
Dynamic threads via algebraic effects

Cristina Matache†

joint work with Ohad Kammar, Jack Liell-Cock, Sam Lindley, and Sam Staton

†University of Edinburgh

1/23



Introduction

Goal
Denotational semantics for concurrency where new threads can be
created dynamically. E.g. POSIX fork.

Main idea: think of fork as an algebraic effect.

We use strong monads [Moggi’91] and algebraic theories [Plotkin&Power] for
semantics:

▶ Use algebraic laws to reason about programs.
▶ Potentially more easily combine with other effects [Hyland, Plotkin, Power’02].

We use an extension called parameterized algebraic theories [Staton’13].

2/23



Outline

1 Introduction to dynamic threads

2 An algebraic theory of dynamic threads

3 Graphical interpretation of terms

4 Thinking about the algebraic theory graphically

3/23



Effects we want to model

fork : unit → tid+ unit wait : tid → unit stop : unit → empty

actσ : unit → unit

tid base type of thread IDs; only introduced by fork

fork() spawns new child thread, copying the parent’s continuation;
can check whether parent or child by looking at result of fork

wait(a) the current thread waits for thread a to finish

stop() end current thread, unblocks all threads waiting for it

actσ() performs observable action σ immediately
4/23



Effects we want to model

fork : unit → tid+ unit wait : tid → unit stop : unit → empty

actσ : unit → unit

▶ A much simplified version of POSIX fork and wait.

▶ We consider a fine-grain call-by-value lambda calculus with these
effectful operations.

▶ Operational semantics based on pools of threads.

5/23



Example closed programs

Can be understood as a partial order labelled by observable actions
(pomset).

let y = fork() in case y of {inj1(a) ⇒ actσ1(); stop(),

inj2() ⇒ actσ2(); stop()} σ1 σ2

s

let y = fork() in case y of {inj1(a) ⇒ wait(a); actσ1(); stop(),

inj2() ⇒ actσ2(); stop()} σ1

σ2

s

6/23



Example closed programs

let y = fork() in case
(
actτ (); y

)
of { inj1(a) ⇒ wait(a); actσ1(); stop(),

inj2() ⇒ actσ2(); stop()}

σ1

σ2

ττ

s

let y = fork() in case y

of { inj1(a) ⇒ wait(a); actσ1(); stop(),

inj2() ⇒ actσ2(); stop()}; actτ ()

σ1

σ2

s

Axiomatize fork, wait, stop, actσ with 9 equations.
7/23



Outline

1 Introduction to dynamic threads

2 An algebraic theory of dynamic threads

3 Graphical interpretation of terms

4 Thinking about the algebraic theory graphically

8/23



Generic effects vs algebraic operations

tid type of compound thread IDs, with a semilattice structure: e.g. a⊕ b, 0

Given op : A → B, the algebraic operation op takes a value of type A and B

continuations.
wait(u; x) wait : tid → unit

u is a compound thread ID; wait on all threads in u, continue as x
fork(a.x(a), y) fork : unit → tid+ unit

a is the thread ID of y; fork returns a non-compound thread ID a, bound in x

stop stop : unit → empty

has no continuation
actσ(x) actσ : unit → unit

performs action σ and continues as x 9/23



Example closed programs using algebraic operations

let y = fork() in case y of {inj1(a) ⇒ wait(a); actσ1(); stop(),

inj2() ⇒ actσ2(); stop()}

fork
(
a.wait(a; actσ1(stop)), actσ2(stop)

)
σ1

σ2

s

let y = fork() in case
(
actτ (); y

)
of { inj1(a) ⇒ wait(a); actσ1(); stop(),

inj2() ⇒ actσ2(); stop()}

σ1

σ2

ττ

s

fork
(
a.actτ (wait(a; actσ1(stop))), actτ (actσ2(stop))

)
10/23



Algebraic theory

Interaction ofwaitwith the semilattice
structure of thread IDs.

wait(0; x) = x (1)
wait(a;wait(b; x)) = wait(a⊕ b; x) (2)
wait(a; x(b)) = wait(a; x(a⊕ b)) (3)

The term wait(a; stop) acts as a unit
for fork.

fork(a.wait(a; stop), x) = x (4)
fork(b.x(b),wait(a; stop)) = x(a) (5)

Operations wait and fork commute; fork is commutative and associative.

wait(b; fork(a.x(a), y)) = fork(a.wait(b; x(a)), wait(b; y)) (6)
fork(a.fork(b.x(a, b), y), z) = fork(b.fork(a.x(a, b), z), y) (7)
fork(a.x(a), fork(b.y(b), z)) = fork(b.fork(a.x(a), y(b)), z) (8)
actσ(x) = fork(a.wait(a, x), actσ(stop)) (9) 11/23



Outline

1 Introduction to dynamic threads

2 An algebraic theory of dynamic threads

3 Graphical interpretation of terms

4 Thinking about the algebraic theory graphically

12/23



Labelled partial orders with holes

So far we only represented closed terms:

fork
(
a.wait(a; actσ1(stop)), actσ2(stop)

