
Higher-Order Asynchronous Effects

Danel Ahman

University of Tartu, Estonia

(joint work with Matija Pretnar)

EHOP Workshop „ 20.08.2025

Plan

‚ Problems:

‚ usual (operational) treatment of alg. effs. is synchronous

‚ some natural examples require language-specific hacks

‚ Solution proposed at POPL’21:

‚ asynchrony through decoupling operation call execution

into signals and interrupts

‚ Solutions to some POPL’21 shortcomings in LMCS:

‚ modal type system for higher-order signals and interrupts

‚ reinstallable and stateful interrupt handlers to remove gen. rec.

D. Ahman, M. Pretnar. Asynchronous Effects (POPL 2021)

D. Ahman, M. Pretnar. Higher-Order Async. Effs. (LMCS, 2024)

Problems

Problem 1: synchrony of algebraic effects

‚ The conventional operational treatment of algebraic effects

MoprV {xs ⇝˚ returnW

interrupting main program

. . . ⇝ op pV , y .Nq

signalling op’s implementation

loomoon

main program’s execution blocked

NrW {y s

‚ Mop - handler, runner, top-level default implementation, . . .

‚ While such synchrony is needed for general effect handlers,

it unnecessarily forces all uses of alg. effs. to be synchronous

Problem 1: synchrony of algebraic effects

‚ The conventional operational treatment of algebraic effects

MoprV {xs ⇝˚ returnW

interrupting main program

. . . ⇝ op pV , y .Nq

signalling op’s implementation

OO

loomoon

main program’s execution blocked

NrW {y s

‚ Mop - handler, runner, top-level default implementation, . . .

‚ While such synchrony is needed for general effect handlers,

it unnecessarily forces all uses of alg. effs. to be synchronous

Problem 1: synchrony of algebraic effects

‚ The conventional operational treatment of algebraic effects

MoprV {xs ⇝˚ returnW

interrupting main program

. . . ⇝ op pV , y .Nq

signalling op’s implementation

OO

loomoon

main program’s execution blocked

NrW {y s

‚ Mop - handler, runner, top-level default implementation, . . .

‚ While such synchrony is needed for general effect handlers,

it unnecessarily forces all uses of alg. effs. to be synchronous

Problem 1: synchrony of algebraic effects

‚ The conventional operational treatment of algebraic effects

MoprV {xs ⇝˚ returnW

interrupting main program

��

. . . ⇝ op pV , y .Nq

signalling op’s implementation

OO

loomoon

main program’s execution blocked

NrW {y s

‚ Mop - handler, runner, top-level default implementation, . . .

‚ While such synchrony is needed for general effect handlers,

it unnecessarily forces all uses of alg. effs. to be synchronous

Problem 1: synchrony of algebraic effects

‚ The conventional operational treatment of algebraic effects

MoprV {xs ⇝˚ returnW

interrupting main program

��

. . . ⇝ op pV , y .Nq

signalling op’s implementation

OO

loomoon

main program’s execution blocked

NrW {y s ⇝ . . .

‚ Mop - handler, runner, top-level default implementation, . . .

‚ While such synchrony is needed for general effect handlers,

it unnecessarily forces all uses of alg. effs. to be synchronous

Problem 1: synchrony of algebraic effects

‚ The conventional operational treatment of algebraic effects

MoprV {xs ⇝˚ returnW

interrupting main program

��

. . . ⇝ op pV , y .Nq

signalling op’s implementation

OO

loomoon

main program’s execution is blocked

NrW {y s ⇝ . . .

‚ Mop - handler, runner, top-level default implementation, . . .

‚ While such synchrony is needed for general effect handlers,

it unnecessarily forces all uses of alg. effs. to be synchronous

Problem 1: synchrony of algebraic effects

‚ The conventional operational treatment of algebraic effects

MoprV {xs ⇝˚ returnW

interrupting main program

��

. . . ⇝ op pV , y .Nq

signalling op’s implementation

OO

loomoon

main program’s execution is blocked

NrW {y s ⇝ . . .

‚ Mop - handler, runner, top-level default implementation, . . .

‚ While such synchrony is needed for general effect handlers,

it unnecessarily forces all uses of alg. effs. to be synchronous

Problem 2: some neat examples are hacky

‚ The leading example of eff. handlers is user-definable cooperative

multi-threading (e.g., that’s why handlers are in OCaml 5)

let rec scheduler () =

handler {
| yield k Ñ enqueue k ; dequeue ()

| fork f k Ñ enqueue k ; handle f () with (scheduler ()) to in dequeue () }

let runCooperatively f =

handle f () with (scheduler ()) to in dequeue ()

‚ Usual attempts at preemptive multi-th. are much less principled

‚ people typically rely on (low-level) language specifics (of OCaml,

Node.js) to inject yields into their programs at runtime

‚ In our work, we show how this can be achieved in a natural and

self-contained fashion (including insights for ordinary alg. effs.)

Problem 2: some neat examples are hacky

‚ The leading example of eff. handlers is user-definable cooperative

multi-threading (e.g., that’s why handlers are in OCaml 5)

let rec scheduler () =

handler {
| yield k Ñ enqueue k ; dequeue ()

| fork f k Ñ enqueue k ; handle f () with (scheduler ()) to in dequeue () }

let runCooperatively f =

handle f () with (scheduler ()) to in dequeue ()

‚ Usual attempts at preemptive multi-th. are much less principled

‚ people typically rely on (low-level) language specifics (of OCaml,

Node.js) to inject yields into their programs at runtime

‚ In our work, we show how this can be achieved in a natural and

self-contained fashion (including insights for ordinary alg. effs.)

