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An example type and effect system

Have a finite set Loc of boolean locations in memory,
divided into finitely many regions: Loc =

⋃
r∈R Locr .

The set of effects is:

Eff =def {updater | r ∈ R} ∪ {lookupr | r ∈ R}

Effect typings have the form

Γ ` M : σ!α

where M is an effect-annotated term, and α ⊆fin Eff
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Effect types and effect annotated terms

Raw Syntax

Types σ ::= bool | σ α−→ τ (α ⊆fin Eff)

Terms M ::= x | λx : σ.M | MN |
true | false | if L then M else N |
| l := M (l ∈ Loc) | !l (l ∈ Loc)

Typing

Environments Γ ::= x1 : σ1, . . . , xn : σn

Judgments Γ ` M : σ!α
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Effect typing rules

Γ ` x : σ!∅ (x : σ ∈ Γ)

Γ, x : σ ` M : τ !α

Γ ` λx : σ.M : (σ
α−→ τ)!∅

Γ ` M : (σ
α−→ τ)!β Γ ` N : σ!γ

Γ ` MN : τ !(α ∪ β ∪ γ)

Γ ` M : bool!α
Γ ` l := M : com!(α ∪ {updater})

(l ∈ Locr )

Γ `!l : bool!{lookupr} (l ∈ Locr )
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Semantics of effect-annotated terms

Standard (call-by-value) monadic semantics of terms
Γ ` t : σ, without effect annotations has form:

[[Γ]]
[[Γ`t :σ]]−−−−−−−−→ T ([[σ]])

Wadler’s suggestion: semantics of Γ ` t : σ!α, with effect
annotations should have form:

[[Γ]]
[[Γ`t :σ!α]]−−−−−−−−−→ Tα([[σ]])

for a collection of monads Tα connected by monad
morphisms:

Tα(X )
mα,β(X)
−−−−−→ Tβ(X ) (α ⊆ β)

Where do such collections of monads and monad
morphisms come from?

Plotkin Lecture 2: Types and Effects



Idea I: Effects are given by (sets of) operations

Signature for state:

updatel,b : 1 (l ∈ Loc,b ∈ T) lookupl : 2 (l ∈ Loc)

Effects as (Sets of) operations of algebraic signature:

ops(updater ) = {updatel,b | l ∈ Locr ,b ∈ T}
ops(lookupr ) = {lookupl | l ∈ Locr}
ops({e1, . . . ,en}) = ops(e1) ∪ . . . ∪ ops(en)

Below we identify α and ops(α).
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Idea II: Tα is a restriction of T

Conservative Restriction

Axc
α = {t = u | Ax ` t = u and t ,u α-terms}

Axiomatic Restriction

Axa
α = {t = u | t = u ∈ Ax and t ,u α-terms}

For α ⊆ β, get theory inclusions

Axc
α ⊆ Axc

β ⊆ Ax and Axa
α ⊆ Axa

β ⊆ Ax

and so, as we will see:
for α ⊆ β, get monad morphisms

TAxc
α

(X )→ TAxc
β

(X )→ T and TAxa
α

(X )→ TAxa
β

(X )→ T
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Axioms and Monad for Read-Only State

Axioms: Axr
lookupl(x , x) = x

lookupl(lookupl(w , x), lookupl(y , z)) = lookupl(w , z)

lookupl(lookupl ′(w , x), lookupl ′(y , z)) = lookupl ′(lookupl(w , y), lookupl(x , z)) (l 6= l ′)

Monad

Tr (X ) = X S

where S = TLoc
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Axioms and Monad for Write-Only State:

Axioms: Axw

updatel,b(updatel,b′(x)) = updatel,b′(x)

updatel,b(updatel ′,b′(x)) = updatel ′,b′(updatel,b(x)) (l 6= l ′)

Monad

Tw (X ) = Sw × X

where Sw = (1 + T)Loc
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Axioms and Monad for State

Axioms: Axrw These are Axr ∪ Axw plus:

lookupl(updatel,true(x), updatel,false(y)) = lookupl(x , y)

updatel,true(lookupl(x , y)) = updatel,true(x)

updatel,false(lookupl(x , y)) = updatel,false(y)

updatel,b(lookupl ′(x , y)) = lookupl ′(updatel,b(x), updatel,b(y)) (l 6= l ′)

Monad

Trw (X ) = (S × X )S

where S = TLoc
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Example: Conservative restrictions of Axrw .

