = do yield x

app2 : (Int ->{Gen} 1) * Int ->{Gen} 1
app2 (f, x) = f x

More Effects
Another effect

Another first-order effectful function

Another higher-order effectful function

effect Reader = ask : 1 => Int

askAndGen : 1 ->{Reader, Gen} 1
askAndGen () = do gen (do ask ())

app3 : (Int ->{Reader} 1) * Int ->{Reader} 1
app3 (f, x) = f x

Effect Polymorphism
We have three application functions so far

Abstracting them by an effect variable e

Effect-polymorphic versions of inc , gen , and askAndGen

app1 : (Int ->{} 1) * Int ->{} 1
app2 : (Int ->{Gen} 1) * Int ->{Gen} 1
app3 : (Int ->{Reader} 1) * Int ->{Reader} 1

app : ∀ e . (Int ->{e} 1) * Int ->{e} 1

inc : ∀ e . Int ->{e} Int
gen : ∀ e . Int ->{Gen, e} 1
askAndGen : ∀ e . 1 ->{Reader, Gen, e} 1

Handlers
A handler for the Gen effect

Running

asList : ∀ e . (1 ->{Gen, e} 1) ->{e} List Int
asList f = handle f () with
 return () => nil
 yield x r => cons x (r ())

>>> asList (fun () -> gen 42; gen 37) -- recall that gen x = do yield x
[42, 37] : List Int

Composing Handlers
A handler for the Reader effect

Compose the two handlers to handle askAndGen

answer : ∀ e . (1 ->{Reader, e} 1) ->{e} 1
answer f = handle f () with
 return x => x
 ask () r => r 42

>>> asList (fun () -> answer askAndGen) -- recall that askAndGen () = do gen (do ask ())
[42] : List Int

Modal Effect Types in 1️⃣ Page
decoupling effect annotations from function arrows

Traditional effect types

Effects entangled with function arrows

First-order functions

Higher-order functions

Handlers

Modal effect types

Decouple effects from arrows via modalities

Use [E] to specify the effects being used

As app itself is pure, we use []

Use <E> to specify the effects being handled

inc : ∀ e . Int ->{e} Int
gen : ∀ e . Int ->{Gen, e} 1
askAndGen : ∀ e . 1 ->{Reader, Gen, e} 1

app : ∀ e . (Int ->{e} 1) * Int ->{e} 1
map : ∀ e . (A ->{e} B) * List A ->{e} List B

asList : ∀ e . (1 ->{Gen, e} 1) ->{e} List Int

inc : [](Int -> Int)
gen : [Gen](Int -> 1)
askAndGen : [Reader, Gen](1 -> 1)

app : []((Int -> 1) * Int -> 1)
map : []((A -> B) * List A -> List B)

asList : [](<Gen>(1 -> 1) -> List Int)

Inspired by Frank which is based on an elaboration from (almost) the right to the left

Sam Lindley, Conor McBride, and Craig McLaughlin. Do be do be do. POPL 2017.

and Effekt which distinguishes between first-class and second-class functions and adopts a
capability-passing translation

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Effects as capabilities: effect handlers and
lightweight effect polymorphism. OOPSLA 2020.

Modal effect types (MET) have a completely new foundation, multimodal type theory (Gratzer et
al. 2020), and smoothly support first-class functions

-- Traditional effect types

inc : ∀ e . Int ->{e} Int
gen : ∀ e . Int ->{Gen, e} 1
askAndGen : ∀ e . 1 ->{Reader, Gen, e} 1
app : ∀ e . (Int ->{e} 1) * Int ->{e} 1

-- Modal effect types

inc : [](Int -> Int)
gen : [Gen](Int -> 1)
askAndGen : [Reader, Gen](1 -> 1)
app : []((Int -> 1) * Int -> 1)

