
Effect Deconstructors
Concurrency

Lecture 4: Effect Handlers

Gordon Plotkin

Laboratory for the Foundations of Computer Science, School of Informatics,
University of Edinburgh

NII Shonan Meeting No. 146
Programming and Reasoning with Algebraic Effects and

Effect Handlers

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Outline

1 Effect Deconstructors

2 Concurrency

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Outline

1 Effect Deconstructors

2 Concurrency

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Simple exception handler

The construct is:

Mσ handled with {raisee 7→ Hσ
e }e∈E : σ

assuming a finite set of exceptions E =def M[[exc]]

This evidently does not arise from a definable 1 + |E |-ary
operation using the exceptions theory.
Even worse, it cannot be an operation of any algebraic
theory.
For suppose we have a suitable operation handle :ε; 1, exc
say. Then we will not have:

E [handle(M, x : exc.H(x))] = handle(E [M], x : exc.E [H(x)])

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Failure to be algebraic

Take E = (λy : nat. raisee1)[·], M = 3, and H(x) = raisee2 , where
e1 6= e2. Then we have:

|= E [handle(M, x : exc.H(x))] =def (λy : nat. raisee1)handle(3, x : exc.H(x))
= (λy : nat. raisee1)3
= raisee1

and:

|= handle(E [M], x : exc.E [H(x)])
= handle((λy : nat. raisee1)3, x : exc.(λy : nat. raisee1)H(x))
= handle(raisee1 , x : exc.(λy : nat. raisee1)H(x))
= (λy : nat. raisee1)H(e1)
=def (λy : nat. raisee1)raisee2

= raisee2

and the two are different.
Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Understanding the Benton and Kennedy exception
handler algebraically

Simple exception handler

Mσ+E handled with {raisee 7→ Hσ+E
e }e∈E : σ + E

with E finite. (We are mixing syntax and semantics.)
Benton and Kennedy exception handler

Mσ+E handled with {raisee 7→ HA
e }e∈E to x : σ in N(x) : A

Analysis of the semantics of the BK exception handler
M ∈ TAx(σ) = σ + E .
{raisee 7→ HA

e }e∈E specifies a model of Ax with carrier A
(any algebra is!).

σ
x :σ.N(x)−−−−−→ A

The semantics of the BK exception handler is (that of)

(λx : σ.N(x))†(M)
Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

The general algebraic situation

The free model principle, that, for any algebra A over A
satisfying equational axioms Ax, and for any f : X → A there
exists a unique homomorphism f † : TAx(X)→ A such that the
following diagram commutes

X

f

TAx(X)

η

? f †
- A
-

suggests a syntax for, and an interpretation of, effect
deconstructors. Continuing to mix syntax and semantics, we
write:

MTAx(X) handled with A to x : X in N(x) : A

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

λ-calculus additions: Handlers for simple operations

Handlers

H ::= {op(k1 : T τ, . . . , kn : T τ) = Hop}op:n

where T (τ) =def unit→ τ

Γ, k1 : T τ, . . . , kn : T τ ` Hop : τ (i = 1,n)

Γ ` {op(k1 : T τ, . . . , kn : T τ) = Hop}op:n : τ handler

Handling

M ::= M handled with H to x : σ in N

Γ ` M : σ Γ ` H : τ handler Γ, x : σ ` N : τ

Γ ` M handled with H to x : σ in N : τ

Warning!! Not all handlers are correct, i.e., define models, so
semantics of a λ-calculus term may not be defined.

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

How the handlers work

Suppose

H ::= {op(k1 : T τ, . . . , kn : T τ) = Hop(k1, . . . , kn)}op:n

then
x : σ ` x handled with H to x : σ in N = N

and

` op(M1, . . . ,Mn) handled with H to x : σ in N = Hop(K1, . . . ,Kn)

where
Ki = [Mi handled with H to x : σ in N]

(where, for any term L, we set the thunk [L] = λx : unit.L)

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

An example: changing the contents of a read-only
memory, holding a boolean

Assume there is only one location, storing booleans.
The handler A “temporary state" handler Hro is given by:

b : bool ` {lookup(k1 : T (τ), k2 : T (τ))
= if b then k1(∗) else k2(∗)} : τ handler

Handling To evaluate a computation ` M : σ, continuing
with x : σ ` N : τ and forcing any lookup’s to give a value b
we use:

b : bool ` M handled with Hro to x : σ in N : τ

One may prefer a syntax allowing parametric handlers
parameterised on arbitrary types.

