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What’s Frank?

Frank:

strict functional language

effects as collections of commands (effect operations)

Novelties:

effect type system for statically tracking effects

effect handling arising from generalising function application

Implementation:

https://www.github.com/frank-lang/frank — try today!
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Functional “Hello World” in Frank

map : {X -> Y} -> List X -> List Y

map f nil = nil

map f (x :: xs) = f x :: map f xs
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Functional “Hello World” in Frank

map : {X -> Y} -> List X -> List Y

map f nil = nil

map f (x :: xs) = f x :: map f xs

map {n -> n+1} [1,2,3] =⇒ [2,3,4]
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Example: Declaring Effects in Frank

interface Abort = abort X : X

interface Write X = tell : X -> Unit

interface Read X = ask : X
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Example: Writing a List

interface Write X = tell : X -> Unit

writeList : List X -> [Write X]Unit

writeList xs = map tell xs; unit

[Σ]
“Hi, I’m an ability.

The environment must be able to handle effects declared in Σ”
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Example: Interpreting Read and Write

state : S -> <Read S,Write S>X -> X

state _ x = x

state s <ask -> k> = state s (k s)

state _ <tell s -> k> = state s (k unit)

〈∆〉
“Hi, I’m an adjustment.

The effects declared in ∆ must be handled locally.”
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Desugaring The Type of Map

map : {X -> Y} -> List X -> List Y

desugars to

〈ι〉{〈ι〉X -> [ε]Y} -> 〈ι〉List X -> [ε]List Y

Aside for Haskell programmers:
We’ve got something that’s equivalent to both map and mapM!
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Do be do a demo

Demo
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That’s Frank!

Conclusions:

Application generalises to account for both functions & handlers

Effect type system: effects tracked and pushed inwards

Convenient syntactic sugars: rarely need specify effect variables

Adaptors provide general rewiring of effects in the ambient ability

https://www.github.com/frank-lang/frank
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Catching More Precisely

catch : <Abort >X -> {X} -> X

catch x _ = x

catch <aborting -> _> h = h!

catchError :: -- Haskell

MonadError () m => m a -> (() -> m a) -> m a

Imprecise typing (() -> m a) permits alternative to throw errors!
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