Problem 2: some neat examples are hacky

‚ The leading example of eff. handlers is user-definable cooperative

multi-threading (e.g., that’s why handlers are in OCaml 5)

let rec scheduler () =

handler {
| yield k Ñ enqueue k ; dequeue ()

| fork f k Ñ enqueue k ; handle f () with (scheduler ()) to in dequeue () }

let runCooperatively f =

handle f () with (scheduler ()) to in dequeue ()

‚ Usual attempts at preemptive multi-th. are much less principled

‚ people typically rely on (low-level) language specifics (of OCaml,

Node.js) to inject yields into their programs at runtime

‚ In our work, we show how this can be achieved in a natural and

self-contained fashion (including insights for ordinary alg. effs.)

Problem 2: some neat examples are hacky

‚ The leading example of eff. handlers is user-definable cooperative

multi-threading (e.g., that’s why handlers are in OCaml 5)

let rec scheduler () =

handler {
| yield k Ñ enqueue k ; dequeue ()

| fork f k Ñ enqueue k ; handle f () with (scheduler ()) to in dequeue () }

let runCooperatively f =

handle f () with (scheduler ()) to in dequeue ()

‚ Usual attempts at preemptive multi-th. are much less principled

‚ people typically rely on (low-level) language specifics (of OCaml,

Node.js) to inject yields into their programs at runtime

‚ In our work, we show how this can be achieved in a natural and

self-contained fashion (including insights for ordinary alg. effs.)

Our Solution

operation calls

=

signals + interrupts + interrupt handlers

The gist of our approach (1)

‚ Recall that the execution of operation calls has the shape

MoprV {xs ⇝˚ returnW

interrupting main program

��

. . . ⇝ op pV , y .Nq

signalling op’s implementation

OO

NrW {y s ⇝ . . .

‚ We turn these phases into separate programming abstractions

‚ signals ¨ ¨ ¨⇝ Ò op pV ,Mq

opV

OO

⇝ M⇝ ¨ ¨ ¨

‚ interrupts

opW
��

¨ ¨ ¨⇝ M⇝ Ó op pW ,Mq⇝ ¨ ¨ ¨

The gist of our approach (1)

‚ Recall that the execution of operation calls has the shape

MoprV {xs ⇝˚ returnW

interrupting main program

��

. . . ⇝ op pV , y .Nq

signalling op’s implementation

OO

NrW {y s ⇝ . . .

‚ We turn these phases into separate programming abstractions

‚ signals ¨ ¨ ¨⇝ Ò op pV ,Mq

opV

OO

⇝ M⇝ ¨ ¨ ¨

‚ interrupts

opW
��

¨ ¨ ¨⇝ M⇝ Ó op pW ,Mq⇝ ¨ ¨ ¨

The gist of our approach (1)

‚ Recall that the execution of operation calls has the shape

MoprV {xs ⇝˚ returnW

interrupting main program

��

. . . ⇝ op pV , y .Nq

signalling op’s implementation

OO

NrW {y s ⇝ . . .

‚ We turn these phases into separate programming abstractions

‚ signals ¨ ¨ ¨⇝ Ò op pV ,Mq

opV

OO

⇝ M⇝ ¨ ¨ ¨

‚ interrupts

opW
��

¨ ¨ ¨⇝ M⇝ Ó op pW ,Mq⇝ ¨ ¨ ¨

The gist of our approach (2)

‚ Recall that the execution of operation calls has the shape

MoprV {xs ⇝˚ returnW

interrupting main program

��

. . . ⇝ op pV , y .Nq

signalling op’s implementation

OO

NrW {y s ⇝ . . .

‚ We turn these phases into separate programming abstractions

‚ interrupt handlers

M,N ::“ ¨ ¨ ¨
ˇ

ˇ promise pop x r ÞÑ Mq as p : xX y in N

‚ awaiting promises to be fulfilled

V ,W ::“ ¨ ¨ ¨
ˇ

ˇ xV y

M,N ::“ ¨ ¨ ¨
ˇ

ˇ await V until xxy in N

The gist of our approach (2)

‚ Recall that the execution of operation calls has the shape

MoprV {xs ⇝˚ returnW

interrupting main program

��

. . . ⇝ op pV , y .Nq

signalling op’s implementation

OO

NrW {y s ⇝ . . .

‚ We turn these phases into separate programming abstractions

‚ interrupt handlers

M,N ::“ ¨ ¨ ¨
ˇ

ˇ promise pop x r ÞÑ Mq as p : xX y in N

‚ awaiting promises to be fulfilled

V ,W ::“ ¨ ¨ ¨
ˇ

ˇ xV y

M,N ::“ ¨ ¨ ¨
ˇ

ˇ await V until xxy in N

The gist of our approach (3)

‚ Recall that the execution of operation calls has the shape

MoprV {xs ⇝˚ returnW

interrupting main program

��

. . . ⇝ op pV , y .Nq

signalling op’s implementation

OO

NrW {y s ⇝ . . .