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

How this handler works

The handler Hro is:

{lookup(k1 : T (τ), k2 : T (τ)) = if b then k1(∗) else k2(∗) }

It works as follows:

` lookup(M1,M2) handled with Hro to x : σ in N

= if b then [M1 handled with Hro to x : σ in N](∗)
else [M2 handled with Hro to x : σ in N](∗)

= if b then M1 handled with Hro to x : σ in N
else M2 handled with Hro to x : σ in N

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Additions to the λ-calculus: General operations

Handlers

H ::= {opx:s(k1 : s1 → τ, . . . , kn : sn → τ) = Hop}op:s;s1,...,sm

Γ,x : s, k1 : s1 → τ, . . . , kn : sn → τ ` Hop : τ (i = 1,n)

Γ ` {opx:s(k1 : s1 → τ, . . . , kn : sn → τ) = Hop}op:s;s1,...,sm : τ handler

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

How these handlers work

Suppose H is

{opx:s(k1 : s1 → τ, . . . , kn : sn → τ) = Hop(x, k1, . . . , kn)}op:s;s1,...,sm

then

` opA(x1 : s1.M1, . . . ,xn : sn.Mn) handled with H to x : σ in N
= let x : s be A in Hop(x,K1, . . . ,Kn)

where
Ki = λx : s.Mi handled with H to x : σ in N

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

An example: rollback

When a computation raises an exception while modifying the
memory, e.g., when a connection drops during a database
transaction, we may want to revert all modifications made
during the computation. This behaviour is termed rollback.

Signature The (disjoint) union of that for (global) state and
exceptions.
Axioms The union of the two sets of equations for global
state and for exceptions, together with two commutation
equations:

lookupl(m : nat. raisee) = raisee

updatel,v (raisee) = raisee

of which the first is redundant.
Monad

T (X) = ((S × X) + E)S

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Exception handler for rollback

Assume there is only one location l0 .
The handler A “rollback to n" handler Hrollback is given by:

n : nat ` raisee:exc = updatel0,n(Roll(e)) : τ handler

where e : exc ` Roll : τ .
Handling To evaluate a computation ` M : σ, continuing
with x : σ ` N : τ if no exception is raised, and otherwise
rolling back to the initial state and executing the rollback
computation Roll with the exception raised, we use:

` lookupl0(n : nat.M handled with Hrollback to x : σ in N)) : τ

Note: One again may prefer a syntax allowing parametric
handlers parameterised on arbitrary types.
In the above one would then take n as a parameter, rather than
a free variable.

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Additions to the λ-calculus: Handlers with parameters
for simple operations

Handlers

H ::= {op(k1 : π → τ, . . . , kn, : π → τ) @ p : π = Hop}op:n

Γ, k1 : π → τ, . . . , kn : π → τ,p : π ` Hop : τ (op : n)

Γ ` {op(k1 : π → τ, . . . , kn : π → τ) @ p : π = Hop}op:n : π → τ handler

Handling

M ::= M handled with H@P to x : σ in N

Γ ` M : σ Γ ` H : π → τ handler Γ ` P : π Γ, x : σ ` N : τ

Γ ` M handled with H@P to x : σ in N : τ

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

How parameterised simple handlers work

Suppose H is

{op(k1 : π → τ, . . . , kn, : π → τ) @ p : π = Hop(p, k1, . . . , kn)}op:n

then

` op(M1, . . . ,Mn) handled with H@P to x : σ in N
= let p : π be P in Hop(p,K1, . . . ,Kn)

where

Ki = λp : π.Mi handled with H@p to x : σ in N

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

A parameterised handler example: changing the
contents of a boolean read-only memory