)

fork
(
a.actτ (wait(a; actσ1(stop))), actτ (actσ2(stop))

)
What about terms with free variables (i.e. continuations)
and free tid’s?
E.g. a ⊢ fork(b.wait(a; x(b)), actτ (stop))

σ1

σ2

s

σ1

σ2

ττ

s

13/23



Labelled partial orders with holes

stop x wait(a; x) actσ(x) fork(a.x(a), y)

s s

x

s

x

a

s

x

σ

s

x
y

a, b ⊢ wait(a; stop) a, b ⊢ x(b) a ⊢ fork(b.wait(a; x(b)), actτ (stop))

s

a b

s

x

a b

s

x

a τ

The (non-compound) free thread ID’s a, b are always minimal. 14/23



Substitution of another partial order for a hole (monadic bind)

In the term
a ⊢ fork

(
b.wait(a; x(b)), actτ (stop)

)
substitute for x(b) the term

a, b ⊢ wait(b; actσ(stop))

to get
a ⊢ fork

(
b.wait(a; wait(b; actσ(stop))), actτ (stop)

)
s

x

a τ


s

a b

σ

/
x(b)

 =

s

a τ

σ

15/23



Outline

1 Introduction to dynamic threads

2 An algebraic theory of dynamic threads

3 Graphical interpretation of terms

4 Thinking about the algebraic theory graphically

16/23



Algebraic theory

Interaction ofwaitwith the semilattice
structure of thread IDs.

wait(0; x) = x (1)
wait(a;wait(b; x)) = wait(a⊕ b; x) (2)
wait(a; x(b)) = wait(a; x(a⊕ b)) (3)

The term wait(a; stop) acts as a unit
for fork.

fork(a.wait(a; stop), x) = x (4)
fork(b.x(b),wait(a; stop)) = x(a) (5)

Operations wait and fork commute; fork is commutative and associative.

wait(b; fork(a.x(a), y)) = fork(a.wait(b; x(a)), wait(b; y)) (6)
fork(a.fork(b.x(a, b), y), z) = fork(b.fork(a.x(a, b), z), y) (7)
fork(a.x(a), fork(b.y(b), z)) = fork(b.fork(a.x(a), y(b)), z) (8)
actσ(x) = fork(a.wait(a, x), actσ(stop)) (9) 17/23



Graphical representation of equations in the algebraic theory

stop x wait(a; x) actσ(x) fork(a.x(a), y)

s s

x

s

x

a

s

x

σ

s

x
y

fork(a.wait(a; stop), x) = x (4)

fork

 s

a
,

s

x

 =
s

x

fork(b.x(b),wait(a; stop)) = x(a) (5)

fork


s

x

b

,

s

a

 =

s

x

a
18/23



Graphical representation of equations in the algebraic theory

stop x wait(a; x) actσ(x) fork(a.x(a), y)

s s

x

s

x

a

s

x

σ

s

x
y

fork(a.x(a), fork(b.y(b), z)) = fork(b.fork(a.x(a), y(b)), z) (8)

fork


s

x

a

, fork


s

b

y ,

s

z


 = fork

fork


s

x

a

,

s

b

y

 ,

s

z

 =

s

x

y

z
19/23



Graphical representation of equations in the algebraic theory

stop x wait(a; x) actσ(x) fork(a.x(a), y)

s s

x

s

x

a

s

x

σ

s

x
y

actσ(x) = fork(a.wait(a, x), actσ(stop)) (9)

s

x

σ

= fork


s

x

a

,

s

σ


20/23



Graphical representation of equations in the algebraic theory

stop x wait(a; x) actσ(x) fork(a.x(a), y)

s s

x

s

x

a

s

x

σ

s

x
y

wait(a; x(b)) = wait(a; x(a⊕ b)) (3)
s

x

a b

=

s

x

a b

The solid line absorbs the dotted line.
21/23



Main results

Theorem
Labelled partial orders with holes (lpoh) correspond exactly to terms in
the algebraic theory. Equality of such partial orders is sound and
complete w.r.t. equality in the algebraic theory.

Theorem (Syntactic Completeness)
If two labelled partial orders with holes (lpoh) are equal for all closing
substitutions (i.e. as ordinary labelled partial orders) then they are equal.

Denotational semantics for the PL using the monad of lpoh’s:
Denotational equality is sound for proving contextual equivalence, and
fully abstract for first-order programs.

22/23



Summary and future work

▶ An algebraic theory that axiomatizes fork and wait.
▶ The algebraic theory induces a monad used for denotational

semantics.
▶ We can think of programs as partial orders with labels. Reason about

partial orders to show equivalence of programs.

Future work:

▶ Passing values from child to parent: stop : A → empty, wait : tid → A.
▶ Combine with shared state.
▶ Explore alternative semantics for fork and wait.

23/23


	Introduction to dynamic threads
	An algebraic theory of dynamic threads
	Graphical interpretation of terms
	Thinking about the algebraic theory graphically