‚ We turn these phases into separate programming abstractions

‚ parallel processes

P,Q ::“ run M
ˇ

ˇ P || Q
ˇ

ˇ Ò op pV ,Pq
ˇ

ˇ Ó op pW ,Pq

which we use to model the programs’ environment

λæ-calculus

λæ-calculus: basics

‚ Extension of Levy’s fine-grain call-by-value λ-calculus (FGCBV)

‚ Types: X ,Y ::“ b | . . . | X Ñ Y ! po, ιq | . . .

‚ Values: V ,W ::“ x | . . . | fun px :X q ÞÑ M | . . .

‚ Computations: M ,N ::“ return V | let x “ M in N | . . .

‚ Typing judgements: Γ $ V : X Γ $ M : X ! po, ιq

‚ Effect annotations po, ιq:

o Ď O ι “
␣

op1 ÞÑ po1, ι1q , . . . , opn ÞÑ pon, ιnq
(

‚ Small-step operational semantics: M ⇝ N

λæ-calculus: modal types

‚ (Almost) off-the-shelf Fitch-style modal rX s-type [Clouston et al.]

X ::“ . . . | rX s Γ ::“ H | Γ, x :X | Γ, �

Ty-Val-Variable

X is mobile _ � R Γ1

Γ, x :X , Γ1 $ x : X

Ty-Val-Box

Γ, � $ V : X

Γ $ box V : rX s

Ty-Comp-Unbox

Γ $ V : rX s Γ, x :X $ M : Y ! po, ιq

Γ $ unbox V as box x in M : Y ! po, ιq

where X is mobile if X is a ground type or a modal type rY s

‚ Intuition: rX s contains X -typed vals. safe to send to other procs.

λæ-calculus: modal types

‚ (Almost) off-the-shelf Fitch-style modal rX s-type [Clouston et al.]

X ::“ . . . | rX s Γ ::“ H | Γ, x :X | Γ, �

Ty-Val-Variable

X is mobile _ � R Γ1

Γ, x :X , Γ1 $ x : X

Ty-Val-Box

Γ, � $ V : X

Γ $ box V : rX s

Ty-Comp-Unbox

Γ $ V : rX s Γ, x :X $ M : Y ! po, ιq

Γ $ unbox V as box x in M : Y ! po, ιq

where X is mobile if X is a ground type or a modal type rY s

‚ Intuition: rX s contains X -typed vals. safe to send to other procs.

λæ-calculus: signals

‚ Signalling that some op’s implementation needs to be executed

TyComp-Signal

op :Aop P o Γ $ V : Aop Γ $ M : X ! po, ιq

Γ $ Ò op pV ,Mq : X ! po, ιq

where Aop is a mobile type (so it is safe to send to other procs.)

‚ Operationally behave like algebraic operations

‚ let x “
`

Ò op pV ,Mq
˘

in N ⇝ Ò op pV , let x “ M in Nq

‚ But importantly, they do not block their continuations

‚ M ⇝ M 1 ùñ Ò op pV ,Mq⇝ Ò op pV ,M 1q

λæ-calculus: signals

‚ Signalling that some op’s implementation needs to be executed

TyComp-Signal

op :Aop P o Γ $ V : Aop Γ $ M : X ! po, ιq

Γ $ Ò op pV ,Mq : X ! po, ιq

where Aop is a mobile type (so it is safe to send to other procs.)

‚ Operationally behave like algebraic operations

‚ let x “
`

Ò op pV ,Mq
˘

in N ⇝ Ò op pV , let x “ M in Nq

‚ But importantly, they do not block their continuations

‚ M ⇝ M 1 ùñ Ò op pV ,Mq⇝ Ò op pV ,M 1q

λæ-calculus: signals

‚ Signalling that some op’s implementation needs to be executed

TyComp-Signal

op :Aop P o Γ $ V : Aop Γ $ M : X ! po, ιq

Γ $ Ò op pV ,Mq : X ! po, ιq

where Aop is a mobile type (so it is safe to send to other procs.)

‚ Operationally behave like algebraic operations

‚ let x “
`

Ò op pV ,Mq
˘

in N ⇝ Ò op pV , let x “ M in Nq

‚ But importantly, they do not block their continuations

‚ M ⇝ M 1 ùñ Ò op pV ,Mq⇝ Ò op pV ,M 1q

λæ-calculus: interrupts

‚ Environment interrupting a computation (with some op’s result)

TyComp-Interrupt

Γ $ W : Aop Γ $ M : X ! po, ιq

Γ $ Ó op pW ,Mq : X ! pop Ó po, ιqq

where Aop is a mobile type (so it is safe to send to other procs.)

‚ Operationally behave like homomorphisms/effect handling

‚ Ó op pW , return V q⇝ return V

‚ Ó op pW , Ò op1 pV ,Mqq⇝ Ò op1 pV , Ó op pW ,Mqq

‚ . . .

‚ And they also do not block their continuations

‚ M ⇝ M 1 ùñ Ó op pV ,Mq⇝ Ó op pV ,M 1q

λæ-calculus: interrupts

‚ Environment interrupting a computation (with some op’s result)

TyComp-Interrupt

Γ $ W : Aop Γ $ M : X ! po, ιq

Γ $ Ó op pW ,Mq : X ! pop Ó po, ιqq

where Aop is a mobile type (so it is safe to send to other procs.)

