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Modelling programs:
[Pl: X —> Y

Modelling programs with side effects:

State
[P]: XxS—>YXS

Exceptions
[P]:X > Y+E

Non-determinism
[P]: X — Pan(Y)

/o
[P] : X — IOTree(Y)



Monads as Notions of Computation:

(Moggi, 1989, 1991)

Monadic basics:

Pick your monad:
Nothing :
State :
Exceptions :
Non-determinism :

IO

[P]: X — MY

return : A — MA

bind : MA — (A— MA) — MB
MA=A

MA=S5— (AxYS)

MA=A+E

MA = Ppn(A)

MA =10Tree(A)



Reasoning about monadic computations

Equational Reasoning
. Monad laws
. Monads generated from equational theories ~» equations for reasoning.
. (Plotkin & Pretnar, 2008)

Evaluation Logic
(Pitts, 1991)
. only allows reasoning about returned values

Indexed Monads
. {Parameterised / Graded / Poly}monads

Special Purpose Logics
. Hoare Type Theory
. Dynamic Logic



Monads as Notions of Specification
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Specification Monads
Many notions of specification are also monads.

Weakest precondition transformer

WP(A) = (A — Prop) — Prop

Weakest precondition transformer with state

WPs(A) = (A — S — Prop) — S — Prop

Weakest precondition transformer with exceptions

WPg(A) = (A + E — Prop) — Prop = (A — Prop) — (E — Prop) — Prop
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Specification Monads
Many notions of specification are also monads.

Predicate Monad
P(A) = A — Prop

Pre-/Post-condition Monad

PP(A) = Prop X (A — Prop)

For now, will use the weakest precondition transformer monads for specifications.



Specification Monads W

Useful specification monads are ordered:
1. partial order structure C on WX

2. compatible with the bind operation

For WP, must restrict to monotone predicate transformers:
MonoWP(A) = {f : (A — Prop) — Prop | Vq1,q2.q1 C ¢2 = f q1 E f q2}

then
fCf ©Vq:A—Prop. fqC f'q
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Connecting the Computational and the Specificational

Monad morphisms:
a-M=>W

Families of functions a4 : MA — WA, compatible with return and bind.

Monad morphisms are “Effect Observations” in (Katsumata, 2014)
(used to generate graded monads)

a computation m : MA

Given . .
a specification w : WA

} msatisfies w iff aa(m)C w



Example: Non-determinism

The non-determinism monad:
ND(A) = Ppn(A)

Two morphisms ND = MonWP:

Demonic
aP(S) = Apost. Va € S. post(a)

Angelic
a’(S) = Apost. Fa € S. post(a)



Demonic and Angelic Specifications
For the specification

w = (Apost. Vx y z. x* + y* = 2* = post(x, y, z)) € MonWP(N x N x N)

aP(let x «— pick [1,2,3,4,5]
let y « pick [1,2,3,4,5]
let z « pick [1,2,3,4,5]
guard (x? + y? = 2%)
return (x,y,2z)) C w
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Demonic and Angelic Specifications
For the specification
w = (Apost. Vx y z. x* + y* = 2* = post(x, y, z)) € MonWP(N x N x N)
a’(let x « pick [1,2,3,4,5]
let y « pick [1,2,3,4,5]

let z — pick [1,2,3,4,5]

return (x,y,2z)) C w



Example: State

as : St(A) — MonWPg(A)
ag : (> (SxA) — (A—S— Prop) —=mon S — Prop

as m = Apost sy.post(m sp)

Spec: w = (Apost sp. Vs. s > sg = post(s, *)) € MonWP(1)

aq(let x « get; put(x + 1)) T w
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Example: Exceptions

1) “Double-Barrelled” specifications

as : Exc(A) — MonWPg(A)
ay + A+E — (A+E — Prop) — men Prop

as m = Apost. post(m)

2) “Single-Barrelled” specifications, for a fixed Qey, : E — Prop

as : Exc(A) — MonWP(A)
ag : A+E — (A — Prop) —men Prop

aa m = Apost. case m {inl a — post(a);inr e — Qexn(e)}



Example: I/O

Let Trace = List(I + O),

MonWPTrace(A) = (A — Trace — Prop) — men Trace — Prop

a : 10Tree(A) — MonWPTrace(A)

a(return a) = Apostt. post at
a(inp k) = Apost t. Vi.a(ki) post (Ini:: t)
a(out o k) = Apost t. a(k) post (Out o :: t)

Example (assuming I = O):

a(let x « inp; out x;out x) T Apt. Vx.p * (Out x = Out x =: In x == t)



Mass producing Effect Observations



Effect Observations from Monad Algebras

Monad Algebras

h: MR— R

are in 1-1 correspondence with monad morphisms
a:M=(-—>R) —>R

(Kelly, 1980; Kelly and Power, 1993) ... and extends to the ordered case.

a(m) = Ak.h(bindy(m, k)



Effect Observations from Monad Algebras

Demonic non-determinism:
h : Pgn(Prop) — Prop

h(S) = A'S
gives
a®(S) = Apost. Vx € S. post(x)

Angelic non-determinism:
h : Pgn(Prop) — Prop
h(S)=VS
gives
a’(S) = Apost. Ax € S. post(x)



