Higher-Order Asynchronous Effects

Danel Ahman University of Tartu, Estonia

(joint work with Matija Pretnar)

EHOP Workshop ~ 20.08.2025

Plan

- Problems:
 - usual (operational) treatment of alg. effs. is synchronous
 - some natural examples require language-specific hacks
- Solution proposed at POPL'21:
 - asynchrony through decoupling operation call execution into signals and interrupts
- Solutions to some POPL'21 shortcomings in LMCS:
 - modal type system for higher-order signals and interrupts
 - reinstallable and stateful interrupt handlers to remove gen. rec.
 - D. Ahman, M. Pretnar. Asynchronous Effects (POPL 2021)
 - D. Ahman, M. Pretnar. Higher-Order Async. Effs. (LMCS, 2024)

Problems

• The conventional operational treatment of algebraic effects

```
\dots \rightsquigarrow op(V, y.N)
```

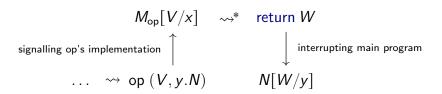
• The conventional operational treatment of algebraic effects

$$M_{
m op}[V/x]$$
 signalling op's implementation \uparrow \dots $ightharpoonup {
m op}\ (V,y.N)$

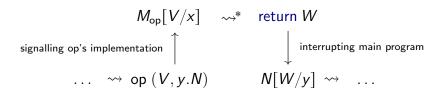
• The conventional operational treatment of algebraic effects

$$M_{
m op}[V/x]$$
 $ightharpoonup *$ return W signalling op's implementation $ightharpoonup$ \ldots $ightharpoonup *$ op $(V,y.N)$

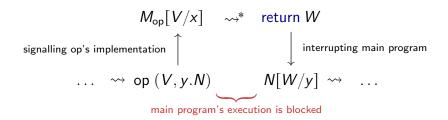
• The conventional operational treatment of algebraic effects



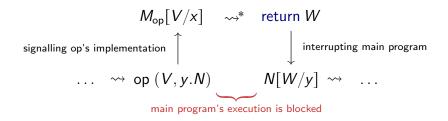
• The conventional operational treatment of algebraic effects



• The conventional operational treatment of algebraic effects



• The conventional operational treatment of algebraic effects



- $M_{\rm op}$ handler, runner, top-level default implementation, ...
- While such synchrony is needed for general effect handlers, it unnecessarily forces all uses of alg. effs. to be synchronous

• The leading example of eff. handlers is user-definable cooperative multi-threading (e.g., that's why handlers are in OCaml 5)

 The leading example of eff. handlers is user-definable cooperative multi-threading (e.g., that's why handlers are in OCaml 5)

```
let rec scheduler () = handler {  | \ yield \ _k \rightarrow \ enqueue \ k \ ; \ dequeue \ () \\ | \ fork \ f \ k \rightarrow \ enqueue \ k \ ; \ handle \ f \ () \ with \ (scheduler \ ()) \ to \ _in \ dequeue \ () \}  let runCooperatively f = handle f () with (scheduler ()) to \ _l in dequeue ()
```

- Usual attempts at preemptive multi-th. are much less principled
 - people typically rely on (low-level) language specifics (of OCaml, Node.js) to inject yields into their programs at runtime

• The leading example of eff. handlers is user-definable cooperative multi-threading (e.g., that's why handlers are in OCaml 5)

- Usual attempts at preemptive multi-th. are much less principled
 - people typically rely on (low-level) language specifics (of OCaml, Node.js) to inject yields into their programs at runtime
- In our work, we show how this can be achieved in a natural and self-contained fashion (including insights for ordinary alg. effs.)

Our Solution

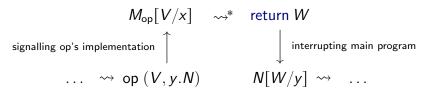
operation calls

=

signals + interrupts + interrupt handlers

The gist of our approach (1)

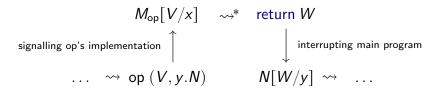
Recall that the execution of operation calls has the shape



We turn these phases into separate programming abstractions

The gist of our approach (1)

Recall that the execution of operation calls has the shape

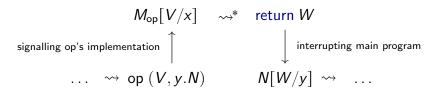


We turn these phases into separate programming abstractions

• signals
$$\cdots \rightsquigarrow \uparrow \text{ op } (V, M) \rightsquigarrow M \rightsquigarrow \cdots$$

