
01.Nov 2013

HUAWEI TECHNOLOGIES CO., LTD.

www.huawei

.com

Security Level：Internal

Programming Language Team in Edinburgh

Effect Handlers in Low-Level Languages
Challenges and Opportunities

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 2

Using effect handlers from C

◼ Why?

– Effect handlers provide: green threads, actors, generators, exceptions

– C: only modern language missing all of these features

– Therefore: C stands to benefit the most!

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 3

Using effect handlers from C

◼ Why?

– Effect handlers provide: green threads, actors, generators, exceptions

– C: only modern language missing all of these features

– Therefore: C stands to benefit the most!

◼ Ok, but why, really?

– Tons of C code in use at Huawei

– Many projects re-invent concurrency! (Coroutines/actors built on setjmp/longjmp)

– Main goal: use effect handlers to provide lightweight, modular concurrency features for C

– Main goal: effect handlers should be compatible with every C feature (stack stability)

– Main goal: effect handlers should be ergonomic to use by hand

– Non-goal: use effect handlers to structure effectful computation

– Non-goal (for now): statically enforce runtime safety

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 4

Stackful coroutines in C

◼ Offer coroutine support through libsegs library (currently closed-source)

◼ Prototype implementation in major compilers gcc & clang

◼ Compiler can provide extra support, optimizations & better syntax

◼ Small asm part needs to be ported to different architectures, rest is architecture-independent

◼ Effects = stackful coroutines + dynamic binding (corollary: C programmers are not scared)

Green: working
prototype available
Purple: proof of
concept available

C compiler

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 5

Coroutine API

◼ The coroutine is the fundamental abstraction of libsegs (no resumptions/continuations)

◼ The stack frame of any function executing inside the coroutine lives in the coroutine’s memory

◼ Once created, a coroutine may be resumed

◼ Inside a running coroutine, any function may yield and provide some information to the context

◼ Coroutines are thread-safe and can be sent between threads to achieve e.g. work-stealing

typedef struct { ... } coroutine_t;

typedef void *fun_t(coroutine_t *, void *);

coroutine_t *coroutine_new(start_fun_t *, void *);
coroutine_t *coroutine_new_sized(fun_t *, void *, size_t);
void coroutine_delete(coroutine_t *);

bool coroutine_init(coroutine_t *, fun_t *, void *);
bool coroutine_release(coroutine_t *);

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 6

Coroutine API

◼ The coroutine is the fundamental abstraction of libsegs (no resumptions/continuations)

◼ The stack frame of any function executing inside the coroutine lives in the coroutine’s memory

◼ Once created, a coroutine may be resumed

◼ Inside a running coroutine, any function may yield and provide some information to the context

◼ Coroutines are thread-safe and can be sent between threads to achieve e.g. work-stealing

typedef struct { ... } coroutine_t;

typedef void *fun_t(coroutine_t *, void *);

coroutine_t *coroutine_new(start_fun_t *, void *);
coroutine_t *coroutine_new_sized(fun_t *, void *, size_t);
void coroutine_delete(coroutine_t *);

bool coroutine_init(coroutine_t *, fun_t *, void *);
bool coroutine_release(coroutine_t *);

◼ Coroutine & stacklet can be dynamically allocated or programmer can provide memory block

◼ Implementation is untyped (input/return is void *)

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 7

Coroutine API

◼ The coroutine is the fundamental abstraction of libsegs (no resumptions/continuations)

◼ The stack frame of any function executing inside the coroutine lives in the coroutine’s memory

◼ Once created, a coroutine may be resumed

◼ Inside a running coroutine, any function may yield and provide some information to the context

◼ Coroutines are thread-safe and can be sent between threads to achieve e.g. work-stealing

void *segs_yield(coroutine_t *, void *);

void *segs_resume(coroutine_t *, void *);

typedef struct {

effect_id id;

void *payload;

} eff_t;

void *segs_perform(effect_id, void *);

eff_t *segs_handle(coroutine_t *, void *, effect_set);