Effect Observations from Monad Algebras

State:
h: St(S — Prop) — S — Prop

h(t) = As.let(s',p)=tsinps
gives
a(t) = Apost.As.let (s',a) = tsin post s’



Effect Observations from Monad Algebras

Single-barrelled Exceptions:
h : Exc(Prop) — Prop
h(inlp) = p
h(inre) = Qeme
gives
aam = Apost. case m {inl a — post(a);inr e — Qeyn(e)}



Example: Free Monad

Assume X = {op; : [ ~ Oy, -+, 0py : I, ~ Oy}

TA=pXA+ [| Ix(0-X)
op:I~>0€eX



Example: Free Monad

Assume X = {op; : [ ~ Oy, -+, 0py : I, ~ Oy}

TA=pXA+ || Ix(0-X)
op:I~>0€eX

Operation specifications, for all op: pre,, : I — Prop and post,, : I = O — Prop

a : TsProp — Prop

a(ret ) = ¢
a(op i k) = pre,, i AVo. post,,io— ko



Monad Transformers
Assume that we have a monad transformer:

9 : Mon — Mon

. functor from monads to monads
. equipped with lift : M = TM
. preserving order

Example: T(M) = A— S — M(S X A)

Given a suitable 77,
a = T (return) : T (Id) — 7 (MonCont)

DM4Free (POPL’17) presented this idea in a syntactic way.



Monad Transformers

T(M) = A — M(A + E)

Then: 7 (Id) = Exn
7 (MonCont) = A+ (A+E — Prop) — Prop
a(m) = Apost. post(m)

Also works for State, State(Exn), Exn(State), ...



I/O

T(M) = A — uX.M(A+(OxX)+ (I — X))

7 (MonProp) = A— uX.(A+(0x X)+ (I — X) — Prop) — Prop

but this doesn’t exist in Set; and would make Coq and F# inconsistent...
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Coupling Computations with Specifications
The specification a(m) E w could be tricky to check.

Restrict to computations m that satisfy a specification w:

D:(A:Set) > WA — Set
DAw={m:MA| a(m)C w}
Define:
return : (x : A) = D A (returny x)
return x = returny a

bind : DAw; — ((x: A) > DB(wy x)) — D B(bindw w; wy)
bind my my = bindy my my

weaken : (w; T wy) > DAw; > DAw,
weakenm = m



Dijkstra Monads over a (specification) monad W:

D:(A:Set) — WA — Set

return : (x : A) = D A (returny x)

bind : DAw; — ((x: A) = DB(w, x)) — D B(bindw w; wy)
weaken : (w; C wy) > DAw; — DAw,

with some laws.
Effect Observations and Dijkstra Monads
DMon(X) ~ Mon/ W

an equivalence of categories.



Algebraic Effects and Handlers



Algebraic Effects

If opM : I x (O — MA) — MA is algebraic
and @ : M = W is an effect observation,

then
opw (i, w) = uw(a(opM (i, Ao. return™ (w 0))))

is algebraic, and serves to be the specification for the operation op™:

opP :(i:1) = (c:(0: 0) = DA(wo)) = DA(op" (i, w))



Handlers, attempt 1

handle : A —
(I X (O — MB) — MB)op:I'\»O -
(A —> MB) —
MB



Handlers, attempt 1

handle : A —
(I x (O — MB) — MB)p1~>0 —
(A — MB) -
MB

handle® : Ds Aw; —
(Hyy : 1% (0 — W’'B) = WB)op1w0 —
((i:1) > ((0: 0) = D' B(w0)) = D' B(hY' (i, w)))op1s0 —
((a: A) » D' B(w; a)) —
D’ B(handle wy (hyw ). w)

where h, : WW’'B — W’Bwhenever h: TW'B — W’B.

not automatic; needs to be established for each @ : M = W and W".



Handlers: lifting algebras

For exceptions, @ : Exn = ExnWP = ((— + E — Prop) — Prop)

Possible to take h : Exn(ExnWP(B)) — ExnWP(B)
to h, : ExaWP(ExnWP(B)) — ExnWP(B)



Handlers: lifting algebras

For exceptions, @ : Exn = ExnWP = ((— + E — Prop) — Prop)

Possible to take h : Exn(ExnWP(B)) — ExnWP(B)
to h, : ExaWP(ExnWP(B)) — ExnWP(B)

For I/O, a : I0 = MonWPTrace, not possible to do the lifting.

The specification monad
7 (MonProp) = A +— uX.(A+ (0% X)+ (I = X) — Prop) — Prop

“works”, but doesn’t exist in categories/theories of interest.



Handlers, attempt 2

Problem seems to be:
> trying to get the “most general” specification for the handled computation
> then try to instantiate that specification with the spec of the handler

> but we get circularity between the handler behaviour and the handled’s behaviour

A possible solution
> Assume some pre,, and post,, specification for the operations
» Handler of an operation op(i, k):

> Assumes pre,(i)
> Must establish post,,(i, 0) before invoking k o

Sort of works, but only for handling into a Disjktra monad (can’t write state handler).



Conclusions

v

Monads as notions of Specification

v

Effect observations = monad morphisms

v

Packaged up as Dijkstra Monads

v

Algebraic effects work well

v

Handlers are a mess



