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Plan

e Problems:
e usual (operational) treatment of alg. effs. is synchronous
e some natural examples require language-specific hacks

e Solution proposed at POPL’21:

e asynchrony through decoupling operation call execution

into signals and interrupts

e Solutions to some POPL’21 shortcomings in LMCS:
e modal type system for higher-order signals and interrupts

e reinstallable and stateful interrupt handlers to remove gen. rec.

D. Ahman, M. Pretnar. Asynchronous Effects (POPL 2021)
D. Ahman, M. Pretnar. Higher-Order Async. Effs. (LMCS, 2024)
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Problem 1: synchrony of algebraic effects
e The conventional operational treatment of algebraic effects
MooV /x] ~ ~s*  return W

signalling op’s implementation T l interrupting main program

~ op (V,y.N) N[W/y] ~
——

main program'’s execution is blocked

e Mo, - handler, runner, top-level default implementation, ...

e While such synchrony is needed for general effect handlers,

it unnecessarily forces all uses of alg. effs. to be synchronous
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Problem 2: some neat examples are hacky

e The leading example of eff. handlers is user-definable cooperative
multi-threading (e.g., that's why handlers are in OCaml 5)

let rec scheduler () =
handler {
| yield _ k — enqueue k ; dequeue ()
| fork fk — enqueue k ; handle f () with (scheduler ()) to - in dequeue () }

let runCooperatively f =
handle f () with (scheduler ()) to - in dequeue ()

e Usual attempts at preemptive multi-th. are much less principled

e people typically rely on (low-level) language specifics (of OCaml,

Node.js) to inject yields into their programs at runtime

e |n our work, we show how this can be achieved in a natural and

self-contained fashion (including insights for ordinary alg. effs.)
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operation calls

signals + interrupts + interrupt handlers
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~ op (V,y.N) N[W/y] ~

e We turn these phases into separate programming abstractions

op VT

e signals coons top (VM) ~> MA e

lopW
e interrupts e M Lop (W, M)~ -
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The gist of our approach (2)

e Recall that the execution of operation calls has the shape
MooV /x| ~s*  return W

signalling op’s implementation T l interrupting main program
~ op (V,y.N) NIW/y] ~
e We turn these phases into separate programming abstractions

e interrupt handlers

M,N == ... } promise (op x r — M) as p:{X)in N
e awaiting promises to be fulfilled

VW a= - | (V)

M,N == --- | await V until (x)in N



The gist of our approach (3)

e Recall that the execution of operation calls has the shape
MooV /x] ~ ~s*  return W
signalling op’s implementation T l interrupting main program

~ op (V,y.N) N[W /y] ~

e We turn these phases into separate programming abstractions
e parallel processes

P,Q@ = run M | Pl @ | Top(V,P) | lop (W, P)

which we use to model the programs’ environment



Ax-Calculus



Az-calculus: basics

e Extension of Levy's fine-grain call-by-value A-calculus (FGCBV)

e Types: X, Y :=b | ... | X—>Y!(o,1) |
e Values: V. W = x| ... | fun (x:X)—> M |
e Computations: M, N = returnV | letx=Min N |

e Typing judgements: [+ V:X T M:X!1(o,0)

o Effect annotations (o,:):

oc O v={op; — (01,t1), ..., 0p, — (On,tn) }

e Small-step operational semantics: M ~~ N
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Ae-Calculus: modal types

e (Almost) off-the-shelf Fitch-style modal [ X|-type [Clouston et al |

X == ... | [X] N=g | MhxX|T &
TY-VAL-VARIABLE Tv-VAL-BOX
X is mobile v &¢l’ ra&arVv:X
Cox: X, M =x: X I+ box V : [X]

Ty-CompP-UNBOX
M= V:[X] Mx: X+ M:Y!1(o,0)
[ unbox V as box x in M : Y ! (0,¢)

where X is mobile if X is a ground type or a modal type [Y]

e Intuition: [X] contains X-typed vals. safe to send to other procs.
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e Signalling that some op’s implementation needs to be executed
TyCoMP-SIGNAL
op:Agp €O M= V:Ag, N=M:X!(o,¢)
N=1top(V,M): X!(o,1)

where A,, is a mobile type (so it is safe to send to other procs.)

e Operationally behave like algebraic operations

. Ietx:(Top(V,M)) in N ~» Top(V,let x=Min N)

e But importantly, they do not block their continuations

o M~ M - Top(V,M)~~ top(V,M)
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M= W: Agp M= M:X!(o,¢)
M= lop(W,M):X!(opl(o,t))

where A, is a mobile type (so it is safe to send to other procs.)