In case of state for finitely many boolean locations, have Axa
α

generates Axc
α for α ⊆fin Op, so monads are the same.

not generally true of course
true in all cases at hand not involving nondeterminism.
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Translations between presentations

A signature translation Σ
τ−→ Σ′ is an assignment

op : n ∈ Σ 7→ τ(op) ∈ Σ′-terms

where Var(τ(op)) = {z0, . . . , zn−1}.
Translating Σ-terms to Σ′-terms:

xτ = x
op(t0, . . . , tn−1)τ = τ(op)[tτ0 /z0, . . . , tτn−1/zn−1]

A presentation translation(Σ,Ax)
τ−→ (Σ′,Ax′) is a signature

translation Σ
τ−→ Σ′ such that:

Ax ` t = u ⇒ Ax′ ` tτ = uτ

It is conservative if

Ax ` t = u ⇔ Ax′ ` tτ = uτ
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From translations to monad morphisms

Recall that, given a presentation (Σ,Ax), we get a monad

TAx(X ) =def {[t ]Ax | t is a term with variables in X}

Then, given a translation (Σ,Ax)
τ−→ (Σ′,Ax′), we get a

monad morphism

TAx(X )
ρX−→ TAx′(X ) (X ∈ Set)

where
ρτX ([t ]Ax) = [tτ ]Ax′

Further, ρτX is 1-1 for all sets X iff τ is conservative
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Special case for effect systems

The signatures are α ⊆ β
Get inclusion signature translation α ι−→ β where

ι = op : n ∈ α 7→ op(z1, . . . , zn) ∈ β-terms

Translating α-terms to β-terms:

t ι = t

Axiomatic case Here Axa
β ⊆ Axa

β and ι is a presentation
translation, as

Axa
α ` t = u ⇒ Axa

β ` t = u

Conservative case Here Axc
β ⊆ Axc

β and ι is a conservative
translation as

Axa
α ` t = u ⇔ (Ax ` t = u) ⇔ Axa

β ` t = u
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Special case for effect systems (cntnd)

The monad morphism TAxα(X )
ρX−→ TAxβ (X ) is:

ρX ([t ]Axα) = [t ]Axβ

where Axρ is Axa
ρ or Axc

ρ.
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A slight digression: equivalence of presentations

Composing translations

Given (Σ,Ax)
τ−→ (Σ′,Ax′) τ ′−→ (Σ,Ax′′)

Define (Σ,Ax)
τ ′◦τ−−→ (Σ,Ax′′)

by: τ ′◦τ(op) = τ(op)τ
′

Equivalence of presentations

(Σ′,Ax′) and (Σ′,Ax′) are equivalent if there are translations

(Σ,Ax)
τ−→ (Σ′,Ax′) τ ′−→ (Σ,Ax)

such that

Ax ` τ ′◦τ(op) = op(z1, . . . , zn) (op ∈ Σ)

Ax′ ` τ ◦τ(op′) = op′(z1, . . . , zn) (op′ ∈ Σ′)
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A somewhat general formulation of effect systems

Fix an algebraic presentation (Σ,Ax) and set Eff = F(Op)

Types σ ::= b | σ α−→ τ (α ⊆fin Eff)

Terms M ::= x | λx : σ.M | MN | coerceα,β(M) |
op(M1, . . . ,Mn) (op : n) | . . .

Form of effect typing rules

Γ ` M : σ!α

Form of semantics

Γ ` M : σ!α

[[Γ]]
[[M]]−−→ TAxα([[σ]])
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Effect Typing & Algebraic semantics: Variables and
Abstraction

Typing
x1 :σ1, . . . , xn :σn ` xi :σi !∅

Semantics
[[x ]](a1, . . . ,an) = [ai ]Ax∅

Typing
Γ, x : σ ` M : τ !α

Γ ` λx : σ.M : (σ
α−→ τ)!∅

Semantics

[[λx : σ.M]](γ) = [a ∈ [[σ]] 7→ [[M]](γ,a)]Ax∅
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Algebraic semantics: Application

Typing

Γ ` M : (σ
α−→ τ)!β Γ ` N : σ!γ

Γ ` MN : τ !(α ∪ β ∪ γ)

Semantics

Suppose

[[M]](γ) = [t(f1, . . . , fm)]Axβ
[[N]](γ) = [u(a1, . . . ,an)]Axγ
fi(aj) = [vij ]Axα

Then

[[MN]](γ) = [t(u(v11, . . . , v1n), . . . ,u(vm1, . . . , vmn))]Axα∪β∪γ

Plotkin Lecture 2: Types and Effects



Algebraic semantics: Effects

Typing

Γ ` Mi : σ!αi

Γ ` op(M1, . . . ,Mn) : σ!({op} ∪ α1 ∪ . . . ∪ αn)