◼ Handlers are shallow (technically sheep) – see example later

◼ Helper macros DEFINE_EFFECT, PERFORM, CASE_EFFECT buy us some type-safety/convenience

Coroutine-like API (similar to e.g. libco), can
yield to any “parent”coroutine (not checked)

Effect-like API: do not yield to specific
coroutine, instead search active coroutine stack

for installed handler

We use 64-bit bitsets for
effects, max 64 definable

effects

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 8

Coroutine lifetime

◼ The coroutine is the fundamental abstraction of libsegs

◼ The stack frame of any function executing inside the coroutine lives in the coroutine’s memory

◼ Once created, a coroutine may be resumed

◼ Inside a running coroutine, any function may yield and provide some information to the context

◼ Coroutines are thread-safe and can be sent between threads to achieve e.g. work-stealing

int64_t helper(segs_coroutine_t* self) {
return (int64_t)segs_yield(self, (void*)10);

}

void* function(segs_coroutine_t* self, void* arg) {
int64_t x = helper(self);
return (void*)(x + (int64_t)arg);

}

segs_coroutine_t *k = segs_coroutine_new(function, 0);
// Before call to resume
int64_t intermediate = (int64_t)segs_resume(k, NULL);
int64_t result = (int64_t)segs_resume(k, 2 * i);
segs_coroutine_delete(k);

Stack segment also contains header
with metadata (omitted)

The environment can pass some data
to the coroutine when resuming

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 9

Coroutine lifetime

◼ The coroutine is the fundamental abstraction of libsegs

◼ The stack frame of any function executing inside the coroutine lives in the coroutine’s memory

◼ Once created, a coroutine may be resumed

◼ Inside a running coroutine, any function may yield and provide some information to the context

◼ Coroutines are thread-safe and can be sent between threads to achieve e.g. work-stealing

int64_t helper(segs_coroutine_t* self) {
// Before call to yield
return (int64_t)segs_yield(self, (void*)10);

}

void* function(segs_coroutine_t* self, void* arg) {
int64_t x = helper(self);
return (void*)(x + (int64_t)arg);

}

segs_coroutine_t *k = segs_coroutine_new(function, 0);
int64_t intermediate = (int64_t)segs_resume(k, NULL);
int64_t result = (int64_t)segs_resume(k, 2 * i);
segs_coroutine_delete(k);

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 10

Coroutine lifetime

◼ The coroutine is the fundamental abstraction of libsegs

◼ The stack frame of any function executing inside the coroutine lives in the coroutine’s memory

◼ Once created, a coroutine may be resumed

◼ Inside a running coroutine, any function may yield and provide some information to the context

◼ Coroutines are thread-safe and can be sent between threads to achieve e.g. work-stealing

int64_t helper(segs_coroutine_t* self) {
return (int64_t)segs_yield(self, (void*)10);

}

void* function(segs_coroutine_t* self, void* arg) {
int64_t x = helper(self);
return (void*)(x + (int64_t)arg);

}

segs_coroutine_t *k = segs_coroutine_new(function, 0);
int64_t intermediate = (int64_t)segs_resume(k, NULL);
// After call to yield
int64_t result = (int64_t)segs_resume(k, 2 * i);
segs_coroutine_delete(k);

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 11

Coroutine lifetime

◼ The coroutine is the fundamental abstraction of libsegs

◼ The stack frame of any function executing inside the coroutine lives in the coroutine’s memory

◼ Once created, a coroutine may be resumed

◼ Inside a running coroutine, any function may yield and provide some information to the context

◼ Coroutines are thread-safe and can be sent between threads to achieve e.g. work-stealing

int64_t helper(segs_coroutine_t* self) {
return (int64_t)segs_yield(self, (void*)10);

}

void* function(segs_coroutine_t* self, void* arg) {
int64_t x = helper(self);
// After call to resume
return (void*)(x + (int64_t)arg);

}

segs_coroutine_t *k = segs_coroutine_new(function, 0);
int64_t intermediate = (int64_t)segs_resume(k, NULL);
int64_t result = (int64_t)segs_resume(k, 2 * i);
segs_coroutine_delete(k);

