Dynamic threads via algebraic effects

Cristina Matache[†] joint work with Ohad Kammar, Jack Liell-Cock, Sam Lindley, and Sam Staton

†University of Edinburgh

Introduction

Goal

Denotational semantics for **concurrency** where new threads can be created dynamically. E.g. POSIX **fork**.

Main idea: think of fork as an algebraic effect.

We use strong monads [Moggi'91] and algebraic theories [Plotkin&Power] for semantics:

- ▶ Use algebraic laws to reason about programs.
- ▶ Potentially more easily combine with other effects [Hyland, Plotkin, Power'02].

We use an extension called parameterized algebraic theories [Staton'13].

Outline

- 1 Introduction to dynamic threads
- 2 An algebraic theory of dynamic threads
- 3 Graphical interpretation of terms
- 4 Thinking about the algebraic theory graphically

Effects we want to model

```
fork : unit \rightarrow tid + unit
                                     wait : tid \rightarrow unit
                                                               stop: unit \rightarrow empty
                                  \mathsf{act}_{\sigma} : \mathsf{unit} \to \mathsf{unit}
tid
           base type of thread IDs; only introduced by fork
           spawns new child thread, copying the parent's continuation:
fork()
           can check whether parent or child by looking at result of fork
           the current thread waits for thread a to finish
wait(a)
           end current thread, unblocks all threads waiting for it
stop()
           performs observable action \sigma immediately
act_{\sigma}()
```

Effects we want to model

```
\frac{\mathsf{fork}:\mathsf{unit}\to\mathsf{tid}+\mathsf{unit}}{\mathsf{wait}:\mathsf{tid}}\to\mathsf{unit}\qquad \qquad \underline{\mathsf{stop}}:\mathsf{unit}\to\mathsf{empty} \underline{\mathsf{act}}_\sigma:\mathsf{unit}\to\mathsf{unit}
```

- ► A much simplified version of POSIX **fork** and **wait**.
- ► We consider a fine-grain call-by-value lambda calculus with these effectful operations.
- ▶ Operational semantics based on pools of threads.

Example closed programs

Can be understood as a **partial order labelled** by observable actions (pomset).

Example closed programs

$$\begin{split} \operatorname{let} y &= \underline{\operatorname{fork}}() \operatorname{in} \operatorname{case} \left(\underline{\operatorname{act}}_{\tau}(); y \right) \\ & \quad \operatorname{of} \left\{ \begin{array}{l} \operatorname{inj}_{1}(a) \Rightarrow \underline{\operatorname{wait}}(a); \underline{\operatorname{act}}_{\sigma_{1}}(); \underline{\operatorname{stop}}(), \\ & \quad \operatorname{inj}_{2}() \Rightarrow \underline{\operatorname{act}}_{\sigma_{2}}(); \underline{\operatorname{stop}}() \right\} \end{split}$$

$$au_1 \ au_2 \ au_7 \ au_$$

```
\begin{split} \det y &= \underline{\mathsf{fork}}() \ \mathsf{in} \ \mathsf{case} \ y \\ &\quad \mathsf{of} \ \{ \ \mathsf{inj}_1(a) \Rightarrow \underline{\mathsf{wait}}(a); \underline{\mathsf{act}}_{\sigma_1}(); \underline{\mathsf{stop}}(), \\ &\quad \mathsf{inj}_2() \Rightarrow \underline{\mathsf{act}}_{\sigma_2}(); \underline{\mathsf{stop}}() \}; \underline{\mathsf{act}}_{\tau}() \end{split}
```

$$\sigma_1 \ \sigma_2$$

Axiomatize <u>fork</u>, <u>wait</u>, <u>stop</u>, <u>act</u> $_{\sigma}$ with 9 equations.

Outline

- Introduction to dynamic threads
- 2 An algebraic theory of dynamic threads
- 3 Graphical interpretation of terms
- 4 Thinking about the algebraic theory graphically

Generic effects vs algebraic operations

tid type of compound thread IDs, with a semilattice structure: e.g. $a\oplus b$, 0

Given $\underline{op}: A \to B$, the algebraic operation op takes a value of type A and B continuations.

```
wait(u; x) wait: tid \rightarrow unit
\boldsymbol{u} is a compound thread ID: wait on all threads in \boldsymbol{u}, continue as x
fork(a.x(a), y) fork: unit \rightarrow tid + unit
<u>a</u> is the thread ID of y; fork returns a non-compound thread ID <u>a</u>, bound in x
                          stop: unit \rightarrow empty
stop
has no continuation
           \mathsf{act}_\sigma:\mathsf{unit} 	o \mathsf{unit}
act_{\sigma}(x)
performs action \sigma and continues as x
```