The gist of our approach (1)

Recall that the execution of operation calls has the shape



We turn these phases into separate programming abstractions

• signals
$$\cdots \rightsquigarrow \uparrow \operatorname{op}(V, M) \rightsquigarrow M \rightsquigarrow \cdots$$

$$\downarrow \operatorname{op} W$$
• interrupts $\cdots \rightsquigarrow M \rightsquigarrow \downarrow \operatorname{op}(W, M) \rightsquigarrow \cdots$

The gist of our approach (2)

Recall that the execution of operation calls has the shape

```
M_{
m op}[V/x] 
ightharpoonup^* return W signalling op's implementation 
ightharpoonup^* 
ightharpoonup^* interrupting main program 
ho : \dots 	o 	ext{op } (V,y.N) N[W/y] 	o 	ext{...}
```

- We turn these phases into separate programming abstractions
 - interrupt handlers

$$M, N ::= \cdots \mid \text{promise } (\text{op } x r \mapsto M) \text{ as } p : \langle X \rangle \text{ in } N$$

The gist of our approach (2)

• Recall that the execution of operation calls has the shape

$$M_{
m op}[V/x]$$
 $ightharpoonup^*$ return W signalling op's implementation $ightharpoonup^*$ $ightharpoonup^*$ interrupting main program $ho : \dots
ightharpoonup^*$ op $(V,y.N)$ $N[W/y]
ightharpoonup^*$ \dots

- We turn these phases into separate programming abstractions
 - interrupt handlers

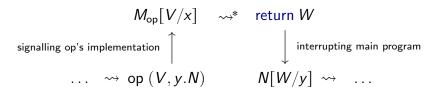
$$M, N ::= \cdots \mid \text{promise } (\text{op } x \ r \mapsto M) \text{ as } p : \langle X \rangle \text{ in } N$$

• awaiting promises to be fulfilled

$$V, W ::= \cdots \mid \langle V \rangle$$
 $M, N ::= \cdots \mid \text{await } V \text{ until } \langle x \rangle \text{ in } N$

The gist of our approach (3)

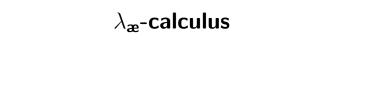
Recall that the execution of operation calls has the shape



- We turn these phases into separate programming abstractions
 - parallel processes

$$P, Q ::= \operatorname{run} M \mid P \mid\mid Q \mid \uparrow \operatorname{op}(V, P) \mid \downarrow \operatorname{op}(W, P)$$

which we use to model the programs' environment



$\lambda_{\mathbf{z}}$ -calculus: basics

- Extension of Levy's fine-grain call-by-value λ -calculus (FGCBV)
- Types: $X, Y ::= b \mid \ldots \mid X \rightarrow Y! (o, \iota) \mid \ldots$
- Values: $V, W ::= x \mid \ldots \mid \text{fun } (x : X) \mapsto M \mid \ldots$
- Computations: $M, N ::= \text{return } V \mid \text{let } x = M \text{ in } N \mid \dots$
- Typing judgements: $\Gamma \vdash V : X$ $\Gamma \vdash M : X ! (o, \iota)$
- Effect annotations (o, ι) :

$$o \subseteq \mathcal{O}$$
 $\iota = \{ op_1 \mapsto (o_1, \iota_1), \ldots, op_n \mapsto (o_n, \iota_n) \}$

• Small-step operational semantics: $M \rightsquigarrow N$

$\lambda_{\mathbf{z}}$ -calculus: modal types

$\lambda_{\mathbf{z}}$ -calculus: modal types

• (Almost) off-the-shelf Fitch-style modal [X]-type [Clouston et al.]

$$X ::= \dots \mid [X]$$
 $\Gamma ::= \emptyset \mid \Gamma, x : X \mid \Gamma,$

$$Ty Val Roy$$

$$\frac{X \text{ is mobile } \vee \quad \mathbf{\triangle} \notin \Gamma'}{\Gamma, x : X, \Gamma' \vdash x : X}$$

TY-VAL-BOX
$$\frac{\Gamma, \triangle \vdash V : X}{\Gamma \vdash \text{box } V : [X]}$$

TY-COMP-UNBOX
$$\frac{\Gamma \vdash V : [X] \qquad \Gamma, x : X \vdash M : Y ! (o, \iota)}{\Gamma \vdash \text{unbox } V \text{ as box } x \text{ in } M : Y ! (o, \iota)}$$

where X is mobile if X is a ground type or a modal type [Y]

• Intuition: [X] contains X-typed vals. safe to send to other procs.