Diving into Modal Effect Types 🤿
modes, modalities, locks 🔒 , and keys 🔑

Effect Contexts (Modes)
Effect contexts track effects provided by the context

Variables in the context also share the ambient effect context

Subeffecting happens naturally

|- fun x . do yield x : Int -> 1 @ Gen
-- ~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~

-- term type effect context

-- @ Gen @ Gen

 f : Int -> 1 |- fun x . f x : Int -> 1 @ Gen
-- ~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~

-- @ Gen @ Gen @ Gen

|- fun x . do yield x : Int -> 1 @ Gen, Reader

Modalities
An absolute modality [E] changes the ambient effect context to E ([E](F) = E)

A relative modality <E> adds effects E to the ambient effect context (<E>(F) = E,F)

-- modality introduction introduces a lock [Gen] changes F to Gen

-- ~~~~~~~~~ ~~~~~~

 🔒 _[Gen] |- fun x . do yield x : Int -> 1 @ Gen
--

 |- mod_[Gen] (fun x . do yield x) : [Gen](Int -> 1) @ F
-- ~~~~~~~~~

-- modality introduction

-- modality introduction introduces a lock <Gen> changes Reader to Gen, Reader

-- ~~~~~~~~~ ~~~~~~~~~~~~~

 🔒 _<Gen> |- fun x . do yield (do ask ()) : Int -> 1 @ Gen, Reader
--

 |- mod_<Gen> (fun x . do yield (do ask ())) : <Gen>(Int -> 1) @ Reader

Locks 🔒
Locks control the accessibility of variables

An invalid judgement

Its premise does not hold

❌ f : Int -> 1 |- mod_[Gen] (fun x . f x) : [Gen](Int -> 1) @ Reader
-- ~~~~~~~~~~~~ ~~~~~~~~~~~~~

-- @ Reader @ Gen

❌ f : Int -> 1, 🔒 _[Gen] |- fun x . f x : Int -> 1 @ Gen
-- ~~~~~~~~~~~~ ~~~~~~~~

-- @ Reader disallows f to be used

-- changes Reader to Gen (reading from right to left)

Modality Elimination
We can make the premise well-typed by annotating the binding of f with []

Such a binding is introduced by modality elimination (the default annotation is <>)

Modality elimination can be inferred in practice

 f :_[] Int -> 1, 🔒 _[Gen] |- fun x . f x : Int -> 1 @ Gen
-- ~~~~~~~~

-- @ . (because [] changes Reader to .)

-- ~~~~~~~~~~~~~~~

-- @ Reader

 f :_[] Int -> 1 |- M : A @ E

 |- let mod_[] f = mod_[] (fun x -> ()) in M : A @ E
-- ~~~~~~~~~~

-- let-style modality elimination

Modality Transformations 🔑
How does typing decide that f :_[] Int -> 1 can be used after 🔒 _[Gen] ?

A modality transformation μ => ν @ E is the key to unlock 🔒 _ν for variable
bindings of form f :_μ A

Soundness: μ => ν @ E must guarantee that μ(F) <= ν(F) for all E <= F

[] => [Gen] @ Reader obviously satisfies the soundness condition

-- ⭐ a modality transformation, the key to 🔒 _[Gen]

-- ~~~~~~~~~~~~~~~~~~~~

f :_[] Int -> 1, 🔒 _[Gen] |- fun x . f x : Int -> 1 @ Gen [] => [Gen] @ Reader

f :_[] Int -> 1 |- mod_[Gen] (fun x . f x) : [Gen](Int -> 1) @ Reader

Handlers
Back to the asList handler

It is elaborated to

A handler also introduces a lock with a relative modality

asList : [](<Gen>(1 -> 1) -> List Int)
asList f = handle f () with return () => nil | yield x r => cons x (r ())

asList : [](<Gen>(1 -> 1) -> List Int)
asList = mod_[] (fun f -> let mod_<Gen> f' = f in handle f' () with return () => nil | yield x r => cons x
-- ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

-- introduction elimination

-- introduced by the handler which handles Gen

-- ~~~~~~~~

 f' :_<Gen> 1 -> 1, 🔒 _<Gen> |- f' () : 1 @ Gen, E <Gen> => <Gen> @ E ...