e Operationally behave like homomorphisms/effect handling

e |op(W,return V) ~> return V
o Lop(W,Top" (V,M)) ~ Top’(V,]op(W,M))

e And they also do not block their continuations

o M~ M and lOp(V,M)’V"lOP(V,M/)
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e Allow computations to react to interrupts
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vop) = (0',d)) T x:Agp =M :(X)1 (o))
Mp:{(X)FN:Y!(o,0)

I - promise (op x — M) aspin N: Y ! (o,¢)

where p:{X) is a promise-typed variable

e Operationally behave like (scoped) algebraic operations (!)
. let x = (promise (op x — M) as pin N) in L
~~ promise (op x — M) as pin (let x = Nin L)

. promise (op x — M) as[p’ in Top’ (V. N) (type safety!)
~ Top’ (W, promise (op x — M) as [p] in N) (p¢ FV(V))
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e Allow computations to react to interrupts
Ty-CoMP-PROMISE
t(op) = (0',1) Cox:Agp = M (X)1 ()
Mp:(X>FN:Y! (o)

I promise (op x — M) aspin N: Y ! (o,¢)

where p:{X) is a promise-typed variable

e They are triggered by matching interrupts
o }op (W, promise (op x — M) as p in N)
~ let p= M[W/x] in | op (W, N)
e And non-matching interrupts (op # op’) are passed through

o L op (W, promise (op’ x — M) as p in N)
~ promise (op’ x — M) as pin | op (W, N)
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Ae-Calculus: interrupt handlers

e Allow computations to react to interrupts

Ty-CoMP-PROMISE
t(op) = (o',1)) Cox:Agp = M:(X)1(d,0)
Mp:{X>EN:Y!(o,0)

I promise (op x — M) aspin N: Y ! (o,¢)
where p:{X) is a promise-typed variable

e They also do not block their continuations

o N~ N
N
promise (op x — M) as pin N
~ promise (op x — M) as pin N

For type safety, important that p does not get an arbitrary type!
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Ae-Calculus: interrupt handlers
e To remove general recursion from A, we extend int. handlers by

e allowing them to reinstall themselves

e allowing them to pass state between triggerings
M,N == .. | promise (op x r s — M) Qs V aspin N
e Operationally only difference in how they trigger

o Jop (W, promise (op x r s — M) @s V as pin N)
~let p= M[W/x, R/r, V/s]in |op(W,N)

where

R =< fun s’ — promise (op x r s — M) @s " as pin return p
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Ae-Calculus: awaiting

e Enables programmers to selectively block execution

TyComMP-AWAIT
M= Vv:{X Mx:XEN:Y!(o,0)
I await V until x)in N: Y ! (o0,¢)

e Behaves like pattern-matching (and also like alg. ops.)

e await (V) until (x)in N ~ N[V/x]

o let y = (await V until (x) in M) in N
~~ await V until {x) in (let y = M in N)

e In contrast to earlier gadgets, await blocks its cont.’s execution !!!
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e We model the environment by running computations in parallel

P,Q x= runM | P||Q | Top(V,P) | lop(W,P)

e Small-step operational semantics P ~» Q: congruence rules +

e run (Top(V,M))~ 1Top(V,run M)

(Top(V,P)) [ @~ Top(V,(P[lop(V,Q))) (broadcast)
Pl (Top(V,Q)) ~ Top(V,(lop(V,P) [ Q)) (broadcast)

Lop (W, run M) ~~ run (] op (W, M))
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Ax-cCalculus: environment
e Compared to POPL’'21, modal types give us a type-safe spawn
M,N == --- | spawn(M,N)

Ty-CoMP-SPAWN
r&a-M: X! (o) M= N:Y!(o,¢)
I+ spawn (M, N) : Y !(o,¢)

e Operationally propagates outwards (like a scoped alg. op.)
o let x = (spawn (My, Mp)) in N~ spawn (My, let x = My in N)

e also propagates through promises, where @ provides type-safety

e Eventually gives rise to a new parallel process

e run (spawn (M, N)) ~» run M || run N

e Importantly, does not block its continuation !
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Examples
e Multi-party web application

Remote function call execution

(Simulating) cancellations of remote function calls

Preemptive multi-threading

Parallel variant of runners of algebraic effects

Non-blocking post-processing of promised values
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Example: implementing algebraic ops.
e Algebraic operations op (V,y.M) are implemented at call site as
1 op-req (V/, promise (op-resp y > return (y)) as p in
await p until {y) in M)
e The corresponding implementation using a recursively defined
interrupt handler for op-req interrupt (in some other process)

promise (op-req x r — let y = M in

Top-resp (y, r())
) as p in return p

e The interaction happens then via parallel composition

Mcall-site H Mop-implementation



Example: preemptive multi-threading

e We consider two interrupts: stop:1 and go:1



Example: preemptive multi-threading
e We consider two interrupts: stop:1 and go:1
e We define the following recursively defined interrupt handler

let waitForStop () =
promise (stop - r —
promise (go - - — return {())) as p in
await p until (&) in r ()
) as p' in return p'