$\lambda_{\mathbf{z}}$ -calculus: signals

• Signalling that some op's implementation needs to be executed

$$\frac{\mathsf{op} : A_{\mathsf{op}} \in o \quad \Gamma \vdash V : A_{\mathsf{op}} \quad \Gamma \vdash M : X \,! \, (o, \iota)}{\Gamma \vdash \uparrow \mathsf{op} \, (V, M) : X \,! \, (o, \iota)}$$

$\lambda_{\mathbf{æ}}$ -calculus: signals

Signalling that some op's implementation needs to be executed

$$\frac{\mathsf{op} : A_{\mathsf{op}} \in o \quad \Gamma \vdash V : A_{\mathsf{op}} \quad \Gamma \vdash M : X \,! \, (o, \iota)}{\Gamma \vdash \uparrow \mathsf{op} \, (V, M) : X \,! \, (o, \iota)}$$

- Operationally behave like algebraic operations
 - let $x = (\uparrow \operatorname{op}(V, M))$ in $N \rightsquigarrow \uparrow \operatorname{op}(V, \operatorname{let} x = M \operatorname{in} N)$

$\lambda_{\mathbf{æ}}$ -calculus: signals

Signalling that some op's implementation needs to be executed

$$\frac{\mathsf{op} : A_{\mathsf{op}} \in o \quad \Gamma \vdash V : A_{\mathsf{op}} \quad \Gamma \vdash M : X \,! \, (o, \iota)}{\Gamma \vdash \uparrow \mathsf{op} \, (V, M) : X \,! \, (o, \iota)}$$

- Operationally behave like algebraic operations
 - let $x = (\uparrow \operatorname{op}(V, M))$ in $N \rightsquigarrow \uparrow \operatorname{op}(V, \operatorname{let} x = M \operatorname{in} N)$
- But importantly, they do not block their continuations
 - $M \rightsquigarrow M' \implies \uparrow \operatorname{op}(V, M) \rightsquigarrow \uparrow \operatorname{op}(V, M')$

• Environment interrupting a computation (with some op's result)

TYCOMP-INTERRUPT
$$\frac{\Gamma \vdash W : A_{op} \quad \Gamma \vdash M : X ! (o, \iota)}{\Gamma \vdash \downarrow op (W, M) : X ! (op \downarrow (o, \iota))}$$

$\lambda_{\mathbf{a}}$ -calculus: interrupts

• Environment interrupting a computation (with some op's result)

TYCOMP-INTERRUPT
$$\frac{\Gamma \vdash W : A_{op} \quad \Gamma \vdash M : X ! (o, \iota)}{\Gamma \vdash \downarrow op (W, M) : X ! (op \downarrow (o, \iota))}$$

- Operationally behave like homomorphisms/effect handling
 - \downarrow op $(W, \text{return } V) \rightsquigarrow \text{return } V$
 - \downarrow op $(W, \uparrow$ op' $(V, M)) \leadsto \uparrow$ op' $(V, \downarrow$ op (W, M))
 - ...

Environment interrupting a computation (with some op's result)

TYCOMP-INTERRUPT
$$\frac{\Gamma \vdash W : A_{op} \quad \Gamma \vdash M : X ! (o, \iota)}{\Gamma \vdash \downarrow op(W, M) : X ! (op \downarrow (o, \iota))}$$

- Operationally behave like homomorphisms/effect handling
 - \downarrow op $(W, \text{return } V) \rightsquigarrow \text{return } V$
 - $\bullet \ \, \downarrow \mathsf{op} \left(W, \uparrow \mathsf{op}' \left(V, M \right) \right) \leadsto \uparrow \mathsf{op}' \left(V, \downarrow \mathsf{op} \left(W, M \right) \right) \\$
 - ...
- And they also do not block their continuations
 - $\bullet \ \ M \rightsquigarrow M' \qquad \Longrightarrow \qquad \downarrow \operatorname{op}(V,M) \rightsquigarrow \downarrow \operatorname{op}(V,M')$

Allow computations to react to interrupts

TY-COMP-PROMISE
$$\iota (\mathsf{op}) = (o', \iota') \qquad \Gamma, x : A_{op} \vdash M : \langle X \rangle ! (o', \iota')$$

$$\Gamma, p : \langle X \rangle \vdash N : Y ! (o, \iota)$$

$$\Gamma \vdash \mathsf{promise} (\mathsf{op} \ x \mapsto M) \mathsf{as} \ p \mathsf{in} \ N : Y ! (o, \iota)$$