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 12

Coroutine lifetime

◼ The coroutine is the fundamental abstraction of libsegs

◼ The stack frame of any function executing inside the coroutine lives in the coroutine’s memory

◼ Once created, a coroutine may be resumed

◼ Inside a running coroutine, any function may yield and provide some information to the context

◼ Coroutines are thread-safe and can be sent between threads to achieve e.g. work-stealing

int64_t helper(segs_coroutine_t* self) {
return (int64_t)segs_yield(self, (void*)10);

}

void* function(segs_coroutine_t* self, void* arg) {
int64_t x = helper(self);
return (void*)(x + (int64_t)arg);

}

segs_coroutine_t *k = segs_coroutine_new(function, 7);
int64_t intermediate = (int64_t)segs_resume(k, NULL);
int64_t result = (int64_t)segs_resume(k, 2 * i);
// After return
segs_coroutine_delete(k);

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 18

Effect example

◼ Increase font size in emacs is C-x C-+

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 18

Scheduler interaction

◼ The coroutine is the fundamental abstraction of libsegs

◼ When yielding, a coroutine can make a request to the scheduler that resumed it

– E.g. it can request to fork a new coroutine, or wait until a certain device is ready

◼ When resuming a coroutine, the user can provide some extra data to fulfill the coroutine’s request

◼ We provide some auxiliary mechanisms to automatically yield to the context that can fulfill a request

– Segs_handle resumes a coroutine and promises it that certain requests can be handled by yielding back to this point

– PERFORM locates the point that can handle a given request and yields back to that point

void* coroutine_2(segs_coroutine_t* self, void* arg) {
PERFORM(sleep);
PERFORM(fork, coroutine_2);

}
void* coroutine_1(segs_coroutine_t* self, void* arg) {

...
k2 = segs_coroutine_new(coroutine_2, NULL);
segs_handle(k2, NULL, HANDLES(sleep));

}
...
k1 = segs_coroutine_new(coroutine_1, NULL);
segs_handle(k1, NULL, HANDLES(sleep) | HANDLES(fork));

User can make requests

using PERFORM macro

If coroutine_2 requests sleep, it
will yield to this point of the code

Multiple kinds of requests can be handled.
If coroutine_1 requests sleep or fork, it will yield
here.
If coroutine_2 requests fork, it will also yield
here

• PERFORM traverses the linked list of coroutines
looking for the one that can handle the request

• Only one context-switch is needed, can yield
directly to the handler

• Very similar to locating an exception handler
• It can be used to implement exceptions

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 19

Scheduler interaction

◼ The coroutine is the fundamental abstraction of libsegs

◼ When yielding, a coroutine can make a request to the scheduler that resumed it

– E.g. it can request to fork a new coroutine, or wait until a certain device is ready

◼ When resuming a coroutine, the user can provide some extra data to fulfill the coroutine’s request

◼ We provide some auxiliary mechanisms to automatically yield to the context that can fulfill a request

– Segs_handle resumes a coroutine and promises it that certain requests can be handled by yielding back to this point

– PERFORM locates the point that can handle a given request and yields back to that point

void* coroutine_2(segs_coroutine_t* self, void* arg) {
PERFORM(sleep);
PERFORM(fork, coroutine_2);

}
void* coroutine_1(segs_coroutine_t* self, void* arg) {

...
k2 = segs_coroutine_new(coroutine_2, NULL);
segs_handle(k2, NULL, HANDLES(sleep));

}
...
k1 = segs_coroutine_new(coroutine_1, NULL);
segs_handle(k1, NULL, HANDLES(sleep) | HANDLES(fork));

User can make requests

using PERFORM macro

If coroutine_2 requests sleep, it
will yield to this point of the code

Multiple kinds of requests can be handled.
If coroutine_1 requests sleep or fork, it will yield
here.
If coroutine_2 requests fork, it will also yield
here

• PERFORM traverses the linked list of coroutines
looking for the one that can handle the request