Example: preemptive multi-threading
e We consider two interrupts: stop:1 and go:1
e We define the following recursively defined interrupt handler

let waitForStop () =
promise (stop - r —
promise (go - - — return {())) as p in
await p until (&) in r ()
) as p' in return p'

e We initialise the preemtive behaviour by running

waitForStop (); comp



Example: preemptive multi-threading
e We consider two interrupts: stop:1 and go:1
e We define the following recursively defined interrupt handler

let waitForStop () =
promise (stop - r —
promise (go - - — return {())) as p in
await p until (&) in r ()
) as p' in return p'

e We initialise the preemtive behaviour by running

waitForStop (); comp

e Then J stop ((), waitForStop(); comp)



Example: preemptive multi-threading
e We consider two interrupts: stop:1 and go:1
e We define the following recursively defined interrupt handler

let waitForStop () =
promise (stop - r —
promise (go - - — return {())) as p in
await p until (&) in r ()
) as p' in return p'

e We initialise the preemtive behaviour by running

waitForStop (); comp

e Then J stop ((), waitForStop(); comp)
~* | stop ((), waitForStop(); comp’)



Example: preemptive multi-threading
e We consider two interrupts: stop:1 and go:1
e We define the following recursively defined interrupt handler

let waitForStop () =
promise (stop - r —
promise (go - - — return {())) as p in
await p until (&) in r ()
) as p' in return p'

e We initialise the preemtive behaviour by running
waitForStop (); comp
e Then } stop ((), waitForStop(); comp)

~* | stop ((), waitForStop(); comp’)
~* | stop ((), promise (stop _ r — ...) as p’ in comp’)



Example: preemptive multi-threading
e We consider two interrupts: stop:1 and go:1
e We define the following recursively defined interrupt handler

let waitForStop () =
promise (stop - r —
promise (go - - — return {())) as p in
await p until (&) in r ()
) as p' in return p'

e We initialise the preemtive behaviour by running

waitForStop (); comp

e Then } stop ((), waitForStop(); comp)
~* | stop ((), waitForStop(); comp’)
~* | stop ((), promise (stop _ r — ...) as p’ in comp’)
~» promise (go - - — return {())) as pin
await p until (_) in

promise (stop _r +— ...) as p’ in | stop ((), comp’)



Example: post-processing promised values

e As syntactic sugar (relies on propagating signals into conts.)

processop p with ((x) — comp) as q in cont
promise (op - — await p until {x) in

let y = comp in

return {y)) as q in cont



Example: post-processing promised values

e As syntactic sugar (relies on propagating signals into conts.)

processop p with ((x) — comp) as q in cont
promise (op - — await p until {x) in

let y = comp in

return {y)) as q in cont

e E.g., we can then post-process a promised list in non-blocking way
promise (op x +— original_interrupt_handler) as p in
processop p with ({isy +— filter (funi — i > 0) is) as q in

processop q with ((jsy — fold (funjj' — j*j') 1js) asrin
processop r with ((k) +— 1 productOfPositiveElements k) as _ in



[Eff web interface

https://matija.pretnar.info/aeff/

FEff

Interaction
run waitForStop 2;
let b = let b = let b = (+) (10, 10) in (+) (10, b) in (+) (10, b) in [ F—
(*+) (10, b)

I
run waitForstop 1;

let b = let b = let b = (+) (1, 1) in (+) (1, b) in (+) (1, b) in

applyFun %

applyFun

Inter v

History


https://matija.pretnar.info/aeff/
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Conclusion

e )\.: a core calculus for asynchronous algebraic effects
e based on decoupling the execution of alg. operation calls
e teaches us that preemptive behaviour = interrupts = eff. handling

e more details in the papers and Agda formalisations

e Some ongoing work on \;'s denotational semantics
e requires factorisation of morphisms (X) — A through 1
e presheaf categories give a suitable playground

e signals, promises, awaits as alg. ops. / interrupts as handling

e Some ongoing work on \.'s normalisation (T T-lifting style)
e seq. part with non-reinstallable int. handlers v/
e par. part with non-reinstallable int. handlers (maybe v')
e seq. part with reinstallable int. handlers (naively X, but hope V)
e par. part with reinstallable int. handlers X



asynchronous operation calls

signals 4 interrupts <+ interrupt handlers

(unary (effect (scoped ops. +
ops.) handling) modalities)