Assume there is only one location, storing booleans.
The handler The handler Hro is (now):

{lookup(k1 : bool→ τ, k2 : bool→ τ) @ b : bool
= if b then k1(b) else k2(b)} : bool→ τ handler

Handling To evaluate a computation ` M : σ, continuing
with x : σ ` N : τ and forcing any lookup’s to give a value P
we use:

` M handled with Hro@P to x : σ in N : τ

Update So could define

updateP(M) =def M handled with Hro@P to x : σ in x

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

How this handler works

The handler Hro is:

{lookup(k1 : bool→ τ, k2 : bool→ τ) @ b : bool
= if b then k1(b) else k2(b)}

It works as follows:

` lookup(M1,M2) handled with Hro@true to x : σ in N

= if true then (λb : bool.M1 handled with Hro@b to x : σ in N)(true)
else (λb : bool.M2 handled with Hro@b to x : σ in N)(true)

= M1 handled with Hro@true to x : σ in N

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Faking output and curtailing input

The handler H is

{input(k : nat→ (in→ τ))@limit : nat
= if limit > 0 then input(y : in. k(limit− 1)(y))

else raiseinput_session_finished(),
outputz:out(k : nat→ τ)@limit : nat
= outputfake(k(limit))}

It works as follows:

` input(y : in.M) handled with H@limit to x : σ in N
= if limit > 0

then input(y : in.M handled with H@(limit−1) to x : σ in N)
else raiseinput_session_finished()

` output3(M) handled with H@limit to x : σ in N
= outputfake(M handled with H@limit to x : σ in N)

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

A possible treatment of handlers for effects and types

Effects
α ⊆fin Σ

Handling

M ::= M handled with H to x : σ in N
Γ ` M : σ!α Γ ` H : α to τ !β handler Γ, x : σ ` N : τ !β

Γ ` M handled with H to x : σ in N : τ !β

Handlers

H ::= {op(x1 : Tβ(τ), . . . , xn : Tβ(τ)) 7→ Hop}op:n∈α

where Tβ(τ) =def unit
β−→ τ

Γ, x1 : Tβ(τ), . . . , xn : Tβ(τ) ` Hop : τ !β (i = 1,n)

Γ ` {op(x1 : Tβ(τ), . . . , xn : Tβ(τ)) 7→ Hop}op:n∈α : α to τ !β handler

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Discussion

The above language is maximal in that arbitrary handlers can be
defined. These define interpretations, but not necessarily
models. It is up to the programmer to not write meaningless
programs.

One might instead add a proof requirement, à la type theory, so
that a program is not well-formed unless a proof has been
supplied.

One might instead consider a two-level version in which only the
compiler writers write handlers. Plotkin and Pretnar, ESOP.

One might consider restricting the handlers that can be written,
so that only meaningful programs can be written. Buneman et al
comprehension syntax for database programming on collections
(= bags = elements of free commutative monoids).

If one works only with free algebras, so not "real" effects, then all
programs are correct and one has an operational semantics.
Bauer and Pretnar’s Eff language is based on this idea.

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Outline

1 Effect Deconstructors

2 Concurrency

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Finite Nondeterminism with deadlock

Working in Set we take T (X) = F(X) the collection of finite
subsets of X to model nondeterminism, including an “empty"
choice (deadlock).

To create the effects we add two effect constructors:

M : σ N : σ

M + N : σ
NIL : σ

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Nondeterminism as an algebraic effect

There is a natural equational theory, with signature + : 2→ 1,
NIL : 0→ 1 and axioms:

Associativity (x + y) + z = x + (y + z)
Commutativity x + y = y + x
Absorption x + x = x
Zero NIL + x = x

The evident algebra on F(X) satisfies these equations,
interpreting + as ∪, and NIL as ∅.
Further: F is the free algebra monad.