• Only one context-switch is needed, can yield
directly to the handler

• Very similar to locating an exception handler
• It can be used to implement exceptions

PERFORM(sleep) yields from coroutine_2

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 20

Scheduler interaction

◼ The coroutine is the fundamental abstraction of libsegs

◼ When yielding, a coroutine can make a request to the scheduler that resumed it

– E.g. it can request to fork a new coroutine, or wait until a certain device is ready

◼ When resuming a coroutine, the user can provide some extra data to fulfill the coroutine’s request

◼ We provide some auxiliary mechanisms to automatically yield to the context that can fulfill a request

– Segs_handle resumes a coroutine and promises it that certain requests can be handled by yielding back to this point

– PERFORM locates the point that can handle a given request and yields back to that point

void* coroutine_2(segs_coroutine_t* self, void* arg) {
PERFORM(sleep);
PERFORM(fork, coroutine_2);

}
void* coroutine_1(segs_coroutine_t* self, void* arg) {

...
k2 = segs_coroutine_new(coroutine_2, NULL);
segs_handle(k2, NULL, HANDLES(sleep));

}
...
k1 = segs_coroutine_new(coroutine_1, NULL);
segs_handle(k1, NULL, HANDLES(sleep) | HANDLES(fork));

User can make requests

using PERFORM macro

If coroutine_2 requests sleep, it
will yield to this point of the code

Multiple kinds of requests can be handled.
If coroutine_1 requests sleep or fork, it will yield
here.
If coroutine_2 requests fork, it will also yield
here

• PERFORM traverses the linked list of coroutines
looking for the one that can handle the request

• Only one context-switch is needed, can yield
directly to the handler

• Very similar to locating an exception handler
• It can be used to implement exceptions

PERFORM(fork) yields from coroutine_1

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 17

Stackful coroutines: an overview

◼ Commonly implemented with runtime support

– Lua (coroutines, built-in)

– Go (goroutines, built-in)

– Java (virtual threads, built-in since Java 19)

– C++ (Boost::Coroutine, implemented as a library)

– Rust (may, implemented as a library)

– Erlang (processes, built-in)

◼ Allocate entire stack (not just one frame) for coroutine

– Stack space can be allocated in heap, global memory, or anywhere

◼ All calls inside coroutine use coroutine stack

◼ Any function within the coroutine may yield

◼ Can use static-sized stacks or growable stacks

– Growable stacks need more runtime support

◼ No difference between sync/async functions

– All functions can call async functions

int k() { yield; return 1; }
int h() { yield; return k(); }
int g() { h(); }

void f() {
coroutine* coro = create_coroutine(g);

}

Coroutine

stack

System

stack

No distinction between
sync/async

https://www.boost.org/doc/libs/1_80_0/libs/coroutine/doc/html/index.html
https://github.com/Xudong-Huang/may

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 18

Stackless concurrency: an overview

◼ Commonly implemented via compiler transformation

– C++ (C++20 coroutines/libcoro)

– Rust

– Kotlin

– Swift

– Javascript

◼ Create single stack frame for coroutine

– Frame can be allocated anywhere

– Function is transformed into state machine

◼ Calls inside coroutine use system stack

◼ Can only yield from top-level function

– Can yield from nested coroutine with special await syntax

– Without complex optimizations, nesting coroutines can be very

expensive! (one allocation per coroutine call, chaining yields…)

◼ Async functions are special

– E.g. cannot be used as function pointers

int k() { yield; return 1; }
int h() async { yield; return k(); }
int g() async { await h(); }

void f() {
coroutine* coro = g();

}

Separate

frames for each

function call

System

stack

Can only use yield in
async functions

Hypothetical syntax for stackless coroutines
in C
• yield for pausing the current coroutine
• await for nesting coroutine calls
• async for marking coroutine functions

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 19

Stackful vs Stackless

◼ Stackful offers better modularity

◼ With stackless: making function async/not async means changing all callers!