‚ Operationally behave like homomorphisms/effect handling

‚ Ó op pW , return V q⇝ return V

‚ Ó op pW , Ò op1 pV ,Mqq⇝ Ò op1 pV , Ó op pW ,Mqq

‚ . . .

‚ And they also do not block their continuations

‚ M ⇝ M 1 ùñ Ó op pV ,Mq⇝ Ó op pV ,M 1q

λæ-calculus: interrupts

‚ Environment interrupting a computation (with some op’s result)

TyComp-Interrupt

Γ $ W : Aop Γ $ M : X ! po, ιq

Γ $ Ó op pW ,Mq : X ! pop Ó po, ιqq

where Aop is a mobile type (so it is safe to send to other procs.)

‚ Operationally behave like homomorphisms/effect handling

‚ Ó op pW , return V q⇝ return V

‚ Ó op pW , Ò op1 pV ,Mqq⇝ Ò op1 pV , Ó op pW ,Mqq

‚ . . .

‚ And they also do not block their continuations

‚ M ⇝ M 1 ùñ Ó op pV ,Mq⇝ Ó op pV ,M 1q

λæ-calculus: interrupt handlers

‚ Allow computations to react to interrupts

Ty-Comp-Promise

ι popq “ po 1, ι1q Γ, x :Aop $ M : xX y ! po 1, ι1q

Γ, p : xX y $ N : Y ! po, ιq

Γ $ promise pop x ÞÑ Mq as p in N : Y ! po, ιq

where p : xX y is a promise-typed variable

‚ Operationally behave like (scoped) algebraic operations (!)

‚ let x “
`

promise pop x ÞÑ Mq as p in N
˘

in L

⇝ promise pop x ÞÑ Mq as p in
`

let x “ N in L
˘

‚ promise pop x ÞÑ Mq as p in Ò op1 pV ,Nq

⇝ Ò op1 pV , promise pop x ÞÑ Mq as p in Nq

λæ-calculus: interrupt handlers

‚ Allow computations to react to interrupts

Ty-Comp-Promise

ι popq “ po 1, ι1q Γ, x :Aop $ M : xX y ! po 1, ι1q

Γ, p : xX y $ N : Y ! po, ιq

Γ $ promise pop x ÞÑ Mq as p in N : Y ! po, ιq

where p : xX y is a promise-typed variable

‚ Operationally behave like (scoped) algebraic operations (!)

‚ let x “
`

promise pop x ÞÑ Mq as p in N
˘

in L

⇝ promise pop x ÞÑ Mq as p in
`

let x “ N in L
˘

‚ promise pop x ÞÑ Mq as p in Ò op1 pV ,Nq

⇝ Ò op1 pV , promise pop x ÞÑ Mq as p in Nq

λæ-calculus: interrupt handlers

‚ Allow computations to react to interrupts

Ty-Comp-Promise

ι popq “ po 1, ι1q Γ, x :Aop $ M : xX y ! po 1, ι1q

Γ, p : xX y $ N : Y ! po, ιq

Γ $ promise pop x ÞÑ Mq as p in N : Y ! po, ιq

where p : xX y is a promise-typed variable

‚ Operationally behave like (scoped) algebraic operations (!)

‚ let x “
`

promise pop x ÞÑ Mq as p in N
˘

in L

⇝ promise pop x ÞÑ Mq as p in
`

let x “ N in L
˘

‚ promise pop x ÞÑ Mq as p in Ò op1 pV ,Nq

⇝ Ò op1 pV , promise pop x ÞÑ Mq as p in Nq

λæ-calculus: interrupt handlers

‚ Allow computations to react to interrupts

Ty-Comp-Promise

ι popq “ po 1, ι1q Γ, x :Aop $ M : xX y ! po 1, ι1q

Γ, p : xX y $ N : Y ! po, ιq

Γ $ promise pop x ÞÑ Mq as p in N : Y ! po, ιq

where p : xX y is a promise-typed variable

‚ Operationally behave like (scoped) algebraic operations (!)

‚ let x “
`

promise pop x ÞÑ Mq as p in N
˘

in L

⇝ promise pop x ÞÑ Mq as p in plet x “ N in Lq

‚ promise pop x ÞÑ Mq as p in Ò op1 p V ,Nq (type safety!)

⇝ Ò op1 p V , promise pop x ÞÑ Mq as p in Nq (p R FV pV q)