Allow computations to react to interrupts

TY-COMP-PROMISE
$$\iota (\mathsf{op}) = (o', \iota') \qquad \Gamma, x : A_{op} \vdash M : \langle X \rangle ! (o', \iota')$$

$$\Gamma, p : \langle X \rangle \vdash N : Y ! (o, \iota)$$

$$\Gamma \vdash \mathsf{promise} (\mathsf{op} \ x \mapsto M) \text{ as } p \text{ in } N : Y ! (o, \iota)$$

- Operationally behave like (scoped) algebraic operations (!)
 - let $x = (\text{promise } (\text{op } x \mapsto M) \text{ as } p \text{ in } N) \text{ in } L$ $\leadsto \text{promise } (\text{op } x \mapsto M) \text{ as } p \text{ in } (\text{let } x = N \text{ in } L)$

Allow computations to react to interrupts

TY-COMP-PROMISE
$$\iota (\mathsf{op}) = (o', \iota') \qquad \Gamma, x : A_{op} \vdash M : \langle X \rangle ! (o', \iota')$$

$$\Gamma, p : \langle X \rangle \vdash N : Y ! (o, \iota)$$

$$\Gamma \vdash \mathsf{promise} (\mathsf{op} \ x \mapsto M) \mathsf{as} \ p \mathsf{in} \ N : Y ! (o, \iota)$$

- Operationally behave like (scoped) algebraic operations (!)
 - let $x = (\text{promise } (\text{op } x \mapsto M) \text{ as } p \text{ in } N) \text{ in } L$ $\leadsto \text{promise } (\text{op } x \mapsto M) \text{ as } p \text{ in } (\text{let } x = N \text{ in } L)$
 - promise (op $x \mapsto M$) as p in \uparrow op' (V, N) $\leadsto \uparrow$ op' $(V, promise (op <math>x \mapsto M)$ as p in N)

Allow computations to react to interrupts

TY-COMP-PROMISE
$$\iota (\mathsf{op}) = (o', \iota') \qquad \Gamma, x : A_{op} \vdash M : \langle X \rangle ! (o', \iota')$$

$$\Gamma, p : \langle X \rangle \vdash N : Y ! (o, \iota)$$

$$\Gamma \vdash \mathsf{promise} (\mathsf{op} \ x \mapsto M) \text{ as } p \text{ in } N : Y ! (o, \iota)$$

- Operationally behave like (scoped) algebraic operations (!)
 - let $x = (promise (op x \mapsto M) as p in N) in L$ $\rightsquigarrow promise (op x \mapsto M) as p in (let x = N in L)$
 - promise (op $x \mapsto M$) as p in \uparrow op' (V, N) (type safety!) $\leadsto \uparrow$ op' (V, promise (op $x \mapsto M$) as p in N) ($p \notin FV(V)$)

Allow computations to react to interrupts

TY-COMP-PROMISE
$$\iota (\mathsf{op}) = (o', \iota') \qquad \Gamma, x : A_{op} \vdash M : \langle X \rangle ! (o', \iota')$$

$$\Gamma, p : \langle X \rangle \vdash N : Y ! (o, \iota)$$

$$\Gamma \vdash \mathsf{promise} (\mathsf{op} \ x \mapsto M) \text{ as } p \text{ in } N : Y ! (o, \iota)$$

- They are triggered by matching interrupts
 - \downarrow op $(W, \text{promise } (\text{op } x \mapsto M) \text{ as } p \text{ in } N)$

$$\rightsquigarrow$$
 let $p = M[W/x]$ in \downarrow op (W, N)

Allow computations to react to interrupts

TY-COMP-PROMISE
$$\iota (\mathsf{op}) = (o', \iota') \qquad \Gamma, x : A_{op} \vdash M : \langle X \rangle ! (o', \iota')$$

$$\Gamma, p : \langle X \rangle \vdash N : Y ! (o, \iota)$$

$$\Gamma \vdash \mathsf{promise} (\mathsf{op} \ x \mapsto M) \text{ as } p \text{ in } N : Y ! (o, \iota)$$

where $p:\langle X \rangle$ is a promise-typed variable

- They are triggered by matching interrupts
- \downarrow op $(W, \text{promise } (\text{op } x \mapsto M) \text{ as } p \text{ in } N)$ $\rightsquigarrow \text{let } p = M[W/x] \text{ in } \downarrow \text{ op } (W, N)$
- And non-matching interrupts (op \neq op') are passed through
 - \downarrow op $(W, \text{promise } (\text{op'} x \mapsto M) \text{ as } p \text{ in } N)$ \leadsto promise $(\text{op'} x \mapsto M) \text{ as } p \text{ in } \downarrow \text{op } (W, N)$