◼ Example: adding async logging code to computation

void log(string s) async { ... }
int complex_computation(int[] inputs) {

...
if (error) throw "error!";

}
int test() async {

int x = complex_computation(args);
...

}
int main() {

int x = complex_computation(args);
...

}

void log(string s) async { ... }
int complex_computation(int[] inputs) async {

...
if (error) await log("error!");

}
int test() async {

int x = await complex_computation(args);
...

}
int main() {

int x = run_task(complex_computation(args));
...

}

void log(string s) { ... }
int complex_computation(int[] inputs) {

...
if (error) throw "error!";

}
int test() {

int x = complex_computation(args);
...

}
int main() {

int x = complex_computation(args);
...

}

void log(string s) { ... }
int complex_computation(int[] inputs) {

...
if (error) log("error!");

}
int test() {

int x = complex_computation(args);
...

}
int main() {

int x = complex_computation(args);
...

}

Stackless coroutines

Stackful coroutines

All code remains
exactly the same!

Need to change callers

Different changes depending
if caller is async

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 20

Stackful challenges

◼ Needs architecture-specific support (portable C library, binds to small platform-dependent asm)

◼ More complex stack management

– Resizable stacks

• Virtual mem

• Stack copying

• Segmented stacks

– Fixed-size stacks

◼ Cost of context switch

◼ Less efficient use of memory

Not suitable for low-level!

Complex, some runtime overhead

Some memory waste, no recursion

20~30 μinstructions

int h() async {
yield; return 1;

}
int g() async {
yield; await h();

}
int f() async {
await g();

}

Stackless:
• Each frame is allocated

independently
• More allocations
• But less memory usage!

Stackful:
• All frames stored in a

single memory block
• Some wasted space
• But only 1 allocation!

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 21

Stackful challenges

◼ Needs architecture-specific support (portable C library, binds to small platform-dependent asm)

◼ More complex stack management

◼ Cost of context switch

◼ Less efficient use of memory

– Many optimizations are possible for stackful

• When compiler can determine max stack frame size, can
allocate exactly what is needed!

• Still some potential for wasted space
• But still only 1 allocation!

int h() {
yield;
return 1;

}
int g() {

yield;
h();

}
int f() {

g();
}

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 22

Stackful challenges

◼ Needs architecture-specific support (portable C library, binds to small platform-dependent asm)

◼ More complex stack management

◼ Cost of context switch

◼ Less efficient use of memory

– Many optimizations are possible for stackful

int rec(int n) {
... rec(n-1);

}
int h() {

yield;
recursive(100);
yield;

}
int g() {

yield; h();
}
int f() {

yield; g();
}

• Need to allocate stack
space for recursive call

• After recursive call, space
is not freed, but will not
be used!

• If compiler can determine max stack frame size, can allocate exactly what is needed!
• Still some potential for wasted space

• After recursive function ends, stack frames are removed but memory cannot be
easily deallocated! (Would need to reallocate stack frames of f, g, h)

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 23

Stackful challenges

◼ Needs architecture-specific support (portable C library, binds to small platform-dependent asm)

◼ More complex stack management

◼ Cost of context switch

◼ Less efficient use of memory

– Many optimizations are possible for stackful

int recur(int n) {
... recur(n-1);

}
int h() {

yield;
recursive(100);
yield;

}
int g() {

yield; h();
}
int f() {

yield; g();
}

Run recur on the system stack
• No need for a large coroutine stack!
• But depends on compiler analysis

Use segmented stack
• Separate segments for different function calls
• Deallocate/reuse when finished
• Some runtime penalty

No yield
→ can run
on system

stack

• If compiler can determine max stack frame size, can
allocate exactly what is needed!

• Still some potential for wasted space
• Can be mitigated with compiler analysis

• Both approaches can be combined
• Use compiler analysis to decide strategy
• If call tree is known at compile time,

memory usage can be optimal

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 24

Stack handling

◼ libsegs uses segmented stacks for stack handling

– But can easily be adapted to stack copying or virtual memory if the architecture supports it!