λæ-calculus: interrupt handlers

‚ Allow computations to react to interrupts

Ty-Comp-Promise

ι popq “ po 1, ι1q Γ, x :Aop $ M : xX y ! po 1, ι1q

Γ, p : xX y $ N : Y ! po, ιq

Γ $ promise pop x ÞÑ Mq as p in N : Y ! po, ιq

where p : xX y is a promise-typed variable

‚ They are triggered by matching interrupts

‚ Ó op pW , promise pop x ÞÑ Mq as p in Nq

⇝ let p “ MrW {xs in Ó op pW ,Nq

‚ And non-matching interrupts (op ‰ op1) are passed through

‚ Ó op pW , promise pop1 x ÞÑ Mq as p in Nq

⇝ promise pop1 x ÞÑ Mq as p in Ó op pW ,Nq

λæ-calculus: interrupt handlers

‚ Allow computations to react to interrupts

Ty-Comp-Promise

ι popq “ po 1, ι1q Γ, x :Aop $ M : xX y ! po 1, ι1q

Γ, p : xX y $ N : Y ! po, ιq

Γ $ promise pop x ÞÑ Mq as p in N : Y ! po, ιq

where p : xX y is a promise-typed variable

‚ They are triggered by matching interrupts

‚ Ó op pW , promise pop x ÞÑ Mq as p in Nq

⇝ let p “ MrW {xs in Ó op pW ,Nq

‚ And non-matching interrupts (op ‰ op1) are passed through

‚ Ó op pW , promise pop1 x ÞÑ Mq as p in Nq

⇝ promise pop1 x ÞÑ Mq as p in Ó op pW ,Nq

λæ-calculus: interrupt handlers

‚ Allow computations to react to interrupts

Ty-Comp-Promise

ι popq “ po 1, ι1q Γ, x :Aop $ M : xX y ! po 1, ι1q

Γ, p : xX y $ N : Y ! po, ιq

Γ $ promise pop x ÞÑ Mq as p in N : Y ! po, ιq

where p : xX y is a promise-typed variable

‚ They also do not block their continuations

‚ N ⇝ N 1

ùñ

promise pop x ÞÑ Mq as p in N

⇝ promise pop x ÞÑ Mq as p in N 1

For type safety, important that p does not get an arbitrary type!

λæ-calculus: interrupt handlers

‚ Allow computations to react to interrupts

Ty-Comp-Promise

ι popq “ po 1, ι1q Γ, x :Aop $ M : xX y ! po 1, ι1q

Γ, p : xX y $ N : Y ! po, ιq

Γ $ promise pop x ÞÑ Mq as p in N : Y ! po, ιq

where p : xX y is a promise-typed variable

‚ They also do not block their continuations

‚ N ⇝ N 1

ùñ

promise pop x ÞÑ Mq as p in N

⇝ promise pop x ÞÑ Mq as p in N 1

For type safety, important that p does not get an arbitrary type!

λæ-calculus: interrupt handlers

‚ To remove general recursion from λæ, we extend int. handlers by

‚ allowing them to reinstall themselves

‚ allowing them to pass state between triggerings

M,N ::“ ¨ ¨ ¨
ˇ

ˇ promise pop x r s ÞÑ Mq @S V as p in N

‚ Operationally only difference in how they trigger

‚ Ó op pW , promise pop x r s ÞÑ Mq @S V as p in Nq

⇝ let p “ MrW {x , R{r , V {s s in Ó op pW ,Nq

where

R
def
“ fun s 1 ÞÑ promise pop x r s ÞÑ Mq @S s 1 as p in return p

λæ-calculus: interrupt handlers

‚ To remove general recursion from λæ, we extend int. handlers by

‚ allowing them to reinstall themselves

‚ allowing them to pass state between triggerings

M,N ::“ ¨ ¨ ¨
ˇ

ˇ promise pop x r s ÞÑ Mq @S V as p in N

‚ Operationally only difference in how they trigger

‚ Ó op pW , promise pop x r s ÞÑ Mq @S V as p in Nq

⇝ let p “ MrW {x , R{r , V {s s in Ó op pW ,Nq

where

R
def
“ fun s 1 ÞÑ promise pop x r s ÞÑ Mq @S s 1 as p in return p

λæ-calculus: awaiting

‚ Enables programmers to selectively block execution

TyComp-Await

Γ $ V : xX y Γ, x :X $ N : Y ! po, ιq

Γ $ await V until xxy in N : Y ! po, ιq

‚ Behaves like pattern-matching (and also like alg. ops.)

‚ await xV y until xxy in N ⇝ NrV {xs

‚ let y “ pawait V until xxy in Mq in N

⇝ await V until xxy in plet y “ M in Nq

‚ In contrast to earlier gadgets, await blocks its cont.’s execution !!!

λæ-calculus: awaiting

‚ Enables programmers to selectively block execution

TyComp-Await

Γ $ V : xX y Γ, x :X $ N : Y ! po, ιq

Γ $ await V until xxy in N : Y ! po, ιq

‚ Behaves like pattern-matching (and also like alg. ops.)

‚ await xV y until xxy in N ⇝ NrV {xs

‚ let y “ pawait V until xxy in Mq in N

⇝ await V until xxy in plet y “ M in Nq

‚ In contrast to earlier gadgets, await blocks its cont.’s execution !!!

λæ-calculus: environment

‚ We model the environment by running computations in parallel

P ,Q ::“ run M | P || Q | Ò op pV ,Pq | Ó op pW ,Pq

‚ Small-step operational semantics P ⇝ Q: congruence rules +

‚ run pÒ op pV ,Mqq⇝ Ò op pV , run Mq

‚ pÒ op pV ,Pqq || Q ⇝ Ò op pV , pP || Ó op pV ,Qqqq (broadcast)

‚ P || pÒ op pV ,Qqq⇝ Ò op pV , pÓ op pV ,Pq || Qqq (broadcast)

‚ Ó op pW , run Mq⇝ run pÓ op pW ,Mqq

‚ . . .

λæ-calculus: environment

‚ We model the environment by running computations in parallel

P ,Q ::“ run M | P || Q | Ò op pV ,Pq | Ó op pW ,Pq

‚ Small-step operational semantics P ⇝ Q: congruence rules +

‚ run pÒ op pV ,Mqq⇝ Ò op pV , run Mq

‚ pÒ op pV ,Pqq || Q ⇝ Ò op pV , pP || Ó op pV ,Qqqq (broadcast)

‚ P || pÒ op pV ,Qqq⇝ Ò op pV , pÓ op pV ,Pq || Qqq (broadcast)

‚ Ó op pW , run Mq⇝ run pÓ op pW ,Mqq

‚ . . .