9/23

Example closed programs using algebraic operations

```
let y = \underline{\mathsf{fork}}() in case y of \{\mathsf{inj}_1(a) \Rightarrow \underline{\mathsf{wait}}(a); \underline{\mathsf{act}}_{\sigma_1}(); \underline{\mathsf{stop}}(),
                                                ini_2() \Rightarrow act_{\sigma_2}(); stop()
               fork(a.wait(a; act_{\sigma_1}(stop)), act_{\sigma_2}(stop))
let y = fork() in case (act_{\tau}(); y)
                             of \{ inj_1(a) \Rightarrow wait(a); act_{\sigma_1}(); stop(), \}
                                      ini_2() \Rightarrow act_{\sigma_2}(); stop()
                           fork(a.act_{\tau}(wait(a; act_{\sigma_1}(stop))), act_{\tau}(act_{\sigma_2}(stop)))
```

Algebraic theory

Interaction of wait with the semilattice The term wait(a; stop) acts as a unit structure of thread IDs. for fork.

```
wait(0; x) = x  (1) fork(a.wait(a; stop), x) = x  (4) wait(a; wait(b; x)) = wait(a \oplus b; x)  (2) fork(b.x(b), wait(a; stop)) = x(a)  (5) wait(a; x(b)) = wait(a; x(a \oplus b))  (3)
```

Operations wait and fork commute; fork is commutative and associative.

```
wait(b; fork(a.x(a), y)) = fork(a.wait(b; x(a)), wait(b; y)) 
fork(a.fork(b.x(a, b), y), z) = fork(b.fork(a.x(a, b), z), y) 
fork(a.x(a), fork(b.y(b), z)) = fork(b.fork(a.x(a), y(b)), z) 
act_{\sigma}(x) = fork(a.wait(a, x), act_{\sigma}(stop)) 
(6)
(7)
(8)
(9)
(9)
```

Outline

- 1 Introduction to dynamic threads
- 2 An algebraic theory of dynamic threads
- 3 Graphical interpretation of terms
- 4 Thinking about the algebraic theory graphically

Labelled partial orders with holes

So far we only represented closed terms:

```
\mathsf{fork}\big( {\color{red}a.\mathsf{wait}}({\color{red}a};\,\mathsf{act}_{\sigma_1}(\mathsf{stop})),\;\mathsf{act}_{\sigma_2}(\mathsf{stop}) \big)
```

```
\mathsf{fork}\big( \textcolor{red}{a}.\mathsf{act}_\tau(\mathsf{wait}(\textcolor{red}{a};\,\mathsf{act}_{\sigma_1}(\mathsf{stop}))),\;\mathsf{act}_\tau(\mathsf{act}_{\sigma_2}(\mathsf{stop})) \big)
```

What about terms with free variables (i.e. continuations) and free tid's?

```
E.g. a \vdash fork(b.wait(a; x(b)), act_{\tau}(stop))
```


Labelled partial orders with holes

$$a, b \vdash \mathsf{wait}(a; \mathsf{stop})$$
 $a, b \vdash x(b)$ $a \vdash \mathsf{fork}(b.\mathsf{wait}(a; x(b)), \mathsf{act}_{\tau}(\mathsf{stop}))$

The (non-compound) free thread ID's a, b are always minimal.

Substitution of another partial order for a hole (monadic bind)

In the term

$$a \vdash \mathsf{fork}(b.\mathsf{wait}(a; x(b)), \mathsf{act}_{\tau}(\mathsf{stop}))$$

substitute for x(b) the term

$$a, b \vdash \mathsf{wait}(b; \mathsf{act}_{\sigma}(\mathsf{stop}))$$

to get

$$a \vdash fork(b.wait(a; wait(b; act_{\sigma}(stop))), act_{\tau}(stop))$$

Outline

- Introduction to dynamic threads
- 2 An algebraic theory of dynamic threads
- 3 Graphical interpretation of terms
- Thinking about the algebraic theory graphically

Algebraic theory

Interaction of wait with the semilattice The term wait(a; stop) acts as a unit structure of thread IDs. for fork.

```
wait(0; x) = x  (1) fork(a.wait(a; stop), x) = x  (4) wait(a; wait(b; x)) = wait(a \oplus b; x)  (2) fork(b.x(b), wait(a; stop)) = x(a)  (5) wait(a; x(b)) = wait(a; x(a \oplus b))  (3)
```