Modality Transformation Rules
Suppose our effect contexts are scoped rows, i.e.,

Duplicated effects are allowed

Reordering is allowed except for identical effects

We have the following rules for modality transformations

1. [E1] => [E2] @ E3 if E1 <= E2

2. [E1] => <E2> @ E3 if E1 <= E2, E3

3. <E1> => <E2> @ E3 if E1 == E2
4. <E1> => [E2] @ E3 impossible

Rule 1️⃣

[E1] => [E2] @ E3 if E1 <= E2

If some term only uses effects E1 , we can use it at a larger effect context

Otherwise we may leak effects

 f :_[] 1 -> 1, 🔒 _[Gen] |- f () : 1 @ Gen -- [] => [Gen] @ E
-- ~~~~~~

-- @ . we have . <= Gen regardless of E

-- ~~~~~~~~~~~~~~

-- @ E

Rule 2️⃣

[E1] => <E2> @ E3 if E1 <= E2, E3

If some term only uses effects E1 , we can use it at a larger effect context

Otherwise we may leak effects

 f :_[Reader] 1 -> 1, 🔒 _<Gen> |- f () : 1 @ Gen, Reader, E -- [Reader] => <Gen> @ Reader,
-- ~~~~~~

-- @ Reader we have Reader <= Gen, Reader,

-- ~~~~~~~~~~~~~~~~~~~

-- @ Reader, E

Rule 4️⃣

<E1> => [E2] @ E3 impossible

If a term uses E1 plus the ambient effects E3 , we can never use it at some fixed E2

Because E3 can be arbitrarily upcasted

In terms of traditional effect types, we want to upcast 1 ->{Gen, e} 1 (where e is
from the typing context) to ∀ e' . 1 ->{Gen, e'} 1

 f :_<Gen> 1 -> 1, 🔒 _[Gen] |- f () : 1 @ Gen -- ❌ <Gen> => [Gen] @ E

-- ~~~~~~~~

-- @ Gen, E we do not have Gen,E <= E for any E

-- ~~~~~~~~~~~~~~~~~~

-- @ E

Rule 3️⃣

<E1> => <E2> @ E3 if E1 == E2

But what’s wrong with <> => <Gen> ? Accidental handling

Otherwise, we could give the following type to asList

This type does not reflect the fact that Gen used by the argument is handled

With parameterised effects, e.g., having both Gen Int, Gen Bool , this could lead to a crash

 f :_<Gen> 1 -> 1, 🔒 _<Gen> |- f () : 1 @ Gen, E -- <Gen> => <Gen> @ E

asList : []((1 -> 1) -> List Int)
asList f = handle f () with return () => nil | yield x r => cons x (r ())

Masking
[]((1 -> 1) -> List Int) is a bad type for asList

But sometimes we do want to conceal the internal implementation

Solution: mask the Gen effect for p x

-- <Gen> is required for well-typedness but leaks implementation details

-- ~~~~~~~~~~~~~

 find' : <Gen>(Int -> Bool) -> List Int -> Maybe Int
 find' p xs = handle (iterate (fun x -> if p x then do yield x else ()) xs) with
 return _ => nothing,
 yield x _ => just x

 find : (Int -> Bool) -> List Int -> Maybe Int
 find p xs = handle (iterate (fun x -> if mask<Gen>(p x) then do yield x else ()) xs) with
-- ~~~~~~~~~~~~~~

-- mask removes Gen from the effect context

The Masking Modality
In addition to <E> , we also have the masking modality <E|> .

