
Equational Theories and Monads from
Polynomial Cayley Representations

Maciej Piróg

(joint work with Piotr Polesiuk and Filip Sieczkowski)

pl-uwr.bitbucket.io/caymon/

https://pl-uwr.bitbucket.io/caymon/


Recipe for monads (a recap from Gordon’s talk)
• Take any (finitary) equational theory (Σ, E) you can imagine,

• Take the equivalence ∼ induced by the equations,
• Your monad is given by ΣEA = [Σ∗A]∼,

• The monadic structure is induced by freeness.

If you’re a set-theorist

or maybe a HoTT person

If you’re a Haskell

programmer



The puzzle for this beautiful morning is...
Which monads can I implement in, say, Haskell using

+,×,→,∀,∃?

It is a serious question, about the very nature of the connection of
different equational theories and computation.

Sadly, it is a horribly difficult question!



What do other people with undecidable problems?
METHOD 1: Ignore altogether
Examples: UndecidableInstances, C++ templates

METHOD 2: Investigate specific cases. E.g., satisfiability:
FOL is undecidable

FOL with 2 variables is decidable

FOL with 2 variables and 2 transitive relations is not

FOL with 2 variables and 1 transitive relation is... ???



What are the specific cases that we can examine?

Equational theories in general

Possible implementations of monads

Types that are always equipped with canonical monadic structure



In particular...

Ma = (a→ X)→ X
is a monad for all types X



In particular...

Ma = ∀x. (a→ Fx)→ Fx
is a monad for all functors F



In particular...

Ma = ∀x. (a→ Fxx)→ Fxx
is a monad for allmixed-variance bifunctors F



Ma = ∀x. (a→ Fxx)→ Fxx
as in

List a = ∀x. (a→ (x→ x))→ (x→ x)
or

State sa = ∀x. (a→ (s→ x))→ (s→ x)



Did I just say State?...

State sa= ∀x. (a→ s→ x)→ s→ x
(flip) ∼= ∀x. s→ (a→ s→ x)→ x

(→ and ∀) ∼= s→∀x. (a→ s→ x)→ x
(Church) ∼= s→ (a, s)



The overall idea
(inspired by Ralf Hinze’s “Kan extensions for program optimization”)

I prove the following (vaguely stated) theorem:

If an equational theory T has a
well-behaved Cayley representation F,
then the monad

Ma = ∀x. (a→ Fxx)→ Fxx
is the free monad of T .

...reducing(?) the problem of finding implementations of free

models of theories to finding implementations of Cayley rep-

resentations of theories.



Making the statement of the theoremmore precise (1)
Our domain is the category SET of sets and functions.
We model our particular polymorphic functions as what
Philip Mulry calls strong dinatural transformations, while
Michael Barr calls Barr-dinatural transformations



Making the statement of the theoremmore precise (2)
A well-behaved Cayley representation of T with respect to F a U consists of the
following components: • A bifunctor R : Setop × Set→ Set, • For each set X , an

object RX in T , such that URX = RXX , • For all sets A, X , Y and functions
f1 : A→ RXX , f2 : A→ RYY , g : X → Y , it is the case that

if A
RXX

RYY
RXY

f1

f2

RXg

RgY
commutes, then UFA

RXX

RYY
RXY

f̂1

f̂2

RXg

RgY
commutes. • For each object

M in T , a morphism σM : M→ R(UM) in T , such that UσM : UM→ R(UM)(UM) is
Barr-dinatural in M, • A Barr-dinatural transformation ρM : R(UM)(UM)→ UM,
such that ρM · UσM = id, • For each set X , a set of indices IX and a family of

functions runX,i : RXX → X , where i ∈ IX , such that R(RXX)runX is a jointly monic
family, and the following diagram commutes for all X and i ∈ IX :

RXX R(RXX)(RXX)

R(RXX)X

UσRX

R(RXX)runX,iRrunX,iX



So what can I offer you today, exactly?
I can offer you (many-sorted) equational theories Cayley-represented by the type

Fxy= Px→ y
where P is a polynomial functor with natural coefficients (= finite sets).



Polynomial:

PX =
d∑
i=1
ci × Xei

Sorts:
Ω (main sort),

Ki, for all i ≤ d

Operations:
cons :

∏d
i=1 Kcii → Ω

π
j
i : Ω→ Ki, for i ≤ d and j ≤ ci
ε
j
i : Ki, for i ≤ d and j ≤ ei
γ
j
i : Kj × Keji → Ki, for i, j ≤ d

Equations:
π
j
i(cons([[xji]j≤ci ]i≤d)) = xji (beta-π)

cons([[π
j
i(x)]j≤ci ]i≤d) = x (eta-π)

γ
j
i(ε
kj , [xt]t≤ej) = xk (beta-ε)

γ ii(x, [εji]j≤ei) = x (eta-ε)

γ
j
i(γ

kj (x, [yt]t≤ek), [zs]s≤ej)
= γki (x, [γ ji(yt, [zs]s≤ej)]t≤ek) (assoc-γ)



Example: Px = n

Sorts: Operations: Equations:
Ω, K πt : Ω→ K (t ≤ n) πt(cons([xi]i≤n)) = xt

cons : Kn → Ω cons([πi(x)]i≤n) = x

Macro-operations:
put

t : Ω→ Ω put
t(x) = cons([πt(x)]n)

get : Ωn → Ω get([xi]i≤n) = cons([πi(xi)]i≤n)



Example: Px = n

put
j(putk(x))

= (definition of put)

cons([πj(cons([πk(x)]n))]n)
= (beta-π)

cons([πk(x)]n)
= (definition of put)

put
k(x)

put
j(get([xi]i≤n))

= (definition of get)

put
j(cons([πi(xi)]i≤n))

= (definition of put)

cons([πj(cons([πi(xi)]i≤n))]n)
= (beta-π)

cons([πj(xj)]n)
= (definition of put)

put
j(xj)



Effects
(Ohad, please put on red glasses. Jeremy, please put on blue glasses)

Px Effect
x Nondeterminism

n State

nx Nondeterminism with local/provisional state

xn Nondeterminism with global/persistent state

nxp Nondeterminism with both local/provisional state and

global/persistent and state

nxp +mxq Nondeterminism with global/persistent state dependent

on the local/provisional state



Lessons...
I was surprised to see state

...yet alone the appropriate combinations of state and nondeterminism

The formula produced a novel (at least to me) presentation of state in

terms of 2-sorted theory of tupling and projections

The formula produced a novel (at least to me) presentation of

local/provisional state – one I probably wouldn’t write from the top of my

head



Note to self:

You were supposed to show the Caymon tool, but I guess you’re out of
time by now!

pl-uwr.bitbucket.io/caymon/

https://pl-uwr.bitbucket.io/caymon/