Operations wait and fork commute; fork is commutative and associative.

```
wait(b; fork(a.x(a), y)) = fork(a.wait(b; x(a)), wait(b; y)) 
fork(a.fork(b.x(a, b), y), z) = fork(b.fork(a.x(a, b), z), y) 
fork(a.x(a), fork(b.y(b), z)) = fork(b.fork(a.x(a), y(b)), z) 
act_{\sigma}(x) = fork(a.wait(a, x), act_{\sigma}(stop)) 
(9)_{17}(a.wait(a, x), act_{\sigma}(stop))
```


$$fork(a.wait(a; stop), x) = x$$
 (4)

fork
$$\begin{pmatrix} s & s \\ 1 & 1 \\ a & x \end{pmatrix} = \begin{pmatrix} s \\ 1 \\ x \end{pmatrix}$$

$$fork(b.x(b), wait(a; stop)) = x(a)$$
 (5)

fork
$$\begin{pmatrix} \mathbf{s} & \mathbf{s} \\ \dot{x} & , & \\ \mathbf{b} & \mathbf{a} \end{pmatrix} = \begin{pmatrix} \mathbf{s} \\ \dot{x} \\ \mathbf{a} \end{pmatrix}$$

$$\begin{array}{|c|c|c|c|c|c|}\hline \mathsf{stop} & x & \mathsf{wait}(\pmb{a};\,x) & \mathsf{act}_\sigma(x) & \mathsf{fork}(\pmb{a}.x(\pmb{a}),\,y) \\ \mathsf{s} & \mathsf{s} & \mathsf{s} & \mathsf{s} \\ \hline & x & & x & & x \\ \hline & x & & \sigma & & & y \\ \hline \end{array}$$

$$\mathsf{fork}({\color{red}a}.x({\color{red}a}),\,\mathsf{fork}({\color{red}b}.y({\color{blue}b}),\,z)) = \mathsf{fork}({\color{blue}b}.\mathsf{fork}({\color{red}a}.x({\color{blue}a}),\,y({\color{blue}b})),\,z) \quad \text{(8)}$$

$$\operatorname{fork}\left(\begin{array}{c} \mathbf{s} \\ \vdots \\ a \end{array}, \, \operatorname{fork}\left(\begin{array}{c} \mathbf{s} \\ \vdots \\ b \end{array}, \, \begin{array}{c} \mathbf{s} \\ \vdots \\ a \end{array} \right) \right) \, = \, \operatorname{fork}\left(\operatorname{fork}\left(\begin{array}{c} \mathbf{s} \\ \vdots \\ a \end{array}, \begin{array}{c} \mathbf{s} \\ y \\ \vdots \\ a \end{array} \right) \, , \, \begin{array}{c} \mathbf{s} \\ \vdots \\ y \\ \vdots \\ z \end{array} \right) \, = \, \begin{array}{c} \mathbf{s} \\ \vdots \\ y \\ \vdots \\ z \end{array} \right)$$

$$\begin{array}{c}
\mathbf{s} \\
x \\
\sigma
\end{array} = \mathbf{fork} \begin{pmatrix}
\mathbf{s} \\
x \\
a
\end{pmatrix}, \quad \begin{vmatrix}
\mathbf{s} \\
a
\end{pmatrix}$$

$$\begin{array}{ccc}
s & s \\
x & a & b
\end{array}$$

The solid line absorbs the dotted line.

Main results

Theorem

Labelled partial orders with holes (lpoh) correspond exactly to terms in the algebraic theory. Equality of such partial orders is **sound and complete** w.r.t. equality in the algebraic theory.

Theorem (Syntactic Completeness)

If two labelled partial orders with holes (lpoh) are equal for all closing substitutions (i.e. as ordinary labelled partial orders) then they are equal.

Denotational semantics for the PL using the monad of lpoh's:

Denotational equality is **sound** for proving **contextual equivalence**, and fully abstract for first-order programs.

2/23

Summary and future work

- ► An algebraic theory that axiomatizes <u>fork</u> and <u>wait</u>.
- ► The algebraic theory induces a monad used for denotational semantics.
- ► We can think of programs as partial orders with labels. Reason about partial orders to show equivalence of programs.

Future work:

- ▶ Passing values from child to parent: $\underline{\mathsf{stop}} : A \to \mathsf{empty}, \, \underline{\mathsf{wait}} : \mathsf{tid} \to A.$
- ► Combine with shared state.
- ► Explore alternative semantics for <u>fork</u> and <u>wait</u>.