In fact, relative modalities have the general form <E1|E2>

Relative modalities act on effect contexts as <E1|E2>(E) = E2 + (E - E1)

A mask<E> introduces a lock 🔒 _<E|>

-- does not change E

-- @ E <Gen>∘<Gen|> = <> @ E
-- ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~

 p : Int -> Bool, x : Int, 🔒 _<Gen>, 🔒 _<Gen|> |- p x : Bool @ E
--

 p : Int -> Bool, x : Int, 🔒 _<Gen> |- mask<Gen>(p x) : Bool @ Gen, E
-- ~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~

-- @ E changes E to Gen, E @ Gen, E

More Examples
to show the ergonomics of modal effect types

Cooperative Concurrency 🧵
Smoothly store effectful functions into datatypes

In contrast, with traditional effect types we have to deal with effect variables

effect Coop = ufork : 1 => Bool | suspend : 1 => 1

data Proc = proc (List Proc -> 1)

push : [](Proc -> List Proc -> List Proc) -- push a process into a queue
next : [](List Proc -> 1) -- run the first process in the queue
schedule : [](<Coop>(1 -> 1) -> List Proc -> 1)
schedule m = handle m () with
 return () => fun q -> next q,
 suspend () r => fun q -> next (push (proc (r ())) q),
 ufork () r => fun q -> r true (push (proc (r false)) q)

data Proc e = proc (List Proc ->{e} 1)
push : ∀ e . Proc ->{e} List Proc ->{e} List Proc

Re-generating
Pre-process all generated numbers with a function.

In contrast, with traditional effect types we have

-- used by regen handled by regen

-- ~~~~~ ~~~~~

 regen : [Gen]((Int -> Int) -> <Gen>(1 -> 1) -> 1)
 regen f m = handle m () with
 return () => ()
 yield s r => do yield (f s); r ()
-- ~~~~~~~~~~~~~~

-- the handler itself uses yield, thus we have [Gen] instead of [] for the whole

-- one handled, one used

-- ~~~~~~~~~~~~~

 regen : ∀ e . (Int ->{Gen, e} Int) ->{} (1 ->{Gen, Gen, e} 1) ->{Gen, e} 1

More Features
parametric polymorphism, kinds

Parametric Polymorphism
Completely unsurprising.

Polymorphic app

More higher-order functions

and handlers

Hang on, what is ∀ [a] ???

app : ∀ a b . []((a -> b) * a -> b)

map : ∀ a b . []((a -> b) -> List a -> List b)
iterate : ∀ a . []((a -> ()) -> List a -> ())

answer : ∀ [a] . [](<Reader>(1 -> a) -> a)

Kinds
∀ [a] is a shorthand for ∀ a:Abs

We distinguish types independent of the ambient effect context from others

Absolute types (kind Abs)
built from base types, positive types, and types boxed by an absolute modality
(e.g., Int , Bool , [](Int -> Int) , Int * (Bool + [](Int -> Int)))
cannot leak effects

Unrestricted types (kind Any)
also include functions not boxed by an absolute modality
(e.g., Int -> Int , Bool * (1 -> 1) , <Gen>(Int -> Bool))
can leak effects

Subkinding Abs <= Any

Returning from Handlers
Why do we need to restrict a to kind Abs for answer ?

Consider returning a function of type 1 -> Int from a handler

We cannot give it type 1 -> Int — otherwise the usage of ask is untracked!

One solution is to restrict the return value to have kind Abs

Or we can give a more general type to answer

answer : ∀ [a] . [](<Reader>(1 -> a) -> a)

 handle (fun () -> do ask ()) with return x => x | ask () r => r 42
-- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

-- returns a function captured by x

Effect Polymorphism
Consider the polymorphic map

Almost all of the time the following is good enough

but still misses the information that the middle arrow is pure

We can recover it by going back to effect variables

Effect variables are particularly helpful for higher-order effects

map : ∀ a b e . (a ->{e} b) ->{} List a ->{e} List b

map : []((a -> b) -> List a -> List b)

map : ∀ e . []([e](a -> b) -> [e](List a -> List b))