Semantics

Suppose
[[Mi ]](γ) = [ti ]Axαi

Then

[[op(M1, . . . ,Mn)]] = [op(t1, . . . , tn)]Ax({op}∪α1∪...∪αn)
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Algebraic Effects: Coercion

Typing

Γ ` M : σ!α

Γ ` coerceα,β(M) : σ!β
(α ⊆ β)

Semantics

Suppose
[[M]](γ) = [t ]Axα

Then

coerceα,β([[M]])(γ) = ρ[[σ]]([t ]Axα) = [t ]Axβ
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The let construct

Definition
let x : σ be M in N = (λx : σ.M)N

(also written as: M to x : σ in N)

Typing
Γ ` M : σ Γ, x : σ ` N : τ

let x : σ be M in N : τ

Semantics (Exceptions case)

[[let x : σ be M in N]](γ) =

{
inr(e) (if [[M]](γ) = inr(e))
[[N]](γ,a) (if [[M]](γ) = inl(a))
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Kleisli lifting

Lifting
X

f

T (X )

η

? f †
- T (Y )

-

where f † = µT (Y ) ◦ T (f ).

Kleisli lifting with parameters

X × Y f−→ X

X × T (Y )
st−→ T (X × Y )

f †−→ T (Z )
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Semantics of let

Typing
Γ ` M : σ Γ, x : σ ` N : τ

Γ ` let x : σ be M in N : τ

Categorical semantics

[[Γ]]
∆−→ [[Γ]]× [[Γ]]

id×[[M]]−−−−→ [[Γ]]× [[σ]]
[[N]]†−−−→ [[τ ]]

Algebraic semantics

[[M]](γ) = [t(a1, . . . ,ak )] (ai ∈ [[σ]]) [[N]](γ,ai) = [ui ] (i = 1, k)

[[let x : σ be M in N]](γ) = [t(u1, . . . ,uk )]
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Effect version

Effect typing

Γ ` M : σ!α Γ, x : σ ` N : τ !β

let x : σ be M in N : τ !(α ∪ β)

Algebraic semantics
Suppose

[[M]](γ) = [t(a1, . . . ,ak )]Axα (ai ∈ [[σ]])
[[N]](γ,ai) = [ui ]Axβ (i = 1, k)

Then

[[let x : σ be M in N]](γ) = [t(u1, . . . ,uk )]Ax(α∪β)
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Algebraic optimisations: Discard

Suppose that Γ ` M : σ!α and Γ ` N : τ !β, with α ⊆ β then, if α
is Axα-discardable:

Γ |=TAxα
let x : σ be M in N = N

where discardability is that the only definable unary function is
the identity, ie, whenever Var(t) = {x} is an α-term, then:

Axα ` t(x) = x

Equivalently

Axα ` op(x , . . . , x) = x (op : n)

Example discardable theories Reader, both forms of
non-determinism.
Example nondiscardable theories Exceptions, writing.
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Proof of validity of optimisation

We have

[[M]](γ) = [t(a1, . . . ,ak )]Axα (ai ∈ [[σ]])
[[N]](γ,ai) = [u]Axβ

So

[[let x : σ be M in N]](γ) = [t(u, . . . ,u)]Ax(α∪β)

= [u]Axβ
= [[N]](γ)
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Algebraic optimisations: Copy

Suppose that Γ ` M : σ!α and Γ, x : σ, y : σ ` N : τ !β, with
α ⊆ β then, if α is Axα-copyable:

Γ |=TAxα
let x : σ be M in (let y : σ be M in N) =
let x : σ be M in N[x/y ]

where copyability is defined by, whenever Var(t) = {x1, . . . , xn}
is an α-term:

Axα ` t(t(x11, . . . , x1n), . . . , t(xn1, ..., xnn)) = t(x11, . . . , xnn)

Example copyable theories Exceptions, read-only state,
write-only state (proof: look at the normal forms)

Example non-copyable theories Nondeterminism, probabilistic
nondeterminism, state (with both reading and writing!)
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Proof of optimisation

Suppose
[[M]](γ) = [t(a1, . . . ,ak )]Axα

[[N]](γ,ai ,aj) = [uij ]Axβ (i , j = 1,n))

Then

[[let x : σ be M in (let y : σ be M in N)]](γ)

= [t(t(u11, . . . ,u1n), . . . , t(un1, . . . ,unn))]Axβ

= [t(u11, . . . ,unn)]Axβ

= [[let x : σ be M in N[y/x ]]](γ)
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Algebraic optimisations: Permutation

Suppose Γ ` L : σ!α, Γ ` M : τ !β and Γ, x : σ, y : σ ` N : τ !β,
with α, β ⊆ ρ then, if α, β are Axα,Axβ-permutable:

Γ |=TAxρ
let x : σ be L in (let y : τ be M in N) =

let y : τ be M in (let x : σ be L in N)

where permutability is defined by, whenever
Var(t) = {x1, . . . , xm} is an α term and Var(u) = {y1, . . . , ym} is
a β term, then:

Axα∪β ` t(u(x11, . . . , x1n), . . . ,u(xm1, ..., xmn))
= u(t(x11, . . . , xm1), . . . , t(x1n, ..., xmn))

Equivalently, just the operations.
Example permutable theories Distinct memory locations; state
and nondeterminism.
Example non-permutable theories Reading and writing the
same location; state and exceptions.