λæ-calculus: environment

‚ We model the environment by running computations in parallel

P ,Q ::“ run M | P || Q | Ò op pV ,Pq | Ó op pW ,Pq

‚ Small-step operational semantics P ⇝ Q: congruence rules +

‚ run pÒ op pV ,Mqq⇝ Ò op pV , run Mq

‚ pÒ op pV ,Pqq || Q ⇝ Ò op pV , pP || Ó op pV ,Qqqq (broadcast)

‚ P || pÒ op pV ,Qqq⇝ Ò op pV , pÓ op pV ,Pq || Qqq (broadcast)

‚ Ó op pW , run Mq⇝ run pÓ op pW ,Mqq

‚ . . .

λæ-calculus: environment

‚ We model the environment by running computations in parallel

P ,Q ::“ run M | P || Q | Ò op pV ,Pq | Ó op pW ,Pq

‚ Small-step operational semantics P ⇝ Q: congruence rules +

‚ run pÒ op pV ,Mqq⇝ Ò op pV , run Mq

‚ pÒ op pV ,Pqq || Q ⇝ Ò op pV , pP || Ó op pV ,Qqqq (broadcast)

‚ P || pÒ op pV ,Qqq⇝ Ò op pV , pÓ op pV ,Pq || Qqq (broadcast)

‚ Ó op pW , run Mq⇝ run pÓ op pW ,Mqq

‚ . . .

λæ-calculus: environment

‚ Compared to POPL’21, modal types give us a type-safe spawn

M ,N ::“ ¨ ¨ ¨
ˇ

ˇ spawn pM ,Nq

Ty-Comp-Spawn

Γ,� $ M : X ! po 1, ι1q Γ $ N : Y ! po, ιq

Γ $ spawn pM,Nq : Y ! po, ιq

‚ Operationally propagates outwards (like a scoped alg. op.)

‚ let x “
`

spawn pM1,M2q
˘

in N ⇝ spawn pM1, let x “ M2 in Nq

‚ also propagates through promises, where � provides type-safety

‚ Eventually gives rise to a new parallel process

‚ run pspawn pM,Nqq⇝ run M || run N

‚ Importantly, does not block its continuation !!!

λæ-calculus: environment

‚ Compared to POPL’21, modal types give us a type-safe spawn

M ,N ::“ ¨ ¨ ¨
ˇ

ˇ spawn pM ,Nq

Ty-Comp-Spawn

Γ,� $ M : X ! po 1, ι1q Γ $ N : Y ! po, ιq

Γ $ spawn pM,Nq : Y ! po, ιq

‚ Operationally propagates outwards (like a scoped alg. op.)

‚ let x “
`

spawn pM1,M2q
˘

in N ⇝ spawn pM1, let x “ M2 in Nq

‚ also propagates through promises, where � provides type-safety

‚ Eventually gives rise to a new parallel process

‚ run pspawn pM,Nqq⇝ run M || run N

‚ Importantly, does not block its continuation !!!

λæ-calculus: environment

‚ Compared to POPL’21, modal types give us a type-safe spawn

M ,N ::“ ¨ ¨ ¨
ˇ

ˇ spawn pM ,Nq

Ty-Comp-Spawn

Γ,� $ M : X ! po 1, ι1q Γ $ N : Y ! po, ιq

Γ $ spawn pM,Nq : Y ! po, ιq

‚ Operationally propagates outwards (like a scoped alg. op.)

‚ let x “
`

spawn pM1,M2q
˘

in N ⇝ spawn pM1, let x “ M2 in Nq

‚ also propagates through promises, where � provides type-safety

‚ Eventually gives rise to a new parallel process

‚ run pspawn pM,Nqq⇝ run M || run N

‚ Importantly, does not block its continuation !!!

λæ-calculus: environment

‚ Compared to POPL’21, modal types give us a type-safe spawn

M ,N ::“ ¨ ¨ ¨
ˇ

ˇ spawn pM ,Nq

Ty-Comp-Spawn

Γ,� $ M : X ! po 1, ι1q Γ $ N : Y ! po, ιq

Γ $ spawn pM,Nq : Y ! po, ιq

‚ Operationally propagates outwards (like a scoped alg. op.)

‚ let x “
`

spawn pM1,M2q
˘

in N ⇝ spawn pM1, let x “ M2 in Nq

‚ also propagates through promises, where � provides type-safety

‚ Eventually gives rise to a new parallel process

‚ run pspawn pM,Nqq⇝ run M || run N

‚ Importantly, does not block its continuation !!!

Examples

Examples

‚ Multi-party web application

‚ Remote function call execution

‚ (Simulating) cancellations of remote function calls

‚ Preemptive multi-threading

‚ Parallel variant of runners of algebraic effects

‚ Non-blocking post-processing of promised values

‚ . . .

Example: implementing algebraic ops.