Allow computations to react to interrupts

TY-COMP-PROMISE
$$\iota (\mathsf{op}) = (o', \iota') \qquad \Gamma, x : A_{op} \vdash M : \langle X \rangle ! (o', \iota')$$

$$\Gamma, p : \langle X \rangle \vdash N : Y ! (o, \iota)$$

$$\Gamma \vdash \mathsf{promise} (\mathsf{op} \ x \mapsto M) \text{ as } p \text{ in } N : Y ! (o, \iota)$$

where $p:\langle X\rangle$ is a promise-typed variable

- They also do not block their continuations
 - $N \rightsquigarrow N'$ \Longrightarrow promise (op $x \mapsto M$) as p in N \leadsto promise (op $x \mapsto M$) as p in N'

Allow computations to react to interrupts

TY-COMP-PROMISE
$$\iota (\mathsf{op}) = (o', \iota') \qquad \Gamma, x : A_{op} \vdash M : \langle X \rangle ! (o', \iota')$$

$$\Gamma, p : \langle X \rangle \vdash N : Y ! (o, \iota)$$

$$\Gamma \vdash \mathsf{promise} (\mathsf{op} \ x \mapsto M) \mathsf{as} \ p \mathsf{in} \ N : Y ! (o, \iota)$$

where $p:\langle X\rangle$ is a promise-typed variable

- They also do not block their continuations
 - $N \rightsquigarrow N'$ \Longrightarrow promise (op $x \mapsto M$) as p in N \leadsto promise (op $x \mapsto M$) as p in N'

For type safety, important that p does not get an arbitrary type!

- ullet To remove general recursion from $\lambda_{f x}$, we extend int. handlers by
 - allowing them to reinstall themselves
 - allowing them to pass state between triggerings

```
M, N ::= \cdots \mid \text{promise } (\text{op } x \mid r \mid s \mapsto M) @_S \mid V \text{ as } p \text{ in } N
```

- ullet To remove general recursion from $\lambda_{f x}$, we extend int. handlers by
 - allowing them to reinstall themselves
 - allowing them to pass state between triggerings

$$M, N ::= \cdots \mid \text{promise } (\text{op } x \mid r \mid s \mapsto M) \otimes_S \mid V \text{ as } p \text{ in } N$$

- Operationally only difference in how they trigger
 - \downarrow op $(W, \text{ promise } (\text{op } x \text{ } r \text{ } s \mapsto M) @_S \text{ } V \text{ as } p \text{ in } N)$ $\leadsto \text{let } p = M[W/x, R/r, V/s] \text{ in } \downarrow \text{op } (W, N)$

where

$$R \stackrel{\text{def}}{=} \text{ fun } s' \mapsto \text{promise } (\text{op } x \ r \ s \mapsto M) \ @_S \ s' \text{ as } p \text{ in return } p$$

$\lambda_{\mathbf{a}}$ -calculus: awaiting

• Enables programmers to selectively block execution

TYCOMP-AWAIT
$$\frac{\Gamma \vdash V : \langle X \rangle \qquad \Gamma, x : X \vdash N : Y ! (o, \iota)}{\Gamma \vdash \text{await } V \text{ until } \langle x \rangle \text{ in } N : Y ! (o, \iota)}$$

$\lambda_{\mathbf{z}}$ -calculus: awaiting

Enables programmers to selectively block execution

$$\frac{\Gamma \vdash V : \langle X \rangle \qquad \Gamma, x : X \vdash N : Y ! (o, \iota)}{\Gamma \vdash \text{await } V \text{ until } \langle x \rangle \text{ in } N : Y ! (o, \iota)}$$

- Behaves like pattern-matching (and also like alg. ops.)
 - await $\langle V \rangle$ until $\langle x \rangle$ in $N \rightsquigarrow N[V/x]$
 - let $y = (\text{await } V \text{ until } \langle x \rangle \text{ in } M) \text{ in } N$ $\rightsquigarrow \text{await } V \text{ until } \langle x \rangle \text{ in } (\text{let } y = M \text{ in } N)$
- In contrast to earlier gadgets, await blocks its cont.'s execution !!!

