One Monad to the Tune of Another
real title: Dijkstra Monads For All

Robert Atkey
Strathclyde University, Glasgow

jww Kenji Maillard, Danel Ahman, Guido Martinez,
Catalin Hritcu, Exequiel Rivas, and Eric Tanter

Shonan Meeting 146
27th March 2019

Modelling programs:
[Pl: X —> Y

Modelling programs with side effects:

State
[P]: XxS—>YXS

Exceptions
[P]:X > Y+E

Non-determinism
[P]: X — Pan(Y)

/o
[P] : X — IOTree(Y)

Monads as Notions of Computation:

(Moggi, 1989, 1991)

Monadic basics:

Pick your monad:
Nothing :
State :
Exceptions :
Non-determinism :

IO

[P]: X — MY

return : A — MA

bind : MA — (A— MA) — MB
MA=A

MA=S5— (AxYS)

MA=A+E

MA = Ppn(A)

MA =10Tree(A)

Reasoning about monadic computations

Equational Reasoning
. Monad laws
. Monads generated from equational theories ~» equations for reasoning.
. (Plotkin & Pretnar, 2008)

Evaluation Logic
(Pitts, 1991)
. only allows reasoning about returned values

Indexed Monads
. {Parameterised / Graded / Poly}monads

Special Purpose Logics
. Hoare Type Theory
. Dynamic Logic

Monads as Notions of Specification

Specification Monads
Many notions of specification are also monads.

Specification Monads
Many notions of specification are also monads.

Weakest precondition transformer

WP(A) = (A — Prop) — Prop

Specification Monads
Many notions of specification are also monads.

Weakest precondition transformer

WP(A) = (A — Prop) — Prop

Weakest precondition transformer with state

WPs(A) = (A — S — Prop) — S — Prop

Specification Monads
Many notions of specification are also monads.

Weakest precondition transformer

WP(A) = (A — Prop) — Prop

Weakest precondition transformer with state

WPs(A) = (A — S — Prop) — S — Prop

Weakest precondition transformer with exceptions

WPg(A) = (A + E — Prop) — Prop = (A — Prop) — (E — Prop) — Prop

Specification Monads
Many notions of specification are also monads.

Specification Monads
Many notions of specification are also monads.

Predicate Monad
P(A) = A — Prop

Specification Monads
Many notions of specification are also monads.

Predicate Monad
P(A) = A — Prop

Pre-/Post-condition Monad

PP(A) = Prop X (A — Prop)

Specification Monads
Many notions of specification are also monads.

Predicate Monad
P(A) = A — Prop

Pre-/Post-condition Monad

PP(A) = Prop X (A — Prop)

For now, will use the weakest precondition transformer monads for specifications.

Specification Monads W

Useful specification monads are ordered:
1. partial order structure C on WX

2. compatible with the bind operation

For WP, must restrict to monotone predicate transformers:
MonoWP(A) = {f : (A — Prop) — Prop | Vq1,q2.q1 C ¢2 = f q1 E f q2}

then
fCf ©Vq:A—Prop. fqC f'q

Connecting the Computational and the Specificational

Connecting the Computational and the Specificational

Monad morphisms:
a-M=>W

Families of functions a4 : MA — WA, compatible with return and bind.

Monad morphisms are “Effect Observations” in (Katsumata, 2014)
(used to generate graded monads)

Connecting the Computational and the Specificational

Monad morphisms:
a-M=>W

Families of functions a4 : MA — WA, compatible with return and bind.

Monad morphisms are “Effect Observations” in (Katsumata, 2014)
(used to generate graded monads)

a computation m : MA

Given . .
a specification w : WA

} msatisfies w iff aa(m)C w

Example: Non-determinism

The non-determinism monad:
ND(A) = Ppn(A)

Two morphisms ND = MonWP:

Demonic
aP(S) = Apost. Va € S. post(a)

Angelic
a’(S) = Apost. Fa € S. post(a)

Demonic and Angelic Specifications
For the specification

w = (Apost. Vx y z. x* + y* = 2* = post(x, y, z)) € MonWP(N x N x N)

aP(let x «— pick [1,2,3,4,5]
let y « pick [1,2,3,4,5]
let z « pick [1,2,3,4,5]
guard (x? + y? = 2%)
return (x,y,2z)) C w