‚ Algebraic operations op pV , y .Mq are implemented at call site as

Ò op-req
`

V , promise pop-resp y ÞÑ return xyyq as p in

await p until xyy in M
˘

‚ The corresponding implementation using a recursively defined
interrupt handler for op-req interrupt (in some other process)

promise pop-req x r ÞÑ let y “ M in

Ò op-resp py , r pqq

q as p in return p

‚ The interaction happens then via parallel composition

Mcall-site || Mop-implementation

Example: implementing algebraic ops.

‚ Algebraic operations op pV , y .Mq are implemented at call site as

Ò op-req
`

V , promise pop-resp y ÞÑ return xyyq as p in

await p until xyy in M
˘

‚ The corresponding implementation using a recursively defined
interrupt handler for op-req interrupt (in some other process)

promise pop-req x r ÞÑ let y “ M in

Ò op-resp py , r pqq

q as p in return p

‚ The interaction happens then via parallel composition

Mcall-site || Mop-implementation

Example: implementing algebraic ops.

‚ Algebraic operations op pV , y .Mq are implemented at call site as

Ò op-req
`

V , promise pop-resp y ÞÑ return xyyq as p in

await p until xyy in M
˘

‚ The corresponding implementation using a recursively defined
interrupt handler for op-req interrupt (in some other process)

promise pop-req x r ÞÑ let y “ M in

Ò op-resp py , r pqq

q as p in return p

‚ The interaction happens then via parallel composition

Mcall-site || Mop-implementation

Example: preemptive multi-threading
‚ We consider two interrupts: stop : 1 and go : 1

‚ We define the following recursively defined interrupt handler

let waitForStop () =

promise (stop r ÞÑ

promise (go ÞÑ return x()y) as p in

await p until x y in r ()

) as p' in return p'

‚ We initialise the preemtive behaviour by running

waitForStop (); comp

‚ Then Ó stop ppq,waitForStoppq; compq

⇝˚ Ó stop ppq,waitForStoppq; comp1q

⇝˚ Ó stop ppq, promise pstop r ÞÑ . . .q as p1 in comp1q

⇝ promise pgo ÞÑ return xpqyq as p in

await p until x y in

promise pstop r ÞÑ . . .q as p1 in Ó stop ppq, comp1q

Example: preemptive multi-threading
‚ We consider two interrupts: stop : 1 and go : 1

‚ We define the following recursively defined interrupt handler

let waitForStop () =

promise (stop r ÞÑ

promise (go ÞÑ return x()y) as p in

await p until x y in r ()

) as p' in return p'

‚ We initialise the preemtive behaviour by running

waitForStop (); comp

‚ Then Ó stop ppq,waitForStoppq; compq

⇝˚ Ó stop ppq,waitForStoppq; comp1q

⇝˚ Ó stop ppq, promise pstop r ÞÑ . . .q as p1 in comp1q

⇝ promise pgo ÞÑ return xpqyq as p in

await p until x y in

promise pstop r ÞÑ . . .q as p1 in Ó stop ppq, comp1q

Example: preemptive multi-threading
‚ We consider two interrupts: stop : 1 and go : 1

‚ We define the following recursively defined interrupt handler

let waitForStop () =

promise (stop r ÞÑ

promise (go ÞÑ return x()y) as p in

await p until x y in r ()

) as p' in return p'

‚ We initialise the preemtive behaviour by running

waitForStop (); comp

‚ Then Ó stop ppq,waitForStoppq; compq

⇝˚ Ó stop ppq,waitForStoppq; comp1q

⇝˚ Ó stop ppq, promise pstop r ÞÑ . . .q as p1 in comp1q

⇝ promise pgo ÞÑ return xpqyq as p in

await p until x y in

promise pstop r ÞÑ . . .q as p1 in Ó stop ppq, comp1q

Example: preemptive multi-threading
‚ We consider two interrupts: stop : 1 and go : 1

‚ We define the following recursively defined interrupt handler

let waitForStop () =

promise (stop r ÞÑ

promise (go ÞÑ return x()y) as p in

await p until x y in r ()

) as p' in return p'

‚ We initialise the preemtive behaviour by running

waitForStop (); comp

‚ Then Ó stop ppq,waitForStoppq; compq

⇝˚ Ó stop ppq,waitForStoppq; comp1q

⇝˚ Ó stop ppq, promise pstop r ÞÑ . . .q as p1 in comp1q

⇝ promise pgo ÞÑ return xpqyq as p in

await p until x y in

promise pstop r ÞÑ . . .q as p1 in Ó stop ppq, comp1q

Example: preemptive multi-threading
‚ We consider two interrupts: stop : 1 and go : 1

‚ We define the following recursively defined interrupt handler

let waitForStop () =

promise (stop r ÞÑ

promise (go ÞÑ return x()y) as p in

await p until x y in r ()

) as p' in return p'

‚ We initialise the preemtive behaviour by running

waitForStop (); comp

‚ Then Ó stop ppq,waitForStoppq; compq

⇝˚ Ó stop ppq,waitForStoppq; comp1q

⇝˚ Ó stop ppq, promise pstop r ÞÑ . . .q as p1 in comp1q

⇝ promise pgo ÞÑ return xpqyq as p in

await p until x y in

promise pstop r ÞÑ . . .q as p1 in Ó stop ppq, comp1q

Example: preemptive multi-threading
‚ We consider two interrupts: stop : 1 and go : 1

‚ We define the following recursively defined interrupt handler

let waitForStop () =

promise (stop r ÞÑ

promise (go ÞÑ return x()y) as p in

await p until x y in r ()