◼ Coroutines are given an initial stack (size can be chosen by the programmer)

◼ Every function call checks available stack space vs function stack frame size

– If not enough available, new segment is allocated

– The check and allocation are inserted automatically by compiler (clang & gcc –fsplit–stack support)

int big_frame() {
int array[1024];
...
return 0;

}
int coroutine_fn() {

big_frame();
}

• The current stack segment is too small for the big
array

• big_frame checks stack size in function prelude,
creates new stack segment in doubly-linked list

big_frame():
lea r11, [rsp - 4104]
cmp r11, qword ptr fs:[112]
ja .LBB0_0
mov r10d, 4104
mov r11d, 0
call __morestack
ret

.LBB0_0:
…
ret

Prelude: check stack size & allocate

• Prelude is very cheap: load + cmp + jmp
• Branch predictor eliminates overhead if no

allocation is needed
• Slow path only taken when stack needs resizing

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 25

Stack handling

◼ libsegs uses segmented stacks for stack handling

◼ Coroutines are given an initial stack (size can be chosen by the programmer)

◼ Every function call checks available stack space vs function stack frame size

◼ Potential performance issue: hot split problem

int big_frame() {
int array[1024];
...
return 0;

}
int coroutine_fn() {

for (int i = 0; i < 1000000; i++) {
big_frame();

}
}

• big_frame allocates new segment, but is deleted
at end of function call

• Allocate and deallocate 1M segments?!

Can be solved with runtime support!
• Do not deallocate segment upon return, just change pointers
• No need to allocate new segment, just reuse old segment!
• Allocation is replaced by just switching stack ptr
• Change autogenerated function prelude to do check: minimal

overhead

Can be solved with compiler analysis!
• Detect big allocation in big_frame, lift it to coroutine_fn
• Effectively: combine stack frames of big_frame and coroutine_fn

big_frame():
lea r11, [rsp - 4104]
cmp r11, qword ptr fs:[112]
ja .LBB0_0
if (unused_segment_available) {

switch_to_unused_segment
ja .LBB0_0

}
mov r10d, 4104
mov r11d, 0
call __morestack
ret

.LBB0_0:
…
ret

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 26

Benchmarks: context-switching

◼ We compare libsegs, libco (Tencent’s stackful coroutine library) and C++ coroutines (with cppcoro)

– libco is used in real-world applications (currently in WeChat backend!)

◼ All benchmarks running on clang 10.0.0 at optimization level 3

◼ Context-switching: create a coroutine and resume/yield n times

◼ We control three different variables: number of yield/resume, depth of the stack, and size of each stack

frame

void *deep_coroutine(segs_coroutine_t *self, void *arg) {
char arr[padding];
int64_t depth = (int64_t)arg;
if (depth == 0) {

volatile bool loop = true;
while (loop) {

segs_yield(self, nullptr);
}
return arr;

} else {
deep_coroutine(self, (void *)(depth - 1));
return arr;

}
}

Frames padded with

uninitialized data

Infinite loop, volatile to

avoid optimizations

No tail call to avoid

optimizations

segs_coroutine_t *k1 = segs_coroutine_new(fn, (void *)depth);
segs_coroutine_t *k2 = segs_coroutine_new(fn, (void *)depth);
for (size_t i = 0; i < iterations / 2; i++) {

segs_resume(k1, nullptr);
segs_resume(k2, nullptr);

}
segs_coroutine_delete(k1);
segs_coroutine_delete(k2);

Driver code interleaves execution of

2 coroutines iterations/2 times

each

libsegs version

https://github.com/Tencent/libco
https://github.com/lewissbaker/cppcoro

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 27

Benchmarks: context-switching

◼ We compare libsegs, libco (Tencent’s stackful coroutine library) and C++ coroutines (with cppcoro)

◼ All benchmarks running on clang 10.0.0 at optimization level 3

◼ Context-switching: create a coroutine and resume/yield n times

◼ We control three different variables: number of yield/resume, depth of the stack, and size of each stack

frame

void *deep_coroutine(void *arg) {
char arr[padding];
int64_t depth = (int64_t)arg;
if (depth == 0) {

volatile bool loop = true;
while (loop) {

co_yield_ct();
}
return arr;