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

CCS

Syntax

P ::= a.P (a ∈ Act) | P + Q | NIL Effect Constructors
| P\b | P[b/c] Unary Effect Deconstructors

handling P
| P|Q Binary Effect Deconstructors

handling P and Q

Equational theory for the constructors
Signature: a.− : 1→ 1, for a ∈ Act, + : 2→ 1, NIL : 0→ 1
Axioms: That +,NIL forms a commutative semilattice, as per
finite nondeterminism with deadlock.

Modelling CCS
We model CCS terms as elements of ST =def TCCS(∅); these
are just the finite synchronisation trees.

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

The Restriction Deconstructor

Restriction
−\b : ST→ ST

is the unique homomorphism

−\b : ST −→ R

where R is the algebra with carrier ST and operations given by:

(a.Ru) =

{
NIL (a = b)
a.u (a 6= b)

+R(u, v) = u + v
NILR = NIL

Note This evidently defines a CCS-algebra.

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

The Restriction Deconstructor (cntnd.)

More intuitively, one can simply define restriction by a kind of
primitive recursion.

We have:

(a.u)\b = a.R(u\b) =

{
NIL (a = b)
a.(u\b) (a 6= b)

(u + v)\b = u\b +R v\b = u\b + v\b
NIL\b = NILR = NIL

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

The Restriction Deconstructor (cntnd.)

So we can just define restriction by:

(a.u)\b =

{
NIL (a = b)
a.(u\b) (a 6= b)

(u + v)\b = u\b + v\b
NIL\b = NIL

But one needs also to verify that the implicit algebra on ST is a
CCS-Algebra.

Remark: This restriction is not exactly that of CCS. It is an
exercise to correct the definition.

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

The Renaming Deconstructor

This is defined recursively by:

(a.u)[b/c] =

{
b.(u[b/c]) (a = c)
a.(u[b/c]) (a 6= c)

(u + v)[b/c] = u[b/c] + v [b/c]

NIL[b/c] = NIL

(and, as before, a correction needs to be made to get CCS
renaming).

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Interleaving

Consider the interleaving function

| : ST× ST −→ ST

Following the rather natural Dutch ACP approach, we write it as
the sum of left interleaving and right interleaving operations:

u | v = u |l v + u |r v

where |l has first action that of its first argument and then
becomes a regular interleaving, and |r rather favours its
second argument.

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Interleaving Defined

There is a natural "mutually recursive" definition:
The left and right operators satisfy the following defining
equations:

NIL |l z = NIL
(x + y) |l z = (x |l z) + (y |l z)

a.x |l z = a.(x |l z + x |r z)

and
z |r NIL = NIL

z |r (x + y) = (z |r x) + (z |r y)
z |r a.x = a.(z |l x + z |r x)

But these equations do not fit with the homomorphic view (even
accommodating it to allow parameters and mutually recursive
definitions). The problem is the switch from recursion variable
to parameter.

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

A homomorphic solution to the defining equations

Define
l : ST→ STST r : ST× STST → ST

as follows:

l(NIL) = λz : ST.NIL
l(x + y) = λz : ST. l(x)(z) + l(y)(z)

l(a.x) = λz : ST.a.(l(x)(z) + r(z, l(x)))

and
r(NIL, f) = NIL

r(x + y , f) = r(x , f) + r(y , f)
r(a.x , f) = a.(f (x) + r(x , f))

and then set:

x |l z = l(x)(z) x |r z = r(z, l(x))

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Why this is a solution

Left Shuffle

a.x |l z = l(a.x)(z) = a.(l(x)(z) + r(z, l(x))) = a.(x |l z + x |r z)

Right Shuffle

x |r a.z = r(a.z, l(x)) = a.(l(x)(z) + r(z, l(x))) = a.(x |l z + x |r z)

(The idea was independently noted by Paul Levy.)