Higher-Order Effects
Operation argument and result types must have kind Abs

If we allowed effect Leak = leak : (1 -> 1) => 1 , then we could write

which leaks the yield operation

We need to use effect Leak = leak : [E](1 -> 1) => 1 with a specific E

or be parameterised over E : effect Leak e = leak : [e](1 -> 1) => 1

-- expected to be handled by asList

-- ~~~~~~~~~~~

 handle asList (fun () -> do leak (fun () -> do yield 42)) with
 return _ => fun () -> 37
 leak p _ => p
-- ~~~~~~~~~~~~~~

-- p is substituted with (fun () -> do yield 42) ➡️ yield escapes the scope of asList

Encoding Effect Types ⌨️
a unified framework for studying and comparing effect types

Encoding Rows à la Koka

​ ​

[[A →{E}B]]

[[∀a.A]]

= [[E]]([[A]] → [[B]])

= ∀a.[[A]]

Encoding Capabilities à la Effekt

​ ​

[[(, ​) ⇒ B]]A f : T

[[T at C]]

= ∀ ​.⟨ ​⟩(​ → ​ → [[B]])f ∗ f ∗ [[A]] [f][[T]]∗

= [[[C]]][[T]]

Summary 🗒️

More in the Papers
Modal Effect Types. OOPSLA 2025.
Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen.

MET: a core calculus with modal effect types

Type soundness, effect safety
A simple bidirectional typing algorithm which infers all modality introduction and elimination

An encoding of a fragment of traditional effect types into MET without effect variables

Rows and Capabilities as Modal Effects. Draft. Wenhao Tang and Sam Lindley.

MET(): parameterised by an effect theory following Rose (Morris and McKinna 2019)
An extension with local labels for encoding named handlers

Encoding various Koka’s core calculi into MET()

Encoding various Effekt’s core calculi into MET()

X X

R ​scp

S

Ongoing and Future Work
On types:

novel bidirectional typing for both first-class polymorphism and modal types
higher-order effects without effect variables by tracking the order of handlers

Fitch-style modality elimination

On semantics:
denotational semantics / logical relations

Generally:

absolute and relative modalities for variable contexts instead of effect contexts (could

be useful to multi-stage programming)
a general account for sub-moding in MTT

Takeaways
Decouple effects from function arrows

Do not annotate every function arrow with its effects — annotate effects once for the whole function
and then annotate only when there is a change of effects

By doing so, effect variables become unnecessary (mostly)

-- Traditional effect types

inc : ∀ e . Int ->{e} Int
gen : ∀ e . Int ->{Gen, e} 1
askAndGen : ∀ e . 1 ->{Reader, Gen, e} 1
app : ∀ e . (Int ->{e} 1) * Int ->{e} 1
asList : ∀ e . (1 ->{Gen, e} 1) ->{e} List Int
answer : ∀ e . (1 ->{Reader, e} 1) ->{e} 1
map : ∀ a b e. (a ->{e} b) ->{} List a ->{e} List b
iterate : ∀ a e. (a ->{e} 1) ->{} List a ->{e} 1
schedule : ∀e.(1 ->{Coop,e} 1) ->{e} List (Proc e) ->{e} 1
regen : ∀ e . (Int ->{Gen, e} Int)
 ->{} (1 ->{Gen, Gen, e} 1) ->{Gen, e} 1

-- Modal effect types

inc : [](Int -> Int)
gen : [Gen](Int -> 1)
askAndGen : [Reader, Gen](1 -> 1)
app : []((Int -> 1) * Int -> 1)
asList : [](<Gen>(1 -> 1) -> List Int)
answer : [](<Reader>(1 -> 1) -> 1)
map : ∀ a b. []((a -> b) -> List a -> List b)
iterate : ∀ a. []((a -> 1) -> List a -> 1)
schedule : [](<Coop>(1 -> 1) -> List Proc -> 1)
regen : [Gen]((Int -> Int) -> <Gen>(1 -> 1) -> 1)