• We model the environment by running computations in parallel

```
P, Q ::= \operatorname{run} M \mid P \mid \mid Q \mid \uparrow \operatorname{op}(V, P) \mid \downarrow \operatorname{op}(W, P)
```

• We model the environment by running computations in parallel

```
P, Q ::= \operatorname{run} M \mid P \mid\mid Q \mid \uparrow \operatorname{op}(V, P) \mid \downarrow \operatorname{op}(W, P)
```

- Small-step operational semantics $P \rightsquigarrow Q$: congruence rules +
 - run $(\uparrow \text{ op } (V, M)) \leadsto \uparrow \text{ op } (V, \text{ run } M)$

• We model the environment by running computations in parallel

$$P, Q ::= \operatorname{run} M \mid P \mid\mid Q \mid \uparrow \operatorname{op}(V, P) \mid \downarrow \operatorname{op}(W, P)$$

- Small-step operational semantics $P \rightsquigarrow Q$: congruence rules +
 - run $(\uparrow op(V, M)) \leadsto \uparrow op(V, run M)$
 - $\bullet \ (\uparrow \operatorname{op} (V,P)) \mid\mid Q \leadsto \uparrow \operatorname{op} (V,(P \mid\mid \downarrow \operatorname{op} (V,Q))) \qquad (\operatorname{broadcast})$
 - $\bullet \ P \mid\mid (\uparrow \mathsf{op}\,(V,Q)) \leadsto \uparrow \mathsf{op}\,(V,(\downarrow \mathsf{op}\,(V,P)\mid\mid Q)) \qquad (\mathsf{broadcast})$

We model the environment by running computations in parallel

$$P, Q ::= \operatorname{run} M \mid P \mid\mid Q \mid \uparrow \operatorname{op}(V, P) \mid \downarrow \operatorname{op}(W, P)$$

- Small-step operational semantics P → Q: congruence rules +
 - run $(\uparrow op(V, M)) \leadsto \uparrow op(V, run M)$
 - $(\uparrow \operatorname{op}(V, P)) \mid\mid Q \leadsto \uparrow \operatorname{op}(V, (P \mid\mid \downarrow \operatorname{op}(V, Q)))$ (broadcast)
 - $\bullet \ P \mid\mid (\uparrow \mathsf{op}\,(V,Q)) \leadsto \uparrow \mathsf{op}\,(V,(\downarrow \mathsf{op}\,(V,P)\mid\mid Q)) \qquad (\mathsf{broadcast})$
 - \downarrow op $(W, \operatorname{run} M) \rightsquigarrow \operatorname{run} (\downarrow \operatorname{op} (W, M))$
 - ...

• Compared to POPL'21, modal types give us a type-safe spawn

$$M, N ::= \cdots \mid \operatorname{spawn}(M, N)$$

$$\frac{\Gamma, \blacktriangle \vdash M : X ! (o', \iota') \qquad \Gamma \vdash N : Y ! (o, \iota)}{\Gamma \vdash \operatorname{spawn}(M, N) : Y ! (o, \iota)}$$

• Compared to POPL'21, modal types give us a type-safe spawn

$$M, N ::= \cdots \mid \operatorname{spawn}(M, N)$$

$$\frac{\Gamma, \blacktriangle \vdash M : X ! (o', \iota') \qquad \Gamma \vdash N : Y ! (o, \iota)}{\Gamma \vdash \operatorname{spawn}(M, N) : Y ! (o, \iota)}$$

- Operationally propagates outwards (like a scoped alg. op.)
 - let $x = (\operatorname{spawn}(M_1, M_2))$ in $N \rightsquigarrow \operatorname{spawn}(M_1, \operatorname{let} x = M_2 \operatorname{in} N)$
 - also propagates through promises, where provides type-safety

Compared to POPL'21, modal types give us a type-safe spawn

$$M, N ::= \cdots \mid \operatorname{spawn}(M, N)$$

$$\frac{\Gamma, \mathbf{\triangle} \vdash M : X ! (o', \iota') \qquad \Gamma \vdash N : Y ! (o, \iota)}{\Gamma \vdash \operatorname{spawn}(M, N) : Y ! (o, \iota)}$$

- Operationally propagates outwards (like a scoped alg. op.)
 - let $x = (\operatorname{spawn}(M_1, M_2))$ in $N \rightsquigarrow \operatorname{spawn}(M_1, \operatorname{let} x = M_2 \operatorname{in} N)$
 - also propagates through promises, where provides type-safety
- Eventually gives rise to a new parallel process
 - run (spawn (M, N)) \rightsquigarrow run $M \mid\mid$ run N