Demonic and Angelic Specifications
For the specification

w = (Apost. Vx y z. x* + y* = 2* = post(x, y, z)) € MonWP(N x N x N)

a’(let x « pick [1,2,3,4,5]
let y « pick [1,2,3,4,5]
let z « pick [1,2,3,4,5]
guard (x* + y? = 2%)
return (x,y,z)) C w

Demonic and Angelic Specifications
For the specification
w = (Apost. Vx y z. x* + y* = 2* = post(x, y, z)) € MonWP(N x N x N)
a’(let x « pick [1,2,3,4,5]
let y « pick [1,2,3,4,5]

let z — pick [1,2,3,4,5]

return (x,y,2z)) C w

Example: State

as : St(A) — MonWPg(A)
ag : (> (SxA) — (A—S— Prop) —=mon S — Prop

as m = Apost sy.post(m sp)

Spec: w = (Apost sp. Vs. s > sg = post(s, *)) € MonWP(1)

aq(let x « get; put(x + 1)) T w

Example: Exceptions

Example: Exceptions

1) “Double-Barrelled” specifications

as : Exc(A) — MonWPg(A)
ay + A+E — (A+E — Prop) — men Prop

as m = Apost. post(m)

Example: Exceptions

1) “Double-Barrelled” specifications

as : Exc(A) — MonWPg(A)
ay + A+E — (A+E — Prop) — men Prop

as m = Apost. post(m)

2) “Single-Barrelled” specifications, for a fixed Qey, : E — Prop

as : Exc(A) — MonWP(A)
ag : A+E — (A — Prop) —men Prop

aa m = Apost. case m {inl a — post(a);inr e — Qexn(e)}

Example: I/O

Let Trace = List(I + O),

MonWPTrace(A) = (A — Trace — Prop) — men Trace — Prop

a : 10Tree(A) — MonWPTrace(A)

a(return a) = Apostt. post at
a(inp k) = Apost t. Vi.a(ki) post (Ini:: t)
a(out o k) = Apost t. a(k) post (Out o :: t)

Example (assuming I = O):

a(let x « inp; out x;out x) T Apt. Vx.p * (Out x = Out x =: In x == t)

Mass producing Effect Observations

Effect Observations from Monad Algebras

Monad Algebras

h: MR— R

are in 1-1 correspondence with monad morphisms
a:M=(-—>R) —>R

(Kelly, 1980; Kelly and Power, 1993) ... and extends to the ordered case.

a(m) = Ak.h(bindy(m, k)

Effect Observations from Monad Algebras

Demonic non-determinism:
h : Pgn(Prop) — Prop

h(S) = A'S
gives
a®(S) = Apost. Vx € S. post(x)

Angelic non-determinism:
h : Pgn(Prop) — Prop
h(S)=VS
gives
a’(S) = Apost. Ax € S. post(x)

Effect Observations from Monad Algebras

State:
h: St(S — Prop) — S — Prop

h(t) = As.let(s',p)=tsinps
gives
a(t) = Apost.As.let (s',a) = tsin post s’

Effect Observations from Monad Algebras

Single-barrelled Exceptions:
h : Exc(Prop) — Prop
h(inlp) = p
h(inre) = Qeme
gives
aam = Apost. case m {inl a — post(a);inr e — Qeyn(e)}

Example: Free Monad

Assume X = {op; : [~ Oy, -+, 0py : I, ~ Oy}

TA=pXA+ [| Ix(0-X)
op:I~>0€eX

Example: Free Monad

Assume X = {op; : [~ Oy, -+, 0py : I, ~ Oy}

TA=pXA+ || Ix(0-X)
op:I~>0€eX

Operation specifications, for all op: pre,, : I — Prop and post,, : I = O — Prop

a : TsProp — Prop

a(ret) = ¢
a(op i k) = pre,, i AVo. post,,io— ko

Monad Transformers
Assume that we have a monad transformer:

9 : Mon — Mon

. functor from monads to monads
. equipped with lift : M = TM
. preserving order

Example: T(M) = A— S — M(S X A)

Given a suitable 77,
a = T (return) : T (Id) — 7 (MonCont)

DM4Free (POPL’17) presented this idea in a syntactic way.