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Dendriform dialgebras

A dendriform dialgebra (Loday, 1993) is a k-vector space
〈A,+〉 equipped with two binary operations, C and B such
that, for all x , y , z ∈ A:

(x C y) C z = x C (y ./ z)
(x B y) C z = x B (y C z)
x B (y B z) = (x ./ y) B z

where
x ./ y =def x C y + x B y

It is commutative (Shützenberger) if x C y = y B x always
holds.
Then ./ is an associative operation; it is commutative if the
dialgebra is.

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Concurrency with synchronisation

Again following the ACP tradition, split | into three parts:

x | y = x |l y + x |s y + x |r y

where the central |s is for synchronisation.
An NS algebra (Leroux, 2003) is a k-vector space
equipped with three operations C, B, and • (respectively
left linear, right linear, and bilinear) such that

(x C y) C z = x C (y ∗ z)
(x B y) C z = x B (y C z)
x B (y B z) = (x ∗ y) B z
(x ∗ y) • z + (x • y) C z = x B (y • z) + x • (y ∗ z)

where x ∗ y =def x C y + x • y + x B y
It is commutative if • is and x C y = y B x always holds.
Then ∗ is an associative bilinear operation; it is
commutative if the NS-algebra is.

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Dendriform trialgebra, 1984

A dendriform trialgebra (Loday and Ronco, 2004) consists of a
k-vector space, with three binary operations C,B, and • (with
linearity as before) s.t.:

(x C y) C z = x C (y ∗ z)
(x B y) C z = x B (y C z)
x B (y B z) = (x ∗ y) B z

x • (y C z) = (x • y) C z
(x B y) • z = x B (y • z)
(x C y) • z = x • (y B z)

(x • y) • z = x • (y • z)

where ∗ =def C + •+ B. It is automatically an NS-algebra.
These equations appear already in Bergstra and Klop, 1984

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Concurrency definition

Synchronisation algebra
〈A, ·〉 a commutative partial semigroup

CCS Example
〈Act, ·〉 where:

a · b =

{
τ (a = b 6= τ)
↑ (otherwise)

Note: We use Roman a, etc, rather than Greek α for CCS
actions.

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Defining concurrency with synchronisation

Define |l , |r , and |s , together with |sr : A× ST× ST −→ ST
by:

a.x |l z = a.(x |l z + x |s z + x |r z),etc

NIL |s z = NIL
(x + y) |s z = x |s z + y |s z

a.x |s z = x |sr
az

z |r a.y = a.(z |l y + z |s y + z |r y),etc
where:

z |sr
aNIL = NIL

z |sr
a(x + y) = z |sr

ax + z |sr
ay

z |sr
ab.y =

{
(a · b).(z |l y + z |s y + z |r y) (if a · b ↓)
NIL (otherwise)

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Homomorphic definitions

Define

l : ST→ STST s : ST→ STST sr : ST→ STA×STST
r : ST→ STSTST

by l(a.x) = λz.a.(l(x)(z) + s(x)(z) + r(z)(l(x) + s(x)))

s(a.x) = λz. sra(z)(λv . l(x)(v) + s(x)(v) + r(v)(l(x) + s(x)))

sra(b.y) = λf .
{

(a · b).(f (y)) (if a · b ↓)
NIL (otherwise)

r(a.y) = λf .a.(f (y) + r(y)(f))

then put

x |l y = l(x)(y) x |s y = s(x)(y) x |r y = r(y)(l(x) + s(x))

x |sr
ay = sra(y)(λv : ST. x |l v + x |s v + x |r v)

Plotkin Lecture 4: Effect Handlers

Effect Deconstructors
Concurrency

Prospects

Can generalise the CCS deconstructors to all free algebras
TCCS(X), eg:

| : TCCS(X)× TCCS(Y) −→ TCCS(X × Y)

To some extent can use other theories for CCS such as
Milner’s for (+,NIL, τ).
Prospect I: a principled combination of process algebra
and functional programming.
Examples: CSP (with van Glabbeek); INRIA join calculus;
pi-calculus (Stark).
Questions: Operational semantics? Logic?
Prospect II: integration of process calculus theory with the
theory of effects.

Plotkin Lecture 4: Effect Handlers

	Effect Deconstructors
	Concurrency