• Compared to POPL'21, modal types give us a type-safe spawn

$$M, N ::= \cdots \mid \operatorname{spawn}(M, N)$$

$$\frac{\Gamma, \mathbf{\triangle} \vdash M : X ! (o', \iota') \qquad \Gamma \vdash N : Y ! (o, \iota)}{\Gamma \vdash \operatorname{spawn}(M, N) : Y ! (o, \iota)}$$

- Operationally propagates outwards (like a scoped alg. op.)
 - let $x = (\operatorname{spawn}(M_1, M_2))$ in $N \rightsquigarrow \operatorname{spawn}(M_1, \operatorname{let} x = M_2 \operatorname{in} N)$
 - $\bullet\,$ also propagates through promises, where \clubsuit provides type-safety
- Eventually gives rise to a new parallel process
 - run (spawn (M, N)) \rightsquigarrow run $M \parallel$ run N
- Importantly, does not block its continuation !!!

Examples

Examples

- Multi-party web application
- Remote function call execution
- (Simulating) cancellations of remote function calls
- Preemptive multi-threading
- Parallel variant of runners of algebraic effects
- Non-blocking post-processing of promised values
- . . .

Example: implementing algebraic ops.

• Algebraic operations op (V, y.M) are implemented at call site as

```
\uparrow op-req (V, \text{promise (op-resp } y \mapsto \text{return } \langle y \rangle) \text{ as } p \text{ in } await p \text{ until } \langle y \rangle \text{ in } M)
```

Example: implementing algebraic ops.

• Algebraic operations op (V, y.M) are implemented at call site as

```
\uparrow \mathsf{op\text{-}req} \ \big( V, \mathsf{promise} \ (\mathsf{op\text{-}resp} \ y \mapsto \mathsf{return} \ \langle y \rangle) \ \mathsf{as} \ p \ \mathsf{in} \\ \mathsf{await} \ p \ \mathsf{until} \ \langle y \rangle \ \mathsf{in} \ M \big)
```

 The corresponding implementation using a recursively defined interrupt handler for op-req interrupt (in some other process)

```
promise (op-req x r \mapsto \text{let } y = M \text{ in}

\uparrow \text{ op-resp } (y, r ())
```

) as p in return p

Example: implementing algebraic ops.

• Algebraic operations op (V, y.M) are implemented at call site as

```
\uparrow \mathsf{op\text{-}req} \ \big( V, \mathsf{promise} \ (\mathsf{op\text{-}resp} \ y \mapsto \mathsf{return} \ \langle y \rangle) \ \mathsf{as} \ p \ \mathsf{in} \\ \mathsf{await} \ p \ \mathsf{until} \ \langle y \rangle \ \mathsf{in} \ M \big)
```

 The corresponding implementation using a recursively defined interrupt handler for op-req interrupt (in some other process)

```
promise (op-req x \ r \mapsto \text{let } y = M \text{ in}
\uparrow \text{ op-resp } (y, r \, ())
) as p in return p
```

The interaction happens then via parallel composition

$$M_{\text{call-site}} \parallel M_{\text{op-implementation}}$$

• We consider two interrupts: stop: 1 and go: 1

- We consider two interrupts: stop: 1 and go: 1
- We define the following recursively defined interrupt handler

```
let waitForStop () =

promise (stop _ r →

promise (go _ - → return ⟨()⟩) as p in

await p until ⟨ - ⟩ in r ()

) as p' in return p'
```

- We consider two interrupts: stop:1 and go:1
- We define the following recursively defined interrupt handler

```
let waitForStop () =

promise (stop _ r →

promise (go _ - → return ⟨()⟩) as p in

await p until ⟨ - ⟩ in r ()

) as p' in return p'
```

We initialise the preemtive behaviour by running

```
waitForStop (); comp
```

- We consider two interrupts: stop:1 and go:1
- We define the following recursively defined interrupt handler

```
let waitForStop () =

promise (stop _ r →

promise (go _ - → return ⟨()⟩) as p in

await p until ⟨ - ⟩ in r ()

) as p' in return p'
```

We initialise the preemtive behaviour by running

```
waitForStop (); comp
```

• Then $\downarrow stop((), waitForStop(); comp)$

- We consider two interrupts: stop:1 and go:1
- We define the following recursively defined interrupt handler

```
let waitForStop () =

promise (stop _ r →

promise (go _ - → return ⟨()⟩) as p in

await p until ⟨ - ⟩ in r ()

) as p' in return p'
```