Monad Transformers

T(M) = A — M(A + E)

Then: 7 (Id) = Exn
7 (MonCont) = A+ (A+E — Prop) — Prop
a(m) = Apost. post(m)

Also works for State, State(Exn), Exn(State), ...

I/O

T(M) = A — uX.M(A+(OxX)+ (I — X))

7 (MonProp) = A— uX.(A+(0x X)+ (I — X) — Prop) — Prop

but this doesn’t exist in Set; and would make Coq and F# inconsistent...

Coupling Computations with Specifications

Coupling Computations with Specifications

The specification a(m) E w could be tricky to check.

Coupling Computations with Specifications
The specification a(m) E w could be tricky to check.

Restrict to computations m that satisfy a specification w:

D:(A:Set) — WA — Set
DAw={m:MA| a(m)C w}

Coupling Computations with Specifications
The specification a(m) E w could be tricky to check.

Restrict to computations m that satisfy a specification w:

D:(A:Set) > WA — Set
DAw={m:MA| a(m)C w}
Define:
return : (x : A) = D A (returny x)
return x = returny a

bind : DAw; — ((x: A) > DB(wy x)) — D B(bindw w; wy)
bind my my = bindy my my

weaken : (w; T wy) > DAw; > DAw,
weakenm = m

Dijkstra Monads over a (specification) monad W:

D:(A:Set) — WA — Set

return : (x : A) = D A (returny x)

bind : DAw; — ((x: A) = DB(w, x)) — D B(bindw w; wy)
weaken : (w; C wy) > DAw; — DAw,

with some laws.
Effect Observations and Dijkstra Monads
DMon(X) ~ Mon/ W

an equivalence of categories.

Algebraic Effects and Handlers

Algebraic Effects

If opM : I x (O — MA) — MA is algebraic
and @ : M = W is an effect observation,

then
opw (i, w) = uw(a(opM (i, Ao. return™ (w 0))))

is algebraic, and serves to be the specification for the operation op™:

opP :(i:1) = (c:(0: 0) = DA(wo)) = DA(op" (i, w))

Handlers, attempt 1

handle : A —
(I X (O — MB) — MB)op:I'\»O -
(A —> MB) —
MB

Handlers, attempt 1

handle : A —
(I x (O — MB) — MB)p1~>0 —
(A — MB) -
MB

handle® : Ds Aw; —
(Hyy : 1% (0 — W’'B) = WB)op1w0 —
((i:1) > ((0: 0) = D' B(w0)) = D' B(hY' (i, w)))op1s0 —
((a: A) » D' B(w; a)) —
D’ B(handle wy (hyw). w)

where h, : WW’'B — W’Bwhenever h: TW'B — W’B.

not automatic; needs to be established for each @ : M = W and W".

Handlers: lifting algebras

For exceptions, @ : Exn = ExnWP = ((— + E — Prop) — Prop)

Possible to take h : Exn(ExnWP(B)) — ExnWP(B)
to h, : ExaWP(ExnWP(B)) — ExnWP(B)

Handlers: lifting algebras

For exceptions, @ : Exn = ExnWP = ((— + E — Prop) — Prop)

Possible to take h : Exn(ExnWP(B)) — ExnWP(B)
to h, : ExaWP(ExnWP(B)) — ExnWP(B)

For I/O, a : I0 = MonWPTrace, not possible to do the lifting.

The specification monad
7 (MonProp) = A +— uX.(A+ (0% X)+ (I = X) — Prop) — Prop

“works”, but doesn’t exist in categories/theories of interest.

Handlers, attempt 2

Problem seems to be:
> trying to get the “most general” specification for the handled computation
> then try to instantiate that specification with the spec of the handler

> but we get circularity between the handler behaviour and the handled’s behaviour

A possible solution
> Assume some pre,, and post,, specification for the operations
» Handler of an operation op(i, k):

> Assumes pre,(i)
> Must establish post,,(i, 0) before invoking k o

Sort of works, but only for handling into a Disjktra monad (can’t write state handler).

Conclusions

v

Monads as notions of Specification

v

Effect observations = monad morphisms

v

Packaged up as Dijkstra Monads

v

Algebraic effects work well

v

Handlers are a mess