) as p' in return p'

‚ We initialise the preemtive behaviour by running

waitForStop (); comp

‚ Then Ó stop ppq,waitForStoppq; compq

⇝˚ Ó stop ppq,waitForStoppq; comp1q

⇝˚ Ó stop ppq, promise pstop r ÞÑ . . .q as p1 in comp1q

⇝ promise pgo ÞÑ return xpqyq as p in

await p until x y in

promise pstop r ÞÑ . . .q as p1 in Ó stop ppq, comp1q

Example: preemptive multi-threading
‚ We consider two interrupts: stop : 1 and go : 1

‚ We define the following recursively defined interrupt handler

let waitForStop () =

promise (stop r ÞÑ

promise (go ÞÑ return x()y) as p in

await p until x y in r ()

) as p' in return p'

‚ We initialise the preemtive behaviour by running

waitForStop (); comp

‚ Then Ó stop ppq,waitForStoppq; compq

⇝˚ Ó stop ppq,waitForStoppq; comp1q

⇝˚ Ó stop ppq, promise pstop r ÞÑ . . .q as p1 in comp1q

⇝ promise pgo ÞÑ return xpqyq as p in

await p until x y in

promise pstop r ÞÑ . . .q as p1 in Ó stop ppq, comp1q

Example: post-processing promised values

‚ As syntactic sugar (relies on propagating signals into conts.)

processop p with (xxy ÞÑ comp) as q in cont

=

promise (op ÞÑ await p until xxy in

let y = comp in

return xyy) as q in cont

‚ E.g., we can then post-process a promised list in non-blocking way

promise (op x ÞÑ original interrupt handler) as p in

...

processop p with (xisy ÞÑ filter (fun i ÞÑ i > 0) is) as q in

processop q with (xjsy ÞÑ fold (fun j j' ÞÑ j ∗ j') 1 js) as r in

processop r with (xky ÞÑ Ò productOfPositiveElements k) as in

...

Example: post-processing promised values

‚ As syntactic sugar (relies on propagating signals into conts.)

processop p with (xxy ÞÑ comp) as q in cont

=

promise (op ÞÑ await p until xxy in

let y = comp in

return xyy) as q in cont

‚ E.g., we can then post-process a promised list in non-blocking way

promise (op x ÞÑ original interrupt handler) as p in

...

processop p with (xisy ÞÑ filter (fun i ÞÑ i > 0) is) as q in

processop q with (xjsy ÞÑ fold (fun j j' ÞÑ j ∗ j') 1 js) as r in

processop r with (xky ÞÑ Ò productOfPositiveElements k) as in

...

Æff web interface

https://matija.pretnar.info/aeff/

https://matija.pretnar.info/aeff/

Conclusion

Conclusion
‚ λæ: a core calculus for asynchronous algebraic effects

‚ based on decoupling the execution of alg. operation calls

‚ teaches us that preemptive behaviour = interrupts = eff. handling

‚ more details in the papers and Agda formalisations

‚ Some ongoing work on λæ’s denotational semantics

‚ requires factorisation of morphisms xX y ÝÑ A through 1

‚ presheaf categories give a suitable playground

‚ signals, promises, awaits as alg. ops. / interrupts as handling

‚ Some ongoing work on λæ’s normalisation (JJ-lifting style)

‚ seq. part with non-reinstallable int. handlers ✓

‚ par. part with non-reinstallable int. handlers (maybe ✓)

‚ seq. part with reinstallable int. handlers (naively ✗, but hope ✓)

‚ par. part with reinstallable int. handlers ✗

Conclusion
‚ λæ: a core calculus for asynchronous algebraic effects

‚ based on decoupling the execution of alg. operation calls

‚ teaches us that preemptive behaviour = interrupts = eff. handling

‚ more details in the papers and Agda formalisations

‚ Some ongoing work on λæ’s denotational semantics

‚ requires factorisation of morphisms xX y ÝÑ A through 1

‚ presheaf categories give a suitable playground

‚ signals, promises, awaits as alg. ops. / interrupts as handling

‚ Some ongoing work on λæ’s normalisation (JJ-lifting style)

‚ seq. part with non-reinstallable int. handlers ✓

‚ par. part with non-reinstallable int. handlers (maybe ✓)

‚ seq. part with reinstallable int. handlers (naively ✗, but hope ✓)

‚ par. part with reinstallable int. handlers ✗

Conclusion
‚ λæ: a core calculus for asynchronous algebraic effects

‚ based on decoupling the execution of alg. operation calls

‚ teaches us that preemptive behaviour = interrupts = eff. handling

‚ more details in the papers and Agda formalisations

‚ Some ongoing work on λæ’s denotational semantics

‚ requires factorisation of morphisms xX y ÝÑ A through 1

‚ presheaf categories give a suitable playground

‚ signals, promises, awaits as alg. ops. / interrupts as handling

‚ Some ongoing work on λæ’s normalisation (JJ-lifting style)

‚ seq. part with non-reinstallable int. handlers ✓

‚ par. part with non-reinstallable int. handlers (maybe ✓)

‚ seq. part with reinstallable int. handlers (naively ✗, but hope ✓)

‚ par. part with reinstallable int. handlers ✗

asynchronous operation calls

=

signals + interrupts + interrupt handlers

(unary (effect (scoped ops. +

ops.) handling) modalities)