} else {
deep_coroutine((void *)(depth - 1));
return arr;

}
}

Frames padded with

uninitialized data

Infinite loop, volatile to

avoid optimizations

No tail call to avoid

optimizations

stCoRoutine_t *k1;
stCoRoutine_t *k2;
stShareStack_t *share_stack

= co_alloc_sharestack(1, 1024 * 128);
stCoRoutineAttr_t attr;
attr.stack_size = 0;
attr.share_stack = share_stack;
co_create(&k1, &attr, fn, (void *)depth);
co_create(&k2, &attr, fn, (void *)depth);
for (size_t i = 0; i < iterations / 2; i++) {

co_resume(k1);
co_resume(k2);

}
co_release(k1);
co_release(k2);

Set share_stack on (for resizable

coroutines, otherwise stack size is

fixed)

libco version
API is almost identical to libsegs

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 28

Benchmarks: context-switching

◼ We compare libsegs, libco (Tencent’s stackful coroutine library) and C++ coroutines (with cppcoro)

◼ All benchmarks running on clang 10.0.0 at optimization level 3

◼ Context-switching: create a coroutine and resume/yield n times

◼ We control three different variables: number of yield/resume, depth of the stack, and size of each stack

frame

cppcoro::recursive_generator<char *>
deep_coroutine(int64_t depth) {

char arr[padding];
if (depth == 0) {

volatile bool loop = true;
while (loop) {

co_yield arr;
}

} else {
co_yield deep_coroutine_rec (depth - 1);
co_yield arr;

}
}

Frames padded with

uninitialized data

Infinite loop, volatile to

avoid optimizations

No tail call to avoid

optimizations

cppcoro::recursive_generator<char*> k1
= coroutine_fn(depth);

cppcoro::recursive_generator<char*> k2
= coroutine_fn(depth);

cppcoro::recursive_generator<char*>
::iterator k1_iter = k1.begin();

cppcoro::recursive_generator<char*>
::iterator k2_iter = k2.begin();

for (auto i = 0; i < iterations / 2; i++) {
k1_iter++;
k2_iter++;

}
cppcoro coroutines are heap-

allocated, but RAII so there is

no explicit deallocation

cppcoro version
cppcoro api does not allow for an exact
comparison. We use recursive_generator
here because it is more optimized, but
cppcoro recursive generators are more
limited than coroutines (no async).

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 29

Benchmarks: context-switching

◼ We compare libsegs, libco (Tencent’s stackful coroutine library) and C++ coroutines (with cppcoro)

◼ All benchmarks running on clang 10.0.0 at optimization level 3

◼ Context-switching: create a coroutine and resume/yield n times

◼ We control three different variables: number of yield/resume, depth of the stack, and size of each stack

frame

Framework Mean time (ms) Relative

libco 619.9 ± 7.3 9.42 ± 0.20

libsegs 110.1 ± 5.4 1.67 ± 0.09

cppcoro 65.8 ± 1.2 1.00

Simple example
• 10,000,000 iterations (resume + yield)
• Call stack has depth 0
• Stack frames have no padding

Conclusions
•libsegs is much more efficient than libco, due to using split stacks instead of stack copying
•cppcoro is faster, but less flexible (benchmark code could not be extended with async)

OUTDATED! We’re a bit better

now (~88ms)

If –O0 we’re actually 4.3x

FASTER than cppcoro!