• We initialise the preemtive behaviour by running

```
waitForStop (); comp
```

```
• Then \downarrow stop((), waitForStop(); comp)

\leadsto^* \downarrow stop((), waitForStop(); comp')
```

- We consider two interrupts: stop:1 and go:1
- We define the following recursively defined interrupt handler

```
let waitForStop () =

promise (stop _ r →

promise (go _ - → return ⟨()⟩) as p in

await p until ⟨ - ⟩ in r ()

) as p' in return p'
```

• We initialise the preemtive behaviour by running

```
waitForStop (); comp
```

Then
 ↓ stop ((), waitForStop(); comp)
 →* ↓ stop ((), waitForStop(); comp')
 →* ↓ stop ((), promise (stop _ r → ...) as p' in comp')

- We consider two interrupts: stop:1 and go:1
- We define the following recursively defined interrupt handler

```
let waitForStop () =

promise (stop _ r →

promise (go _ - → return ⟨()⟩) as p in

await p until ⟨ - ⟩ in r ()

) as p' in return p'
```

• We initialise the preemtive behaviour by running

```
waitForStop (); comp
```

• Then

Example: post-processing promised values

• As syntactic sugar (relies on propagating signals into conts.)

```
process<sub>op</sub> p with (\langle x \rangle \mapsto \text{comp}) as q in cont = promise (op \_\mapsto \text{await p until } \langle x \rangle \text{ in } let y = comp in return \langle y \rangle) as q in cont
```

Example: post-processing promised values

As syntactic sugar (relies on propagating signals into conts.)

```
process<sub>op</sub> p with (\langle x \rangle \mapsto \text{comp}) as q in cont = promise (op _ \mapsto await p until \langle x \rangle in let y = comp in return \langle y \rangle) as q in cont
```

E.g., we can then post-process a promised list in non-blocking way

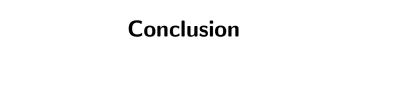
```
promise (op x \mapsto original_interrupt_handler) as p in ... process<sub>op</sub> p with (\langle is \rangle \mapsto filter (fun i \mapsto i > 0) is) as q in process<sub>op</sub> q with (\langle js \rangle \mapsto fold (fun j j' \mapsto j * j') 1 js) as r in process<sub>op</sub> r with (\langle k \rangle \mapsto \uparrow productOfPositiveElements k) as _ in ...
```

Æff web interface

https://matija.pretnar.info/aeff/

Æff

```
run waitForStop 2;
let b = let b = let b = (+) (10, 10) in (+) (10, b) in (+) (10, b) in
(+) (10, b)
||
run waitForStop 1;
let b = let b = let b = (+) (1, 1) in (+) (1, b) in (+) (1, b) in
(+) (1, b)
```

Conclusion

- λ_{ae} : a core calculus for asynchronous algebraic effects
 - based on decoupling the execution of alg. operation calls
 - teaches us that preemptive behaviour = interrupts = eff. handling
 - more details in the papers and Agda formalisations

Conclusion

- λ_{∞} : a core calculus for asynchronous algebraic effects
 - based on decoupling the execution of alg. operation calls
 - teaches us that preemptive behaviour = interrupts = eff. handling
 - more details in the papers and Agda formalisations
- Some ongoing work on $\lambda_{\mathbf{z}}$'s denotational semantics
 - requires factorisation of morphisms $\langle X \rangle \longrightarrow A$ through 1
 - presheaf categories give a suitable playground
 - signals, promises, awaits as alg. ops. / interrupts as handling

Conclusion

- λ_{∞} : a core calculus for asynchronous algebraic effects
 - based on decoupling the execution of alg. operation calls
 - teaches us that preemptive behaviour = interrupts = eff. handling
 - more details in the papers and Agda formalisations
- Some ongoing work on $\lambda_{\mathbf{z}}$'s denotational semantics
 - requires factorisation of morphisms $\langle X \rangle \longrightarrow A$ through 1
 - presheaf categories give a suitable playground
 - signals, promises, awaits as alg. ops. / interrupts as handling
- Some ongoing work on λ_{∞} 's normalisation (TT-lifting style)
 - seq. part with non-reinstallable int. handlers 🗸
 - par. part with non-reinstallable int. handlers (maybe ✓)
 - seq. part with reinstallable int. handlers (naively X, but hope ✓)
 - par. part with reinstallable int. handlers X

asynchronous operation calls

```
signals + interrupts + interrupt handlers

(unary (effect (scoped ops. + ops.) handling) modalities)
```