
Talking to Frank

Craig McLaughlin

The University of Edinburgh

March 26, 2019

Joint work with Lukas Convent, Sam Lindley and Conor McBride

Craig McLaughlin NII Shonan Meeting 2019



What’s Frank?

Frank:

strict functional language

effects as collections of commands (effect operations)

Novelties:

effect type system for statically tracking effects

effect handling arising from generalising function application

Implementation:

https://www.github.com/frank-lang/frank — try today!

Craig McLaughlin NII Shonan Meeting 2019

https://www.github.com/frank-lang/frank


f x
Craig McLaughlin NII Shonan Meeting 2019



h x
Craig McLaughlin NII Shonan Meeting 2019



h x
Craig McLaughlin NII Shonan Meeting 2019



h x
Craig McLaughlin NII Shonan Meeting 2019



h x
Craig McLaughlin NII Shonan Meeting 2019



Functional “Hello World” in Frank

map : {X -> Y} -> List X -> List Y

map f nil = nil

map f (x :: xs) = f x :: map f xs

Craig McLaughlin NII Shonan Meeting 2019



Functional “Hello World” in Frank

map : {X -> Y} -> List X -> List Y

map f nil = nil

map f (x :: xs) = f x :: map f xs

map {n -> n+1} [1,2,3] =⇒ [2,3,4]

Craig McLaughlin NII Shonan Meeting 2019



Example: Declaring Effects in Frank

interface Abort = abort X : X

interface Write X = tell : X -> Unit

interface Read X = ask : X

Craig McLaughlin NII Shonan Meeting 2019



Example: Writing a List

interface Write X = tell : X -> Unit

writeList : List X -> [Write X]Unit

writeList xs = map tell xs; unit

[Σ]
“Hi, I’m an ability.

The environment must be able to handle effects declared in Σ”

Craig McLaughlin NII Shonan Meeting 2019



Example: Writing a List

interface Write X = tell : X -> Unit

writeList : List X -> [Write X]Unit

writeList xs = map tell xs; unit

[Σ]
“Hi, I’m an ability.

The environment must be able to handle effects declared in Σ”

Craig McLaughlin NII Shonan Meeting 2019



Example: Interpreting Read and Write

state : S -> <Read S,Write S>X -> X

state _ x = x

state s <ask -> k> = state s (k s)

state _ <tell s -> k> = state s (k unit)

〈∆〉
“Hi, I’m an adjustment.

The effects declared in ∆ must be handled locally.”

Craig McLaughlin NII Shonan Meeting 2019



Example: Interpreting Read and Write

state : S -> <Read S,Write S>X -> X

state _ x = x

state s <ask -> k> = state s (k s)

state _ <tell s -> k> = state s (k unit)

〈∆〉
“Hi, I’m an adjustment.

The effects declared in ∆ must be handled locally.”

Craig McLaughlin NII Shonan Meeting 2019



Desugaring The Type of Map

map : {X -> Y} -> List X -> List Y

desugars to

〈ι〉{〈ι〉X -> [ε]Y} -> 〈ι〉List X -> [ε]List Y

Aside for Haskell programmers:
We’ve got something that’s equivalent to both map and mapM!

Craig McLaughlin NII Shonan Meeting 2019



Desugaring The Type of Map

map : {X -> Y} -> List X -> List Y

desugars to

〈ι〉{〈ι〉X -> [ε]Y} -> 〈ι〉List X -> [ε]List Y

Aside for Haskell programmers:
We’ve got something that’s equivalent to both map and mapM!

Craig McLaughlin NII Shonan Meeting 2019



Do be do a demo

Demo

Craig McLaughlin NII Shonan Meeting 2019



That’s Frank!

Conclusions:

Application generalises to account for both functions & handlers

Effect type system: effects tracked and pushed inwards

Convenient syntactic sugars: rarely need specify effect variables

Adaptors provide general rewiring of effects in the ambient ability

https://www.github.com/frank-lang/frank

Craig McLaughlin NII Shonan Meeting 2019

https://www.github.com/frank-lang/frank


That’s Frank!

Conclusions:

Application generalises to account for both functions & handlers

Effect type system: effects tracked and pushed inwards

Convenient syntactic sugars: rarely need specify effect variables

Adaptors provide general rewiring of effects in the ambient ability

https://www.github.com/frank-lang/frank

Craig McLaughlin NII Shonan Meeting 2019

https://www.github.com/frank-lang/frank


Catching More Precisely

catch : <Abort >X -> {X} -> X

catch x _ = x

catch <aborting -> _> h = h!

catchError :: -- Haskell

MonadError () m => m a -> (() -> m a) -> m a

Imprecise typing (() -> m a) permits alternative to throw errors!

Craig McLaughlin NII Shonan Meeting 2019



Catching More Precisely

catch : <Abort >X -> {X} -> X

catch x _ = x

catch <aborting -> _> h = h!

catchError :: -- Haskell

MonadError () m => m a -> (() -> m a) -> m a

Imprecise typing (() -> m a) permits alternative to throw errors!

Craig McLaughlin NII Shonan Meeting 2019