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 30

Benchmarks: context-switching

◼ We compare libsegs, libco (Tencent’s stackful coroutine library) and C++ coroutines (with cppcoro)

◼ All benchmarks running on clang 10.0.0 at optimization level 3

◼ Context-switching: create a coroutine and resume/yield n times

◼ We control three different variables: number of yield/resume, depth of the stack, and size of each stack

frame

Framework Mean time (ms) Relative

libco 1,786.1 ± 7.9 28.09 ± 1.19

libsegs 102.2 ± 2.8 1.61 ± 0.08

cppcoro 63.6 ± 2.7 1.00

Stack size scaling
• 10,000,000 iterations (resume + yield)
• Call stack has depth 0
• Stack frames have 0-5kb of padding

Conclusions
• As expected, libco scales linearly with stack size due to stack copying
• Performance of libsegs and cppcoro is independent of stack size

Size = 5000

Time (s)

Stack padding (bytes)

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 31

Benchmarks: memory usage

◼ We compare libsegs, libco (Tencent’s stackful coroutine library) and C++ coroutines (with cppcoro)

◼ All benchmarks running on clang 10.0.0 at optimization level 3

◼ Memory usage: create 10k coroutines with M bytes of stack padding, then immediately pause all of them

cppcoro::recursive_generator<char *> *coroutines;
coroutines = new cppcoro::recursive_generator<char *>[instances];
for (auto i = 0; i < instances; i++) {

coroutines[i] = coroutine_fn(depth);
auto k_iter = coroutines[i].begin();
k_iter++;

}

segs_coroutine_t **coroutines;
coroutines = new segs_coroutine_t *[instances];
for (auto i = 0; i < instances; i++) {

coroutines[i] = segs_coroutine_new(fn, (void *)depth);
segs_resume(coroutines[i], nullptr);

}

All coroutines are started to ensure

memory is actually allocated

Conclusions
• We measure absolute memory consumption vs the size of the stack frame for all three frameworks

• cppcoro always allocates exactly enough memory to contain the size of the frame and no more
• libsegs allocates an initial segment of a fixed size. If the stack frame exceeds that size, additional space is

allocated to make up for the difference. There is a small fixed penalty over cppcoro due to overhead
• libco behaves similarly to libsegs, however it incurs more initial overhead as it allocates a large initial arena

Total memory consumption (kb) vs stack frame size

Warning
• This is not a realistic benchmark. In reality, the memory

consumption will be very different depending on compiler
optimizations, depth of the call stack and the structure of
the program itself!

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 32

Case study

◼ Goal 1: showcase performance of libsegs features in “realistic” application

◼ Goal 2: show how to write applications and schedulers using libsegs

1. “Proof of concept” multi-threaded scheduler with async capabilities based on epoll (can easily be adapted to

poll/select)

2. Echo server built on example scheduler, using “listen-accept-fork” approach with coroutines

3. Benchmark single-threaded performance & multi-threaded scaling

4. Compare against plain C event-loop style implementation

Single-threded performance
• Competitive with plain C implementation, despite using heap

allocated coroutines and thread-safe queue!
• Performance degrades slightly with number of concurrent

connections (caused by extra synchronization overhead but no real
parallelism)

• Shows that coroutines do not introduce significant overhead

Impl Requests/s

(100 connections)

Requests/s

(500 connections)

libsegs ~134k ~132k

plain c ~136k ~136k

Multi-threaded performance
• Linear scaling up to ~12 cores, diminishing returns above that
• Somewhat unrealistic due to use of fixed-size task queues (would

segfault on overflow)
• Implementation is very naïve, likely can be much more efficient

by experts

HUAWEI CONFIDENTIAL 内部资料 注意保密 Page 33

Conclusions

◼ Enormous potential for effects in C

– Can be ergonomic & efficient without compiler support!

– But lots of low-hanging fruit for compiler support

• Type-safety, optimizations

◼ Major pain point: segmented stacks

– No real alternative: virtual memory/stack copying unworkable

– Opportunities for optimization

– Gets better with proper effect typing/”purity” tracking!

◼ API differences from high-level languages

– No try/handle blocks, continuations not exposed, coroutines as only visible abstraction

– Session types obvious candidate for typing coroutines, add extra safety

◼ It is worth doing!

– Massive gains in programmer productivity even from a minimal prototype

– Few sharp edges, usable by non-experts!

01.Nov 2013

HUAWEI TECHNOLOGIES CO., LTD.

www.huawei

.com

Thank You

www.huawei.com