Plotkin Lecture 2: Types and Effects



Justification of optimisations

Theorem
Suppose Γ ` M : b!α and Γ ` N : b!α where
Γ = x1 : b1, . . . , xn : bn and b and the bi are all ground. Then:

1. |Γ| |=Ax |M| = |N| ⇐ Γ |=TAxa
α

M = N
2. |Γ| |=Ax |M| = |N| iff Γ |=TAxc

α
M = N

So can use equations between annotated terms that are true in
effect models to optimise unannotated programs.

Note: Theorem is false if, e.g., Γ is allowed to have first, or
higher, order variables, as guarantees on function applications
are lost on the left, e.g.:

f :unit α−→ unit ` let x :unit be f (∗) in ∗ = ∗

Interesting re separate compilation
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Modularity (examples)

Idea Build-up axioms/theories/monads for sets of effects
by simple operations on axioms/theories/monads for
smaller sets of effects.
Sum of Presentations Given (Σ1,Ax1), (Σ2,Ax1) their sum
is the evident disjoint union, (Σ1 + Σ2,Ax1+,Ax2).
If Ax1, Ax2 are discardable, so is Ax1 + Ax2.
If both Ax1 and Ax2 are permutable with Ax3, then so is
Ax1 + Ax2.
If α1 ⊆ Σ1 and α2 ⊆ Σ2 then

(Ax1 + Ax2)a
α+β = (Ax1)a

α + (Ax2)a
β

(Ax1 + Ax2)c
α+β = ((Ax1)c

α + (Ax2)c
β)∗
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Exercise 8

1 Show that in the case of state for finitely many boolean
locations (Axrw )c

lookup is the deductive closure of Axr , where
lookup = {lookupl |l ∈ Loc}.

2 Show that in the case of state for finitely many boolean
locations (Axrw )c

update is the deductive closure of Axw ,where
update = {updatel,b|l ∈ Loc,b ∈ T}.
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Exercise 9: Presentation translations and monad
morphisms

1 Show that, as claimed, ρτX is 1-1 for all sets X iff τ is
conservative

2 Show that ρτ is actually a bijection between presentation
translations and monad morphisms. What is its inverse?

3 (For the particularly categorically minded) Define a
category of axiomatic presentations and (equivalence
classes of) translations. Show that ρτ is a fully faithful
functor. Perhaps go on to show it is an equivalence of
categories with the category of finitary monads. (Both are
equivalent to the category of Lawvere theories.)

Plotkin Lecture 2: Types and Effects



Exercise 10: Type and effect systems

1 Give a type and effect system for the language of Exercise
1. Give its algebraic semantics.

2 Unique Typing For the “reasonably general" system given
above, or for your system of part 1 of this exercise, prove
that, given Γ and M there is at most one pair σ, α such that
Γ ` M : σ!α.

3 Explicit coercion is annoying. Remove it (e.g. from the
“reasonably general" system given above) and give an
alternative system with subtyping and subeffecting. This
system does not have unique typing. Show that if
Γ ` M : σ!α then there is a term M+ of the previous system
such that Γ ` M+ : σ!α and M is obtained from M+ by
removing coercions and certain natural maps
corresponding to subtyping. (There should be a better way
to say this.)
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Exercise 11: Optimisations I

1 Discard Various example theories were claimed to be
discardable or non-discardable. Establish these claims
(with proofs and counterexamples).

2 Copy Various example theories were claimed to be
copyable or non-copycardable. Establish these claims
(with proofs and counterexamples).

3 Permutation Various example pairs of theories were
claimed to be permutable or non-permutable. Establish
these claims (with proofs and counterexamples).
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Exercise 12: Optimisations II

1 Discard It is claimed above that discardability can be
equivalently formulated in terms of just the operations.
Prove this.

2 Copy It is claimed above that copyability cannot be
equivalently similarly formulated in terms of just the
operations. Prove this. [Hint: look at the counterexample
from the previous exercise.]

3 Permutation It is claimed above that permutability can be
equivalently formulated in terms of just the operations.
Prove this.
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