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The Fundamental Efficiency of Effect Handlers

We consider whether a language with effect handlers admit essential
expressiveness differences over a “pure” language.

The question
Let Leff a language with effect handlers, and L ⊂ Leff the fragment modulo effect
handlers. Does Leff admit asymptotically more efficient programs than L?

Spoiler alert: the answer is YES. Specifically O(2n) vs Ω(n2n).

To answer positively, it suffices to find one such program. We shall use generic
search as our program.

Take L to be cbv PCF and endow it with effect handlers to obtain Leff .
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The Generic Search Problem

Problem: Given a boolean-valued predicate P on a space Bn of boolean vectors
of length n (for some fixed n ∈ N), return the number of such vectors p for which
P(p) = true. Thus for each n, we ask for an implementation of

countn : ((Nat→ Bool)→ Bool)→ Nat

There is but one rule:

No change of types is allowed! (Longley and Normann 2015)

This rules out tricks such as
CPS conversion
Implementing an interpreter for Leff in L



Example predicates and their models I

A boring constant predicate

tt0 : (Nat→ Bool)→ Bool
tt0

.
= λp.true

Admits a with no queries model

!tt



Example predicates and their models II

A slightly more interesting constant predicate

tt2 : (Nat→ Bool)→ Bool
tt2

.
= λp.p 0; p 1; true

Admits a finite model with no repeated queries

?0

?1

!tt !tt

?1

!tt !tt



Example predicates and their models III

A non-constant predicate

tf3 : (Nat→ Bool)→ Bool
tf3

.
= λp.if p 1

then if p 0 then p 2 else false
else if p 2 then true else p 0

Admits a finite model with no repeated queries

?1

?0

?2

!tt !ff

!ff

?2

!tt ?0

!tt !ff



Example predicates and their models IV

Possibly divergent predicate

div0 : (Nat→ Bool)→ Bool
div0

.
= rec div0 p.if p 0 then div0 p else false

Admits an infinite model with repeated queries

?0

?0

... !ff

!ff



Restriction to n-standard predicates

We restrict our analysis to predicates whose models are “n-standard”; informally
A perfect binary tree of height n > 0, whose interior nodes are queries and
leaves are answers.
Contains every query ?j for j ∈ {0, . . . , n − 1}.
No repeated queries along any path in the model.

For example
tt3

.
= λp.p 0; p 1; p 2; true

is 3-standard because its model is 3-standard

?0

?1

?2

!tt !tt

?2

!tt !tt

?1

?2

!tt !tt

?2

!tt !tt



A pure generic search procedure

A possible implementation of generic search in L
countn : ((Nat→ Bool)→ Bool)→ Nat
countn

.
= λpred .count ′ n (λi .⊥)

where
count ′ 0 p

.
= if pred p then 1 else 0

count ′ (1 + n) p
.
= count ′ n (λi .if i = n then true else p i)

+ count ′ n (λi .if i = n then false else p i)

Example count3 tt3:
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The effectful generic search procedure

For the efficient implementation of generic search in Leff , we require one
operation; fix Σ

.
= {Branch : 〈〉 → Bool}

count : ((Nat→ Bool)→ Bool)→ Nat
count .= λpred .handle pred (λn.do Branch) with

val x 7→ if x then 1 else 0
Branch 〈〉 r 7→ r true + r false

Example count tt3:
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Main theorem

Theorem

1 For every n-standard predicate pred , the generic counting procedure has at
most time complexity

DTime(count pred) =
∑

bs∈B∗,|bs|≤n

steps(t)(bs) +O(2n)

2 Every generic counting function count ∈ L has for every n-standard predicate
pred at least time complexity

DTime(count pred) =
∑

bs∈B∗,|bs|≤n

2n−|bs|steps(t)(bs) +O(n2n)

Here t denotes the model of pred , and steps(t)(bs) computes the number of
reduction steps used to arrive at the query or answer node determined by bs.



Proving the positive result

Define suitable machine configuration computing functions

arrive, depart : B∗ ×Model⇀ Conf

Lemma
Suppose t is a model of a n-standard predicate, then for every boolean list bs ∈ B∗

arrive(bs, t) −→
∑
|bs|≤n steps(t)(bs)+2n−|bs|

depart(bs, t)

Proof.
Proof by downward induction on the list of booleans bs.



Proving the negative result

Suppose that we have an arbitrary implementation of generic search count ∈ L.
Pick any n-standard predicate pred and look at the computation arising from
count pred . Now we need to show that

Lemma (Every leaf is visited (A))
The computation (count pred) visits every leaf in the model of pred .

Lemma (No shared computation (B))
If p and p′ are distinct points then their subcomputations are disjoint.

Since each subcomputation has length at least Ω(n) the entire computation must
have at least length Ω(n2n).



Threads and sections

Consider a 3-standard predicate seven (has seven true leaves)

Thread
.
= { pred p  ∗ E0[p 0],
E0[true] ∗ E1[p 1]
E1[false] ∗ E2[p 2],
E2[true]→ false }

?0

?1

?2

!tt !tt

?2

!ff !tt

?1

?2

!tt !tt

?2

!tt !tt

Any n-standard predicate has 2n threads, and every thread consists of n + 1
sections.

Proof of Lemma A.
By contradiction: pick a leaf that has no thread; negate the value at the leaf;
tweak the predicate accordingly; observe a wrong result.
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No shared computation

Every section has a unique successor

Proof.
Follows by definition of section and the
semantics being deterministic.

Every section has a single predecessor

Proof.
By direct calculation on the reduction
sequence induced by a section.



Summary and future work

In summary
We have defined two languages L and Leff

We have demonstrated that Leff provides strictly more efficient
implementations of generic search than L (O(2n) vs Ω(n2n))
. . . which establish a new complexity result for control operators
Intuition: control operators build in support for backtracking.

Future considerations
Perform empirical experiments to observe the result in practice (Daniels 2016)
Study the robustness of the result, i.e. what feature(s) can we add to L
whilst retaining an efficiency gap between L and Leff ?
Generalise the result to all conceivable effective models of computations
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